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Mechanical models of pattern and form in biological tissues: the role

of stress-strain constitutive equations

Chiara Villa∗ Mark A. J. Chaplain† Alf Gerisch‡ Tommaso Lorenzi§

Abstract

Mechanical and mechanochemical models of pattern formation in biological tissues have been used to
study a variety of biomedical systems, particularly in developmental biology, and describe the physical
interactions between cells and their local surroundings. These models in their original form consist of a
balance equation for the cell density, a balance equation for the density of the extracellular matrix (ECM),
and a force-balance equation describing the mechanical equilibrium of the cell-ECM system. Under the
assumption that the cell-ECM system can be regarded as an isotropic linear viscoelastic material, the force-
balance equation is often defined using the Kelvin-Voigt model of linear viscoelasticity to represent the stress-
strain relation of the ECM. However, due to the multifaceted bio-physical nature of the ECM constituents,
there are rheological aspects that cannot be effectively captured by this model and, therefore, depending
on the pattern formation process and the type of biological tissue considered, other constitutive models of
linear viscoelasticity may be better suited. In this paper, we systematically assess the pattern formation
potential of different stress-strain constitutive equations for the ECM within a mechanical model of pattern
formation in biological tissues. The results obtained through linear stability analysis and the dispersion
relations derived therefrom support the idea that fluid-like constitutive models, such as the Maxwell model
and the Jeffrey model, have a pattern formation potential much higher than solid-like models, such as the
Kelvin-Voigt model and the standard linear solid model. This is confirmed by the results of numerical
simulations, which demonstrate that, all else being equal, spatial patterns emerge in the case where the
Maxwell model is used to represent the stress-strain relation of the ECM, while no patterns are observed
when the Kelvin-Voigt model is employed. Our findings suggest that further empirical work is required
to acquire detailed quantitative information on the mechanical properties of components of the ECM in
different biological tissues in order to furnish mechanical and mechanochemical models of pattern formation
with stress-strain constitutive equations for the ECM that provide a more faithful representation of the
underlying tissue rheology.

1 Introduction

Pattern formation resulting from spatial organisation of cells is at the basis of a broad spectrum of physiological
and pathological processes in living tissues [28]. While the first formal exploration of pattern and form from
a mathematical (strictly speaking, geometrical) perspective goes back over a century to D’Arcy Thompson’s
“On Growth and Form” [66], the modern development of mathematical models for this biological phenomenon
started halfway through the twentieth century to elucidate the mechanisms that underly morphogenesis and
embryogenesis [35]. Since then, a number of mathematical models for the formation of cellular patterns have
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been developed [72]. Amongst these, particular attention has been given to reaction-diffusion models and
mechanochemical models of pattern formation [47].

Reaction-diffusion models of pattern formation, first proposed by Turing in his seminal 1952 paper [71]
and then further developed by Gierer and Meinhardt [21, 42], apply to scenarios in which the heterogeneous
spatial distribution of some chemicals (i.e. morphogens) acts as a template (i.e. a pre-pattern) according to
which cells organise and arrange themselves in different sorts of spatial patterns. These models are formulated
as coupled systems of reaction-diffusion equations for the space-time dynamics of the concentrations of two
morphogens, with different reaction kinetics depending on the biological problem at stake. Such systems exhibit
diffusion-driven instability whereby homogenous steady states are driven unstable by diffusion, resulting in the
formation of pre-patterns, provided that the diffusion rate of one of the morphogens is sufficiently higher than
the other [34, 38, 39, 46].

On the other hand, mechanochemical models of pattern formation, first proposed by Murray, Oster and
coauthors in the 1980s [52, 53, 54, 59], describe spatial organisation of cells driven by the mechanochemical
interaction between cells and the extracellular matrix (ECM) – i.e. the substratum composed of collagen fibers
and various macromolecules, partly produced by the cells themselves, in which cells are embedded [24, 25].
These models in their original form consist of systems of partial differential equations (PDEs) comprising a
balance equation for the cell density, a balance equation for the ECM density, and a force-balance equation
describing the mechanical equilibrium of the cell-ECM system [50, 51]. When chemical processes are neglected,
these models reduce to mechanical models of pattern formation [12, 50, 51].

While reaction-diffusion models well explain the emergence and characteristics of patterns arising during
chemical reactions [13, 34, 38], as well as pigmentation patterns found on shells [43] or animal coatings [30, 47],
various observations seem to suggest they may not always be the most suited models to study morphogenic
pattern formation [3, 10, 38]. For instance, experiments up to this day seem to fail in the identification of appro-
priate morphogens and overall molecular interactions predicted by Turing models in order for de novo patterns
to emerge may be too complex. In addition, unrealistic parameter values would be required in order to reproduce
experimentally observable patterns and the models appear to be too sensitive to parameter changes, hence lack-
ing the robustness required to capture precise patterns. These considerations indicate that other mechanisms,
driven for instance by significant mechanical forces, should be considered since solely chemical interactions may
not suffice in explaining the emergence of patterns during morphogenesis. Hence mechanochemical models may
be better suited. Interestingly, this need to change modelling framework sometimes arises within the same
biological application as time progresses. For instance, supracellular organisation in the early stages of embry-
onic development closely follows morphogenic chemical patterns, but further tissue-level organisation requires
additional cooperation of osmotic pressures and mechanical forces [62]. Similarly, pattern formation during
vasculogenesis is generally divided into an early stage highly driven by cell migration following chemical cues,
and a later one dominated by mechanical interactions between the cells and the ECM [2, 63, 68]. Finally, purely
mechanical models are a useful tool for studying the isolated role of mechanical forces and can capture observed
phenomena without the inclusion of chemical cues [62, 64, 67].

Over the years, mechanochemical and mechanical models of pattern formation in biological tissues have been
used to study a variety of biomedical problems, including morphogenesis and embryogenesis [10, 16, 36, 49, 51,
52, 53, 54, 59, 61], angiogenesis and vasculogenesis [40, 63, 69], cytoskeleton reorganisation [1, 32], wound healing
and contraction [27, 37, 58, 70], and stretch marks [22]. These models have also been used to estimate the values
of cell mechanical parameters, with a particular focus on cell traction forces [4, 5, 6, 18, 44, 61]. The roles that
different biological processes play in the formation of cellular patterns can be disentangled via linear stability
analysis (LSA) of the homogenous steady states of the model equations – i.e. investigating what parameters of
the model, and thus what biological processes, can drive homogenous steady states unstable and promote the
emergence of cell spatial organisation. Further insight into certain aspects of pattern formation in biological
tissues can also be provided by nonlinear stability analysis of the homogenous steady states [16, 32, 36].

These models usually rely on the assumption that the cell-ECM system can be regarded as an isotropic linear
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viscoelastic material. This is clearly a simplification due to the non-linear viscoelasticity and anisotropy of soft
tissues [9, 26, 33, 57, 65, 73, 75], a simplification that various rheological tests conducted on biological tissues have
nonetheless shown to be justified in the regime of small strains [7, 33, 57, 73], which is the one usually of interest
in the applications of such models. Under this assumption, the force-balance equation for the cell-ECM system
is often defined using the Kelvin-Voigt model of linear viscoelasticity to represent the stress-strain relation of
the ECM [12, 51, 59]. However, due to the multifaceted bio-physical nature of the ECM constituents, there
are rheological aspects that cannot be effectively captured by the Kelvin-Voigt model and, therefore, depending
on the pattern formation process and the type of biological tissue considered, other constitutive models of
linear viscoelasticity may be better suited [5]. In this regard, [12] demonstrated that, ceteris paribus, using
the Maxwell model of linear viscoelasticity to describe the stress-strain relation of the ECM in place of the
Kelvin-Voigt model can lead to different dispersion relations with a higher pattern formation potential. This
suggests that a more thorough investigation of the capability of different stress-strain constitutive equations of
producing spatial patterns is required.

With this aim, here we complement and further develop the results presented in [12] by systematically assessing
the pattern formation potential of different stress-strain constitutive equations for the ECM within a mechanical
model of pattern formation in biological tissues [12, 51, 59]. Compared to the work of [12] here we consider a
wider range of constitutive models, we allow cell traction forces to be reduced by cell-cell contact inhibition,
and undertake numerical simulations of the model equations showing the formation of cellular patterns both in
one and in two spatial dimensions. A related study has been conducted by [1], who considered a mathematical
model of pattern formation in the cell cytoplasm.

The paper is structured as follows. In Section 2, we recall the essentials of viscoelastic materials and provide
a brief summary of the one-dimensional stress-strain constitutive equations that we examine. In Section 3, we
describe the one-dimensional mechanical model of pattern formation in biological tissues that is used in our
study, which follows closely the one considered in [12, 51, 59]. In Section 4, we carry out a linear stability
analysis (LSA) of a biologically relevant homogeneous steady state of the model equations, derive dispersion
relations when different stress-strain constitutive equations for the ECM are used, and investigate how the model
parameters affect the dispersion relations obtained. In Section 5, we verify key results of LSA via numerical
simulations of the model equations. In Section 6, we complement these findings with the results of numerical
simulations of a two-dimensional version of the mechanical model of pattern formation considered in the previous
sections. Section 7 concludes the paper and provides an overview of possible research perspectives.

2 Essentials of viscoelastic materials and stress-strain constitutive
equations

In this section, we first recall the main properties of viscoelastic materials (see Section 2.1). Then, we briefly
present the one-dimensional stress-strain constitutive equations that are considered in our study and summarise
the main rheological properties of linear viscoelastic materials that they capture (see Section 2.2). Most of the
contents of this section can be found in standard textbooks, such as [19] [chapters 1 and 5] and [41], and are
reported here for the sake of completeness. Specific considerations of and applications to living tissues can be
found in [20].

2.1 Essentials of viscoelastic materials

As the name suggests, viscoelastic materials exhibit both viscous and elastic characteristics, and the interplay
between them may result in a wide range of rheological properties that can be examined through creep and
stress relaxation tests. During a creep test, a constant stress is first applied to a specimen of material and then
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removed, and the time dynamic of the correspondent strain is tracked. During a stress relaxation test, a constant
strain is imposed on a specimen of material and the evolution in time of the induced stress is observed [19].

Here we list the main properties of viscoelastic materials that may be observed during the first phase of a
creep test (see properties 1a-1c), during the recovery phase, that is, when the constant stress is removed from
the specimen (see properties 2a-2c), and during a stress relaxation test (see property 3).

1a Instantaneous elasticity. As soon as a stress is applied, an instantaneous corresponding strain is observed.
1b Delayed elasticity. While the instantaneous elastic response to a stress is a purely elastic behaviour, due

to the viscous nature of the material a delayed elastic response may also be observed. In this case, under
constant stress the strain slowly and continuously increases at decreasing rate.

1c Viscous flow. In some viscoelastic materials, under a constant stress, the strain continues to grow within
the viscoelastic regime (i.e. before plastic deformation). In particular, viscous flow occurs when the strain
increases linearly with time and stops growing at removal of the stress only.

2a Instantaneous recovery. When the stress is removed, an instantaneous recovery (i.e. an instantaneous
strain decrease) is observed because of the elastic nature of the material.

2b Delayed recovery. Upon removal of the stress, a delayed recovery (i.e. a continuous decrease of the strain
at decreasing rate) occurs.

2c Permanent set. While elastic strain is reversible, in viscoelastic materials a non-zero strain, known as
“permanent set” or “residual strain”, may persist even when the stress is removed.

3 Stress relaxation. Under constant strain, gradual relaxation of the induced stress occurs. In some cases,
this may even culminate in total stress relaxation (i.e. the stress decays to zero).

The subset of these properties exhibited by a viscoelastic material will depend on – and hence define – the type
of material being tested. Moreover, during each phase of the creep test, more than one of the above properties
may be observed. For instance, a Maxwell material under constant stress will exhibit instantaneous elasticity
followed by viscous flow.

2.2 One-dimensional stress-strain constitutive equations examined in our study

In this section, we briefly describe the different constitutive equations that are used in our study to represent the
stress-strain relation of the ECM. In general, these equations can be used to predict how a viscoelastic material
will react to different loading conditions, in one spatial dimension, and rely on the assumption that viscous
and elastic characteristics of the material can be modelled, respectively, via linear combinations of dashpots
and springs, as illustrated in Figure 1. Different stress-strain constitutive equations correspond to different
arrangements of these elements and capture different subsets of the rheological properties summarised in the
previous section (see Table 2). In the remainder of this section, we will denote the stress and the strain at
position x and time t by σ(t, x) and ε(t, x), respectively.

Linear elastic model. When viscous characteristics are neglected, a linear viscoelastic material can be
modelled as a purely elastic spring with elastic modulus (i.e. Young’s modulus) E > 0, as illustrated in
Figure 1a. In this case, the stress-strain constitutive equation is given by Hooke’s spring law for continuous
media, that is,

σ = Eε . (1)

Linear viscous model. When elastic characteristics are neglected, a linear viscoelastic material can be
modelled as a purely viscous damper of viscosity η > 0, as illustrated in Figure 1b. In this case, the stress-strain
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constitutive equation is given by Newton’s law of viscosity, that is,

σ = η ∂tε . (2)

Kelvin-Voigt model. The Kelvin-Voigt model, also known as the Voigt model, relies on the assumption that
viscous and elastic characteristics of a linear viscoelastic material can simultaneously be captured by considering
a purely elastic spring with elastic modulus E and a purely viscous damper of viscosity η in parallel, as illustrated
in Figure 1c. The corresponding stress-strain constitutive equation is

σ = Eε+ η ∂tε . (3)

Maxwell model. The Maxwell model relies on the assumption that viscous and elastic characteristics of a
linear viscoelastic material can be captured by considering a purely elastic spring with elastic modulus E and
a purely viscous damper of viscosity η in series, as illustrated in Figure 1d. The corresponding stress-strain
constitutive equation is

1

E
∂tσ +

σ

η
= ∂tε . (4)

Standard linear solid (SLS) model. The SLS model, also known as the Kelvin model, relies on the
assumption that viscous and elastic characteristics of a linear viscoelastic material can be captured by considering
a Kelvin arm of elastic modulus E1 and viscosity η in series with a purely elastic spring of elastic modulus E2,
as illustrated in Figure 1e. The corresponding stress-strain constitutive equation is [41]

1

E2
∂tσ +

1

η

(
1 +

E1

E2

)
σ = ∂tε+

E1

η
ε . (5)

Jeffrey model. The Jeffrey model, also known as the Oldroyd-B or 3-parameter viscous model, relies on
the assumption that viscous and elastic characteristics of a linear viscoelastic material can be captured by
considering a Kelvin arm of elastic modulus E and viscosity η1 in series with a purely viscous damper of
viscosity η2, as illustrated in Figure 1f. The corresponding stress-strain constitutive equation is

(
1 +

η1
η2

)
∂tσ +

E

η2
σ = η1∂

2
ttε+ E∂tε . (6)

Generic 4-parameter model. The following stress-strain constitutive equation encompasses all constitutive
models of linear viscoelasticity whereby a combination of purely elastic springs and purely viscous dampers, up
to a total of four elements, and therefore 4 parameters, is considered

a2∂
2
ttσ + a1∂tσ + a0σ = b2∂

2
ttε+ b1∂tε+ b0ε . (7)

Here the non-negative, real parameters a0, a1, a2, b0, b1, b2 depend on the elastic moduli and the viscosities of
the underlying combinations of springs and dampers. When these parameters are defined as in Table 1, the
generic 4-parameter constitutive model (7) reduces to the specific stress-strain constitutive equations (1)-(6).
For convenience of notation, we define the differential operators

La := a2∂
2
tt + a1∂t + a0 and Lb := b2∂

2
tt + b1∂t + b0 (8)

so that the stress-strain constitutive equation (7) can be rewritten in the following compact form

La[σ ] = Lb[ ε ] . (9)
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Figure 1: Combinations of elastic springs and viscous dampers, together with the associated elastic (E, E1, E2)
and viscous moduli (η, η1, η2), for the models of linear viscoelasticity considered in this work: the linear elastic
model (a), the linear viscous model (b), the Kelvin-Voigt model (c), the Maxwell model (d), the SLS model (e),
and the Jeffrey model (f).

Table 1: Relations between the generic 4-parameter model (7) and the stress-strain constitutive equations (1)-
(6).

Generic 4-parameters model a2 a1 a0 b2 b1 b0

Linear elastic model 0 0 1 0 0 E

Linear viscous model 0 0 1 0 η 0

Kelvin-Voigt model 0 0 1 0 η E

Maxwell model 0 1
E

1
η 0 1 0

SLS model 0 1
E2

1
η

(
1 + E1

E2

)
0 1 E1

η

Jeffrey model 0 1 + η1
η2

E
η2

η1 E 0
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Table 2: Properties of linear viscoelastic materials captured by the stress-strain constitutive equations (1)-(6).

Instantaneous
elasticity

Delayed
elasticity

Viscous
flow

Instantaneous
recovery

Delayed
recovery

Permanent
set

Stress
relaxation

Linear elastic model X X

Linear viscous model X X N. A.

Kelvin-Voigt model X X

Maxwell model X X X X X

SLS model X X X X X

Jeffrey model X X X X X

A summary of the rheological properties of linear viscoelastic materials listed in Section 2.1 that are captured
by the one-dimensional stress-strain constitutive equations (1)-(6) is provided in Table 2. These properties can
be examined through mathematical procedures that mimic creep and stress relaxation tests [19]. Notice that, for
all these constitutive models, instantaneous elasticity correlates with instantaneous recovery, delayed elasticity
correlates with delayed recovery, and viscous flow correlates with permanent set. Materials are said to be
more solid-like when their elastic response dominates their viscous response, and more fluid-like in the opposite
case [56]. For this reason, models of linear viscoelasticity that capture viscous flow and, as a consequence,
permanent set – such as the Maxwell model and the Jeffrey model – are classified as “fluid-like models”, while
those which do not – such as the Kelvin-Voigt model and the SLS model – are classified as “solid-like models”.
In the remainder of the paper we are going to include the linear viscous model in the fluid-like class and the
linear elastic model in the solid-like class, as they capture – or do not capture – the relevant properties, even if
they are not models of viscoelasticity per se.

3 A one-dimensional mechanical model of pattern formation

We consider a one-dimensional region of tissue and represent the normalised densities of cells and ECM at time
t ∈ [0, T ] and position x ∈ [`, L] by means of the non-negative functions n(t, x) and ρ(t, x), respectively. We
let u(t, x) model the displacement of a material point of the cell-ECM system originally at position x, which
is induced by mechanical interactions between cells and the ECM – i.e. cells pull on the ECM in which they
are embedded, thus inducing ECM compression and densification which in turn cause a passive form of cell
repositioning [74].

3.1 Dynamics of the cells

Following [51, 59], we consider a scenario where cells change their position according to a combination of: (i)
undirected, random movement, which we describe through Fick’s first law of diffusion with diffusivity (i.e. cell
motility) D > 0; (ii) haptotaxis (i.e. cell movement up the density gradient of the ECM) with haptotactic
sensitivity α > 0; (iii) passive repositioning caused by mechanical interactions between cells and the ECM,
which is modelled as an advection with velocity field ∂tu. Moreover, we model variation of the normalised cell
density caused by cell proliferation and death via logistic growth with intrinsic growth rate r > 0 and unitary
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local carrying capacity. Under these assumptions, we describe cell dynamics through the following balance
equation for n(t, x)

∂tn = ∂x [D∂xn − n (α∂xρ+ ∂tu)] + r n(1− n) (10)

subject to suitable initial and boundary conditions.

3.2 Dynamics of the ECM

As was done for the cell dynamics, in a similar manner we model compression and densification of the ECM
induced by cell-ECM interactions as an advection with velocity field ∂tu. Furthermore, as in [51, 59], we
neglect secretion of ECM components by the cells since this process occurs on a slower time scale compared to
mechanical interactions between cells and the ECM. Under these assumptions, we describe the cell dynamics
through the following transport equation for ρ(t, x)

∂tρ = −∂x (ρ ∂tu) (11)

subject to suitable initial and boundary conditions.

3.3 Force-balance equation for the cell-ECM system

Following [51, 59], we represent the cell-ECM system as a linear viscoelastic material with low Reynolds number
(i.e. inertial terms are negligible compared to viscous terms) and we assume the cell-ECM system to be in
mechanical equilibrium (i.e. traction forces generated by the cells are in mechanical equilibrium with viscoelastic
restoring forces developed in the ECM and any other external forces). Under these assumptions, the force-
balance equation for the cell-ECM system is of the form

∂x (σc + σm) + ρF = 0 , (12)

where σm(t, x) is the contribution to the stress of the cell-ECM system coming from the ECM, σc(t, x) is the
contribution to the stress of the cell-ECM system coming from the cells, and F (t, x) is the external force per
unit matrix density, which comes from the surrounding tissue that constitutes the underlying substratum to
which the ECM is attached.

The stress σc is related to cellular traction forces acting on the ECM and is defined as

σc := τ f(n)n
(
ρ+ β ∂2xxρ

)
with f(n) :=

1

1 + λn2
. (13)

Definition (13) relies on the assumption that the stress generated by cell traction on the ECM is proportional to
the cell density n and – in the short range – the ECM density ρ, while the term β ∂2xxρ accounts for long-range
cell traction effects, with β being the long-range traction proportionality constant. The factor of proportionality
is given by a positive parameter, τ , which measures the average traction force generated by a cell, multiplied by
a non-negative and monotonically decreasing function of the cell density, f(n), which models the fact that the
average traction force generated by a cell is reduced by cell-cell contact inhibition [47]. The parameter λ ≥ 0
measures the level of cell traction force inhibition and assuming λ = 0 corresponds to neglecting the reduction
in the cell traction forces caused by cellular crowding.

The stress σm is given by the stress-strain constitutive equation that is used for the ECM, which we choose
to be the general constitutive model (9) with the strain ε(t, x) being given by the gradient of the displacement
u(t, x), that is, ε = ∂xu. Therefore, we define the stress-strain relation of the ECM via the following equation

La[σm ] = Lb[ ∂xu ] , (14)
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where the differential operators La and Lb are defined according to (8).
Assuming the surrounding tissue to which the ECM is attached to be a linear elastic material [47], the external

body force F can be modelled as a restoring force proportional to the cell-ECM displacement, that is,

F := −s u . (15)

Here the parameter s > 0 represents the elastic modulus of the surrounding tissue.
In order to obtain a closed equation for the displacement u(t, x), we apply the differential operator La[ · ] to

the force-balance equation (12) and then substitute (13)-(15) into the resulting equation. In so doing, we find

La [ ∂x (σm + σc) ] = −La [ ρF ]

⇔La [ ∂x σm ] + La [ ∂x σc ] = La [ sρu ]

⇔ ∂x La [σm ] = La [ sρu ] − La [ ∂x σc ]

⇔ ∂x Lb [ ∂xu ] = La [ sρu − ∂xσc ]

⇔Lb [ ∂2xxu ] = La [ sρu − ∂xσc ] ,

that is,

Lb [ ∂2xxu ] = La

[
sρu − ∂x

(
τn

1 + λn2
(ρ+ β∂2xxρ)

)]
. (16)

Finally, to close the system, equation (16) needs to be supplied with suitable initial and boundary conditions.

3.4 Boundary conditions

We close our mechanical model of pattern formation defined by the system of PDEs (10), (11) and (16) with
the following boundary conditions





n(t, `) = n(t, L) , ∂xn(t, `) = ∂xn(t, L) ,

ρ(t, `) = ρ(t, L) , ∂2xxρ(t, `) = ∂2xxρ(t, L) ,

u(t, `) = u(t, L) , ∂xu(t, `) = ∂xu(t, L) ,

for all t ∈ [0, T ] . (17)

Here, the conditions on the derivatives of n, ρ and u ensure that the fluxes in equations (10) and (11), and the
overall stress (σm + σc) in equation (16), are periodic on the boundary, i.e. they ensure that





[D∂xn − n (α∂xρ+ ∂tu)]x=` = [D∂xn − n (α∂xρ+ ∂tu)]x=L ,

[n∂tu]x=` = [n∂tu]x=L ,[
τ

n

(1 + λ2)
( ρ+ β ∂2xxρ ) + σm

]
x=`

=
[
τ

n

(1 + λ2)
( ρ+ β ∂2xxρ ) + σm

]
x=L

,

for all t ∈ [0, T ] ,

with σm given as a function of ∂xu in equation (14), according to the selected constitutive model. The periodic
boundary conditions (17) reproduce a biological scenario in which the spatial region considered is part of a
larger area of tissue whereby similar dynamics of the cells and the ECM occur.
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4 Linear stability analysis and dispersion relations

In this section, we carry out LSA of a biologically relevant homogeneous steady state of the system of PDEs (10),
(11) and (16) (see Section 4.1) and we compare the dispersion relations obtained when the constitutive mod-
els (1)-(6) are alternatively used to represent the contribution to the overall stress coming from the ECM, in
order to explore the pattern formation potential of these stress-strain constitutive equations (see Section 4.2).

4.1 Linear stability analysis

Biologically relevant homogeneous steady state. All non-trivial homogeneous steady states (n̄, ρ̄, ū)ᵀ of
the system of PDEs (10), (11) and (16) subject to boundary conditions (17) have components n̄ ≡ 1 and ū ≡ 0,
and we consider the arbitrary non-trivial steady state ρ̄ ≡ ρ0 > 0 amongst the infinite number of possible
homogeneous steady states of the transport equation (11) for the normalised ECM density ρ. Hence, we focus
our attention on the biologically relevant homogeneous steady state v̄ = (1, ρ0, 0)ᵀ.

Linear stability analysis to spatially homogeneous perturbations. In order to undertake linear sta-
bility analysis of the steady state v̄ = (1, ρ0, 0)ᵀ to spatially homogeneous perturbations, we make the ansatz
v(t, x) ≡ v̄ + ṽ(t), where the vector ṽ(t) = (ñ(t), ρ̃(t), ũ(t))ᵀ models small spatially homogeneous perturba-
tions, and linearise the system of PDEs (10), (11) and (16) about the steady state v̄. Assuming ñ(t), ρ̃(t) and
ũ(t) to be proportional to exp (ψt), with ψ 6= 0, one can easily verify that ψ satisfies the algebraic equation
ψ(ψ + r)(ψ2a2 + ψa1 + a0) = 0. Since r is positive and the parameters a0, a1 and a2 are all non-negative, the
solution ψ of such an algebraic equation is necessarily negative and, therefore, the small perturbations ñ(t), ρ̃(t)
and ũ(t) will decay to zero as t → ∞. This implies that the steady state v̄ will be stable to spatially homo-
geneous perturbations for any choice of the parameter a0, a1, a2, b0, b1 and b2 in the stress-strain constitutive
equation (14) (i.e. for all constitutive models (1)-(6)).

Linear stability analysis to spatially inhomogeneous perturbations. In order to undertake linear
stability analysis of the steady state v̄ = (1, ρ0, 0)ᵀ to spatially inhomogeneous perturbations, we make the ansatz
v(t, x) = v̄ + ṽ(t, x), where the vector ṽ(t, x) = (ñ(t, x), ρ̃(t, x), ũ(t, x))ᵀ models small spatially inhomogeneous
perturbations, and linearise the system of PDEs (10), (11) and (16) about the steady state v̄. Assuming ñ(t, x),
ρ̃(t, x) and ũ(t, x) to be proportional to exp (ψt+ ikx), with ψ 6= 0 and k 6= 0, we find that ψ satisfies the
following equation

ψ
[
c3(k2)ψ3 + c2(k2)ψ2 + c1(k2)ψ + c0(k2)

]
= 0 , (18)

with
c3(k2) := a2τλ1β k

4 +
[
b2 − a2τ(λ1 + λ2ρ0)

]
k2 + a2sρ0 (19)

c2(k2) := a2τλ1Dβ k
6 +

[
b2D − a2τ(λ2ρ0α+Dλ1 − rλ1β) + a1τλ1β

]
k4

+
[
b2r + b1 + a2(Dsρ0 − rτλ1)− a1τ(λ1 + λ2ρ0)

]
k2 + (a1 + a2r)sρ0

(20)

c1(k2) := a1τλ1Dβ k
6 +

[
b1D − a1τ(λ2ρ0α+Dλ1 − rλ1β) + a0τλ1β

]
k4

+
[
b1r + b0 + a1(Dsρ0 − rτλ1)− a0τ(λ1 + λ2ρ0)

]
k2 + (a0 + a1r)sρ0

(21)

and
c0(k2) := a0τλ1Dβ k

6 +
[
b0D − a0τ(λ2ρ0α+Dλ1 − rλ1β)

]
k4

+
[
b0r + a0(Dsρ0 − rτλ1)

]
k2 + a0rsρ0

(22)

where

λ1 :=
1

1 + λ
and λ2 :=

(1− λ)

(1 + λ)2
.
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Equation (18) has multiple solutions (ψ(k2)) for each k2 and we denote by Re(·) the maximum real part of all
these solutions. For cell patterns to emerge, we need the non-trivial homogeneous steady state v̄ to be unstable
to spatially inhomogeneous perturbations, that is, we need Re(ψ(k2)) > 0 for some k2 > 0. Notice that a
necessary condition for this to happen is that at least one amongst c0(k2), c1(k2), c2(k2) and c3(k2) is negative
for some k2 > 0. Hence, the fact that if τ = 0 then c0(k2), c1(k2), c2(k2) and c3(k2) are all non-negative for
any value of k2 allows us to conclude that having τ > 0 is a necessary condition for pattern formation to occur.
This was expected based on the results presented in [47] and references therein.

In the case where the model parameters are such that c2(k2) = 0 and c3(k2) = 0, solving equation (18) for ψ
gives the following dispersion relation

ψ(k2) = −c0(k2)

c1(k2)
(23)

and for the condition Re(ψ(k2)) > 0 to be met it suffices that, for some k2 > 0,

c0(k2) > 0 and c1(k2) < 0 or c0(k2) < 0 and c1(k2) > 0 .

On the other hand, when the model parameters are such that only c3(k2) = 0, from equation (18) we obtain
the following dispersion relation

ψ(k2) =
−c1(k2)±

√(
c1(k2)

)2 − 4c2(k2)c0(k2)

2c2(k2)
, (24)

and for the condition Re(ψ(k2)) > 0 to be satisfied it is sufficient that one of the following four sets of conditions
holds

c2(k2) > 0 and c0(k2) < 0 or c2(k2) > 0 , c1(k2) < 0 and c0(k2) > 0

or
c2(k2) < 0 and c0(k2) > 0 or c2(k2) < 0 , c1(k2) > 0 and c0(k2) < 0 .

Finally, in the general case where the model parameters are such that c3(k2) 6= 0 as well, from equation (18)
we obtain the following dispersion relation

ψ(k2) =

{
q +

[
q2 +

(
m− p2

)3]1/2
}1/3

+

{
q −

[
q2 +

(
m− p2

)3]1/2
}1/3

+ p , (25)

where p ≡ p(k2), q ≡ q(k2) and m ≡ m(k2) are defined as

p := − c2
3c3

, q := p3 +
c2c1 − 3c3c0

6c23
, m :=

c1
3c3

.

In this case, identifying sufficient conditions to ensure that the real part of ψ(k2) is positive for some k2 > 0
requires lengthy algebraic calculations. We refer the interested reader to [22], where the Routh-Hurwitz stability
criterion was used to analyse this general case and obtain more explicit conditions on the model parameters
under which pattern formation occurs.

4.2 Dispersion relations

Substituting the definitions of a0, a1, a2, b0, b1 and b2 corresponding to the stress-strain constitutive equa-
tions (1)-(6), which are reported in Table 1, into definitions (19)-(22) for c0(k2), c1(k2), c2(k2) and c3(k2), and
then using the dispersion relation given by formula (23), (24) or (25) depending on the values of c2(k2) and
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c3(k2) so obtained, we derive the dispersion relation for each of the constitutive models (1)-(6). In particular,
we are interested in whether the real part of each dispersion relation is positive, so whenever multiple roots are
calculated – for instance using (24) – the largest root is considered. In addition, dispersion relations throughout
this section are plotted against the quantity k/π, which directly correlates with perturbation modes and can
therefore better highlight mode selection during the sensitivity analysis.

Base-case dispersion relations. Figure 2 displays the dispersion relations obtained for the stress-strain
constitutive equations (1)-(6) under the following base-case parameter values

E = 1 , E1 = E2 =
1

2
E = 0.5 , η = 1 , η1 = η2 =

1

2
η = 0.5 , D = 0.01 , (26)

ρ0 = 1 , α = 0.05 , r = 1 , s = 10 , λ = 0.5 , τ = 0.2 β = 0.005 . (27)

The parameter values given by (26) and (27) are chosen for illustrative purposes, in order to highlight the
different qualitative behaviour of the dispersion relations obtained using different models, and are comparable
with nondimensional parameter values that can be found in the extant literature (see Appendix A for further
details). A comparison between the plots in Figure 2 reveals that fluid-like models, that is, the linear viscous
model (2), the Maxwell model (4) and the Jeffrey model (6) (cf. Table 2), have a higher pattern formation
potential than solid-like models, since under the same parameter set they exhibit a range – or, more precisely,
they exhibit the same range – of unstable modes (i.e. Re(ψ(k2)) > 0 for a range of values of k/π), while the
others have no unstable modes.

Figure 2: Base-case dispersion relations. Dispersion relations corresponding to the stress-strain constitutive
equations (1)-(6) for the base-case set of parameter values given by (26) and (27).

We now undertake a sensitivity analysis with respect to the different model parameters and discuss key
changes that occur in the base-case dispersion relations displayed in Figure 2.
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ECM elasticity. The plots in Figure 3 illustrate how the base-case dispersion relations displayed in Figure 2
change when different values of the parameter E, and therefore also E1 and E2 (i.e. the parameters modelling
ECM elasticity), are considered. These plots show that lower values of these parameters correlate with overall
larger values of Re(ψ(k2)) for all constitutive models, except for the linear viscous one, which corresponds to
speeding up the formation of spatial patterns, when these may form. In addition, sufficiently small values of the
parameters E, E1 and E2 allow the linear elastic model (1), the Kelvin-Voigt model (3), and the SLS model (5)
to exhibit unstable modes. However, further lowering the values of these parameters appears to lead to singular
dispersion relations (cf. the plots for the linear elastic model (1), the Maxwell model (4) and the SLS model (5)
in Figure 3), which suggests that linear stability theory may fail in the regime of low ECM elasticity.

ECM viscosity. The plots in Figure 4 illustrate how the base-case dispersion relations displayed in Figure 2
change when different values of the parameter η, and therefore also η1 and η2 (i.e. the parameters modelling
ECM viscosity), are considered. These plots show that larger values of these parameters leave the range of
modes for which Re(ψ(k2)) > 0 unchanged but reduce the values of Re(ψ(k2)). This supports the idea that a
higher ECM viscosity may not change the pattern formation potential of the different constitutive models but
may slow down the corresponding pattern formation processes.

Cell motility. The plots in Figure 5 illustrate how the base-case dispersion relations displayed in Figure 2
change when different values of the parameter D (i.e. the parameter modelling cell motility) are considered.
These plots show that larger values of this parameter may significantly shrink the range of modes for which
Re(ψ(k2)) > 0. In particular, with the exception of the linear elastic model, all constitutive models exhibit:
infinitely many unstable modes when D → 0; a finite number of unstable modes for intermediate values of
D; no unstable modes for sufficiently large values of D. This is to be expected due to the stabilising effect
of undirected, random cell movement and indicates that higher cell motility may correspond to lower pattern
formation potential.

Intrinsic growth rate of the cell density and elasticity of the surrounding tissue. The plots in
Figures 6 and 7 illustrate how the base-case dispersion relations displayed in Figure 2 change when different
values of the parameter r (i.e. the intrinsic growth rate of the cell density) and the parameter s (i.e. the
elasticity of the surrounding tissue) are, respectively, considered. These plots show that considering larger
values of these parameters reduces the values of Re(ψ(k2)) for all constitutive models, and in particular it
shrinks the range of unstable modes for the linear viscous model (2), the Maxwell model (4) and the Jeffrey
model (6), which can become stable for values of r or s sufficiently large. This supports the idea that higher
growth rates of the cell density (i.e. faster cell proliferation and death), and higher substrate elasticity (i.e.
stronger external tethering force) may slow down pattern formation processes and overall reduce the pattern
formation potential for all constitutive models. Moreover, the plots in Figure 7 indicate that higher values of s
may in particular reduce the pattern formation potential of the different constitutive models by making it more
likely that Re(ψ(k2)) < 0 for smaller values of k/π (i.e. low-frequency perturbation modes will be more likely
to vanish).

Level of contact inhibition of the cell traction forces and long-range cell traction forces. The
plots in Figures 8 and 9 illustrate how the base-case dispersion relations displayed in Figure 2 change when
different values of the parameter λ (i.e. the level of cell-cell contact inhibition of the cell traction forces) and
the parameter β (i.e. the long-range cell traction forces) are, respectively, considered. Considerations similar
to those previously made about the dispersion relations obtained for increasing values of the parameters r
and s apply to the case where increasing values of the parameter λ and the parameter β are considered. In
addition to these considerations, the plots in Figures 8 and 9 indicate that for small enough values of λ or
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β the SLS model (5) can exhibit unstable modes, which further suggests that weaker contact inhibition of
cell traction forces and lower long-range cell traction forces foster pattern formation. Moreover, the plots in
Figure 9 indicate that in the asymptotic regime β → 0 we may observe infinitely many unstable modes (i.e.
Re(ψ(k2)) > 0 for arbitrarily large wavenumebers), exiting the regime of physically meaningful pattern forming
instabilities [45, 61].

Cell haptotactic sensitivity and cell traction forces. The plots in Figures 10 and 11 illustrate how the
base-case dispersion relations displayed in Figure 2 change when different values of the parameter α (i.e. the
cell haptotactic sensitivity) and the parameter τ (i.e. the cell traction force) are, respectively, considered. As
expected [47], larger values of these parameters overall increase the value of Re(ψ(k2)) and broaden the range of
values of modes for which Re(ψ(k2)) > 0, so that for large enough values of these parameters the linear viscous
model (2), the Kelvin-Voigt model (3) and the SLS model (5) can exhibit unstable modes. However, sufficiently
large values of τ appear to lead to singular dispersion relations (cf. the plots for the linear elastic model (1),
the Maxwell model (4) and the SLS model (5) in Figure 11), which suggests that linear stability theory may
fail in the regime of high cell traction for certain constitutive models, as previously observed in [12].

Initial ECM density. The plots in Figure 12 illustrate how the base-case dispersion relations displayed
in Figure 2 change when different values of the parameter ρ0 (i.e. the initial ECM density) are considered.
Considerations similar to those previously made about the dispersion relations obtained for increasing values of
the parameter α apply to the case where increasing values of the parameter ρ0 are considered. In addition to
these considerations, the plots in Figure 12 indicate that smaller values of the parameter ρ0, specifically ρ0 < 1,
correlate with a shift in mode selection toward lower modes (cf. the plots for the linear viscous model (2), the
Maxwell model (4) and the Jeffrey model (6) in Figure 12).

Figure 3: Effects of varying the ECM elasticity. Dispersion relations corresponding to the stress-strain
constitutive equations (1)-(6) for increasing values of the ECM elasticity, that is for E ∈ [0, 1]. The values of
the other parameters are given by (26) and (27). White regions in the plots related to the linear elastic model,
the Maxwell model and the SLS model correspond to Re(ψ(k2)) > 10 (i.e. a vertical asymptote is present in
the dispersion relation). Red dashed lines mark contour lines where Re(ψ(k2)) = 0.
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Figure 4: Effects of varying the ECM viscosity. Dispersion relations corresponding to the stress-strain
constitutive equations (1)-(6) for increasing values of the ECM viscosity, that is for η ∈ [0, 1]. The values of the
other parameters are given by (26) and (27). Red dashed lines mark contour lines where Re(ψ(k2)) = 0.

Figure 5: Effects of varying the cell motility. Dispersion relations corresponding to the stress-strain
constitutive equations (1)-(6) for increasing values of the cell motility, that is for D ∈ [0, 0.1]. The values of the
other parameters are given by (26) and (27). Red dashed lines mark contour lines where Re(ψ(k2)) = 0.
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Figure 6: Effects of varying the intrinsic growth rate of the cell density. Dispersion relations corre-
sponding to the stress-strain constitutive equations (1)-(6) for increasing values of the intrinsic growth rate of
the cell density, that is for r ∈ [0, 10]. The values of the other parameters are given by (26) and (27). Red
dashed lines mark contour lines where Re(ψ(k2)) = 0.

Figure 7: Effects of varying the elasticity of the surrounding tissue. Dispersion relations corresponding
to the stress-strain constitutive equations (1)-(6) for increasing values of the elasticity of the surrounding tissue,
that is for s ∈ [0, 100]. The values of the other parameters are given by (26) and (27). Red dashed lines mark
contour lines where Re(ψ(k2)) = 0.
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Figure 8: Effects of varying the level of cell-cell contact inhibition of the cell traction forces.
Dispersion relations corresponding to the stress-strain constitutive equations (1)-(6) for increasing levels of cell-
cell contact inhibition of the cell traction forces, that is for λ ∈ [0, 2]. The values of the other parameters are
given by (26) and (27). Red dashed lines mark contour lines where Re(ψ(k2)) = 0.

Figure 9: Effects of varying the long-range cell traction forces. Dispersion relations corresponding to the
stress-strain constitutive equations (1)-(6) for increasing long-range cell traction forces, that is for β ∈ [0, 0.1].
The values of the other parameters are given by (26) and (27). Red dashed lines mark contour lines where
Re(ψ(k2)) = 0.
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Figure 10: Effects of varying the cell haptotactic sensitivity. Dispersion relations corresponding to the
stress-strain constitutive equations (1)-(6) for increasing values of the cell haptotactic sensitivity, that is for
α ∈ [0, 0.5]. The values of the other parameters are given by (26) and (27). Red dashed lines mark contour
lines where Re(ψ(k2)) = 0.

Figure 11: Effects of varying the cell traction forces. Dispersion relations corresponding to the stress-
strain constitutive equations (1)-(6) for increasing cell traction forces, that is for τ ∈ [0, 2]. The values of the
other parameters are given by (26) and (27). White and black regions in the plots related to the linear elastic
model, the Maxwell model and the SLS model correspond, respectively, to Re(ψ(k2)) > 20 and Re(ψ(k2)) < −20
(i.e. a vertical asymptote is present in the dispersion relation). Red dashed lines mark contour lines where
Re(ψ(k2)) = 0.
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Figure 12: Effects of varying the initial ECM density. Dispersion relations corresponding to the stress-
strain constitutive equations (1)-(6) for increasing values of the initial ECM density, that is for ρ0 ∈ [0, 10].
The values of the other parameters are given by (26) and (27). Red dashed lines mark contour lines where
Re(ψ(k2)) = 0.

5 Numerical simulations of a one-dimensional mechanical model of
pattern formation

In this section, we verify key results of LSA presented in Section 4 by solving numerically the system of
PDEs (10), (11) and (16) subject to boundary conditions (17). In particular, we report on numerical solutions
obtained in the case where equation (16) is complemented with the Kelvin-Voigt model (3) or the Maxwell
model (4). A detailed description of the numerical schemes employed is provided in the Supplementary Material
(see ‘Supplementary Information’ document).

Set-up of numerical simulations. We carry out numerical simulations using the parameter values given
by (26) and (27). We choose the endpoints of the spatial domain to be ` = 0 and L = 1, and the final time
T is chosen sufficiently large so that distinct spatial patterns can be observed at the end of simulations. We
consider the initial conditions

n(0, x) = 1 + 0.01 ε(x) , ρ(0, x) ≡ ρ0 , u(0, x) ≡ 0 , (28)

where ε(x) is a normally distributed random variable with mean 0 and variance 1 for every x ∈ [0, 1]. Ini-
tial conditions (28) model a scenario where random small perturbations are superimposed to the cell density
corresponding to the homogeneous steady state of components n = 1, ρ = ρ0 and u = 0. This is the steady
state considered in the LSA undertaken in Section 4.1. Consistent initial conditions for ∂tn(0, x), ∂tρ(0, x)
and ∂tu(0, x) are computed numerically – details provided in the Supplementary Material (see ‘Supplementary
Information’ document). Numerical computations are performed in MATLAB.
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Figure 13: Simulation results for the Kelvin-Voigt model (3) and the Maxwell model (4) under
initial conditions (28). Cell density n(t, x) (left), ECM density ρ(t, x) (centre) and cell-ECM displacement
u(t, x) (right) at t = 0 (first row) and at steady state obtained solving numerically the system of PDEs (10),
(11) and (16) complemented with the Kelvin-Voigt model (3) (second row) and with the Maxwell model (4)
(third row), respectively, subject to boundary conditions (17) and initial conditions (28), for the parameter
values given by (26) and (27).
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Main results. The results obtained are summarised by the plots in Figure 13, together with the correspond-
ing videos provided as supplementary material. The supplementary video ‘MovS1’ displays the solution of the
system of PDEs (10), (11) and (16) subject to the boundary conditions (17) and initial conditions (28) for the
Kelvin-Voigt model and the Maxwell model from t = 0 until a steady state, displayed in Figure 13, is reached.
The supplementary videos ‘MovS2’, ‘MovS3’ and ‘MovS4’ display the solution of the same system of PDEs
for the Maxwell model under alternative initial perturbations in the cell density, i.e. randomly distributed
(‘MovS2’), periodic (’MovS3’) or randomly perturbed periodic (‘MovS4’) initial perturbations.
The results in Figure 13 and the supplementary video ‘MovS1’ demonstrate that, in agreement with the disper-
sion relations displayed in Figure 2, for the parameter values given by (26) and (27), small randomly distributed
perturbations present in the initial cell density:

- vanish in the case of the Kelvin-Voigt model, thus leading the cell density to relax to the homogeneous
steady state n = 1 and attain numerical equilibrium at t = 100 while leaving the ECM density unchanged;

- grow in the case of the Maxwell model, resulting in the formation of spatial patterns both in the cell
density n and in the ECM density ρ, which attain numerical equilibrium at t = 500.

Notice that the formation of spatial patterns correlates with the growth of the cell-ECM displacement u. In fact,
the displacement remains close to zero (i.e. ∼ O(10−11)) for the Kelvin-Voigt model, whereas it grows with time
for the Maxwell model. In addition, the steady state obtained for the Maxwell model in Figure 13, together with
those obtained when considering alternative initial perturbations (see supplementary videos ‘MovS2’, ‘MovS3’
and ‘MovS4’), demonstrate that, in agreement with the dispersion relation displayed in Figure 2 for the Maxwell
model, for the parameter values given by (26) and (27), under small perturbations in the cell density, be they
randomly distributed (cf. supplementary video ‘MovS2’), randomly perturbed periodic (cf. supplementary
video ‘MovS3’) or periodic (cf. supplementary video ‘MovS4’), the fourth mode is the fastest growing one
within the range of unstable modes (cf. Re(ψ(k2)) > 0 for k/π between 2 and 6, with max

(
Re(ψ(k2))

)
≈ 4 in

Figure 2 for the Maxwell model). In addition, the cellular pattern observed at steady state exhibits 4 large and
equally spaced peaks independently of the initial perturbation (cf. supplementary videos ‘MovS1’, ‘MovS2’,
‘MovS3’ and ‘MovS4’). Moreover, all the obtained cellular patterns at steady state exhibit the same structure
– up to a horizontal shift – consisting of four large peaks, independently of the initial conditions that is used
(cf. left panel in the bottom row of Figure 13 and supplementary videos ‘MovS2’, ‘MovS3’ and ‘MovS4’).
This indicates robustness and consistency in the nature of the saturated nonlinear steady state under specific
viscoelasticity assumptions and parameter choices.

6 Numerical simulations of a two-dimensional mechanical model of
pattern formation

In this section, we complement the results presented in the previous sections with the results of numerical
simulations of a two-dimensional mechanical model of pattern formation in biological tissues. In particular,
we report on numerical solutions obtained in the case where the two-dimensional analogue of the system of
PDEs (10), (11) and (16) is complemented with a two-dimensional version of the one-dimensional Kelvin-Voigt
model (3) or a two-dimensional version of the one-dimensional Maxwell model (4).

A two-dimensional mechanical model of pattern formation. The mechanical model of pattern forma-
tion defined by the system of PDEs (10), (11) and (12) posed on a two-dimensional spatial domain represented
by a bounded set Ω ⊂ R2 with smooth boundary ∂Ω reads as





∂tn = div [D∇n − n (α∇ρ+ ∂tu)] + r n(1− n) ,

∂tρ = −div(ρ ∂tu) ,

div(σm + σc) + ρF = 0 ,

(29)
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Table 3: Relations between the parameters in the generic two-dimensional stress-strain constitutive equation (31)
and those in the two-dimensional constitutive equations for the Kelvin-Voigt model and the Maxwell model.

Generic two-dimensional model a1 a0 b1 b0 c1 c0

Kelvin-Voigt model 0 1
η 1 E′

η ν′ E′ν′

η

Maxwell model 1
E′

1
η 1 0 ν′ 0

with t ∈ (0, T ], x = (x1, x2)ᵀ ∈ Ω and u = (u1, u2)ᵀ. We close the system of PDEs (29) imposing the
two-dimensional version of the periodic boundary conditions (17) on ∂Ω. Furthermore, we use the following
two-dimensional analogues of definitions (13) and (15)

σc :=
τn

1 + λn2

(
ρ+ β∆ρ

)
I and F := −su , (30)

where I is the identity tensor. Moreover, in analogy with the one-dimensional case, we define the stress tensor
σm via the two-dimensional constitutive model that is used to represent the stress-strain relation of the ECM.
In particular, we consider the following generic two-dimensional constitutive equation

a1∂tσ + a0σ = b1∂tε+ b0ε+ c1∂tθI + c0θI . (31)

This constitutive equation, together with the associated parameter choices reported in Table 3, summarises the
two-dimensional version of the one-dimensional Kelvin-Voigt model (3) and the two-dimensional version of the
one-dimensional Maxwell model (4) that are considered, which are derived in Appendix B. Here, the strain
ε(t,x) and the dilation θ(t,x) are defined in terms of the displacement u(t,x) as

ε =
1

2

(
∇u+∇uᵀ) and θ = ∇ · u . (32)

Notice that both ε and θ reduce to ε = ∂xu in the one-dimensional case. Amongst the parameters in the
stress-strain constitutive equation (31) reported in Table 3 for the two-dimensional Kelvin-Voigt and Maxwell
models, η is the shear viscosity,

E′ :=
E

1 + ν
and ν′ :=

ν

1− 2ν
, (33)

where ν is Poisson’s ratio and E is Young’s modulus. As clarified in Appendix B, the two-dimensional Maxwell
model in the form (31) holds under the simplifying assumption that the quotient between the bulk viscosity
and the shear viscosity of the ECM is equal to ν′.

Set-up of numerical simulations. We solve numerically the system of PDEs (29) subject to the two-
dimensional version of the periodic boundary conditions (17) and complemented with (30)-(33). Numerical
simulations are carried out using the following parameter values

E = 1 , η = 1 , D = 0.01 , ν = 0.25 , (34)

α = 0.05 , r = 1 , s = 10 , λ = 0.5 , τ = 0.2 β = 0.005 , (35)

which are chosen for illustrative purposes and are comparable with nondimensional parameter values that can
be found in the extant literature (see Appendix A for further details). We choose Ω = [0, 1]× [0, 1] and the final
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time T is chosen sufficiently large so that distinct spatial patterns can be observed at the end of simulations.
We consider first the following two-dimensional analogue of initial conditions (28)

n(0, x1, x2) = 1 + 0.01 ε(x1, x2) , ρ(0, x1, x2) ≡ 1 , u(0, x1, x2) ≡ 0 , (36)

where ε(x1, x2) is a normally distributed random variable with mean 0 and variance 1 for each (x1, x2) ∈
[0, 1] × [0, 1]. Consistent initial conditions for ∂tn(0, x1, x2), ∂tρ(0, x1, x2) and ∂tu(0, x1, x2) are computed
numerically, as similarly done in the one-dimensional case, and numerical computations are performed in MAT-
LAB with a numerical scheme analogous to that employed in the one-dimensional case – details provided in the
Supplementary Material (see ‘Supplementary Information’ document).

Main results. The results obtained are summarised by the plots in Figures 14 and 15, together with the
corresponding videos provided as supplementary material. Solutions of the system of PDEs (29), together
with (30)-(33), subject to initial conditions (36) and periodic boundary conditions, for the parameter values
given by (34) and (35), are calculated both for the Kelvin-Voigt model (see supplementary video ‘MovS5’)
and the Maxwell model (see supplementary video ‘MovS6’) according to the parameter changes summarised
in Table 3. The randomly generated initial perturbation in the cell density, together with the cell density at
t = 200 both for the Kelvin-Voigt and the Maxwell model are displayed in Figure 14, while the solution to the
Maxwell model is plotted at a later time in Figure 15. Overall, these results demonstrate that, in the scenarios
considered here, which are analogous to those considered for the corresponding one-dimensional models, small
randomly distributed perturbations present in the initial cell density (cf. first panel in Figure 14):

- vanish in the case of the Kelvin-Voigt model, thus leading the cell density to relax to the homogeneous
steady state n = 1 and attain numerical equilibrium at t = 260 (cf. second panel of Figure 14) while
leaving the ECM density unchanged (see supplementary video ‘MovS5’);

- grow in the case of the Maxwell model, leading to the formation of spatio-temporal patterns both in the
cell density n and in the ECM density ρ (cf. third panel of Figure 14, Figure 15 and supplementary video
‘MovS6’), capturing spatio-temporal dynamic heterogeneity arising in the system.

Similarly to the one-dimensional case, the formation of spatial patterns correlates with the growth of the cell-
ECM displacement u. In fact, the displacement remains close to zero (i.e. ∼ O(10−11)) for the Kelvin-Voigt
model (see supplementary video ‘MovS5’), whereas it grows with time for the Maxwell model (see Figure 15
and supplementary video ‘MovS6’).

7 Conclusions and research perspectives

Conclusions. We have investigated the pattern formation potential of different stress-strain constitutive
equations for the ECM within a one-dimensional mechanical model of pattern formation in biological tissues
formulated as the system of implicit PDEs (10), (11) and (16).

The results of linear stability analysis undertaken in Section 4 and the dispersion relations derived therefrom
support the idea that fluid-like stress-strain constitutive equations (i.e. the linear viscous model (2), the
Maxwell model (4) and the Jeffrey model (6)) have a pattern formation potential much higher than solid-like
constitutive equations (i.e. the linear elastic model (1), the Kelvin-Voigt model (3) and the SLS model (5)).
This is confirmed by the results of numerical simulations presented in Section 5, which demonstrate that, all else
being equal, spatial patterns emerge in the case where the Maxwell model (4) is used to represent the stress-
strain relation of the ECM, while no patterns are observed when the Kelvin-Voigt model (3) is employed. In
addition, the structure of the spatial patterns presented in Section 5 for the Maxwell model (4) is consistent with
the fastest growing mode predicted by linear stability analysis. In Section 6, as an illustrative example, we have
also reported on the results of numerical simulations of a two-dimensional version of the model, which is given
by the system of PDEs (29) complemented with the two-dimensional Kelvin-Voigt and Maxwell models (31).
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Figure 14: Simulation results for the two-dimensional Kelvin-Voigt and Maxwell models (31) under
initial conditions (36). Cell density n(t, x1, x2) at t = 0 (left panel) and at t = 260 for the Kevin-Voigt model
(central panel) and the Maxwell model (right panel) obtained solving numerically the system of PDEs (29)
subject to the two-dimensional version of the periodic boundary conditions (17) and initial conditions (36),
complemented with (30)-(33), for the parameter values given by (34) and (35).

These results demonstrate that key features of spatial pattern formation observed in one spatial dimension carry
through when two spatial dimensions are considered, thus conferring additional robustness to the conclusions
of our work.

Our findings corroborate the conclusions of [12] suggesting that prior studies on mechanochemical models of
pattern formation relying on the Kelvin-Voigt model of viscoelasticity may have underestimated the pattern
formation potential of biological tissues and advocating the need for further empirical work to acquire detailed
quantitative information on the mechanical properties of single components of the ECM in different biological
tissues, in order to furnish such models with stress-strain constitutive equations for the ECM that provide a
more faithful representation of tissue rheology, cf. [20].

Research perspectives. The dispersion relations given in Section 4 indicate that there may be parameter
regimes whereby solid-like constitutive models of linear viscoelasticity give rise to dispersion relations which
exhibit a range of unstable modes, while the dispersion relations obtained using fluid-like constitutive models
exhibit singularities, exiting the regime of validity of linear stability analysis. In this regard, it would be
interesting to consider extended versions of the mechanical model of pattern formation defined by the system
of PDEs (10), (11) and (16), in order to re-enter the regime of validity of linear stability analysis for the same
parameter regimes and verify that in such regimes all constitutive models can produce patterns. For instance,
it is known that including long-range effects, such as long-range diffusion or long-range haptotaxis, can promote
the formation of stable spatial patterns [45, 59], which could be explored through nonlinear stability analysis,
as previously done for the case in which the stress-strain relation of the ECM is represented by the Kelvin-Voigt
model [16, 32, 36]. In particular, weakly nonlinear analysis could provide information on the existence and
stability of saturated nonlinear steady states, supercritical bifurcations or subcritical bifurcations, which may
exist even when the homogeneous steady states are stable to small perturbations according to linear stability
analysis [15]. Nonlinear analysis would further enable exploring the existence of possible differences in the spatial
patterns obtained when different stress-strain constitutive equations for the ECM are used – such as amplitude
of patterns, perturbation mode selection and geometric structure in two spatial dimensions. In particular,
the base-case dispersion relations given in Section 4 for different fluid-like models of viscoelasticity displayed
the same range of unstable modes. This suggests that the investigation of similarities and differences in mode
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Figure 15: Simulation results for the two-dimensional Maxwell model (31) under initial condi-
tions (36). Cell density n(t, x1, x2) (top row, left panel), ECM density ρ(t, x1, x2) (top row, right panel), first
and second components of the cell-ECM displacement u(t, x1, x2) (bottom row, left panel and right panel, re-
spectively) at t = 1000 for the Maxwell model obtained solving numerically the system of PDEs (29) subject to
the two-dimensional version of the periodic boundary conditions (17) and initial conditions (36), complemented
with (30)-(33), for the parameter values given by (34) and (35). The random initial perturbation of the cell
density is displayed in the left panel of Figure 14.

selection between the various models of viscoelasticity could yield interesting results. It would also be interesting
to construct numerical solutions for the mechanical model defined by the system of PDEs (10), (11) and (16)
complemented with the Jeffrey model (6). For this to be done, suitable extensions of the numerical schemes
presented in the Supplementary Material (see ‘Supplementary Information’ document) need to be developed.
It would also be relevant to systematically assess the pattern formation potential of different constitutive models
of viscoelasticity in two spatial dimensions. This would require to relax the simplifying assumption (A.4) on
the shear and bulk viscosities of the ECM, which we have used to derive the two-dimensional Maxwell model in
the form of (31), and, more in general, to find analytically and computationally tractable stress-strain-dilation
relations, which still remains an open problem [8, 23]. In order to solve this problem, new methods of derivation
and parameterisation for constitutive models of viscoelasticity might need to be developed [73].
As previously mentioned, the values of the model parameters used in this paper have been chosen for illustrative
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purposes only. Hence, it would be useful to re-compute the dispersion relations and the numerical solutions
presented here for a calibrated version of the model based on real biological data. On a related note, there
exists a variety of interesting applications that could be explored by varying parameter values in the generic
constitutive equation (16) both in space and time. For instance, cell monolayers appear to exhibit solid-like
behaviours on small time scales, whereas they exhibit fluid-like behaviours on longer time scales [67], and
spatio-temporal changes in basement membrane components are known to affect structural properties of tissues
during development or ageing, as well as in a number of genetic and autoimmune diseases [29]. Amongst
these, remarkable examples are Alport’s syndrome, characterised by changes in collagen IV network due to
genetic mutations associated with the disease, diabetes mellitus, whereby high levels of glucose induce significant
basement membrane turnover, and cancer. In particular, cancer-associated fibrosis is a disease characterised by
an excessive production of collagen, elastin and proteoglycans, which directly affects the structure of the ECM
resulting in alterations of viscoelastic tissue properties [17]. Such alterations in the ECM may facilitate tumour
invasion and angiogenesis. Considering a calibrated mechanical model of pattern formation in biological tissues,
whereby the values of the parameters in the stress-strain constitutive equation for the ECM change during
fibrosis progression, may shed new light on the existing connections between structural changes in the ECM
components and higher levels of malignancy in cancer [14, 60].
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A Choice of the parameter values for the baseline parameter sets (26)-
(27) and (34)-(35)

In order not to limit the conclusions of our work by selecting a specific biological scenario, we identified possible
ranges of values for each parameter of our model on the basis of the existing literature on mechanochemical
models of pattern formation and then define our baseline parameter set by selecting values in the middle of
such ranges. In the sensitivity analysis presented in Section 4.2, we then consider the effect of varying the
parameter values within an appropriate range. We first consider the parameters appearing in equations (10),
(11) and (16), as well as in the initial conditions (28), and then consider additional parameters appearing in
the two-dimensional system (29)-(33), and the associated initial conditions (36).

Parameters in the balance equation (10) Nondimensional parameter values for the cell motility coefficient
D in the literature appear as low as D = 10−8 [22], and as high as D = 10 [53], but are generally taken in the
range [10−5, 1] [6, 11, 16, 18, 37, 51, 55, 58, 61]. Hence, we take D = 0.01 for our baseline parameter set. The
nondimensional haptotactic sensitivity of cells α takes values in the range [10−5, 5] [6, 16, 22, 51, 55, 58, 61],
and we take α = 0.05 for our baseline parameter set. While most authors ignore cell proliferation dynamics,
i.e. consider r = 0 [2, 11, 22, 51, 61], when present, the rate of cell proliferation takes nondimensional value in
the range [0.02, 5] [16, 58, 61]. Hence, we choose r = 1 for our baseline parameter set.

Parameters in the balance equation (11) While no parameters appear in the balance equation (11),
the value of the parameter ρ0 introduced in Section 4 as the spatially homogenous steady state ρ̄ = ρ0, and
successively specified to be the initial ECM density in (28) for our numerical simulations, stems from neglected
terms in equation (11). With the exception of [16] and [37] who respectively have ρ0 = 100.2 and ρ0 = 0.1,
this parameter is usually taken to be ρ0 = 1 in mechanochemical models ignoring additional ECM dynamics [6,
16, 25, 40, 45, 52, 53, 58, 59, 61].This is generally justified by assuming the steady state ρ0 of equation (11)
that is introduced by the additional term, say S(n, ρ), is itself used to nondimensionalise ρ, before assuming
the dynamics modelled by S(n, ρ) to occur on a much slower timescale than convection driven by the cell-ECM
displacement, thus neglecting this term [47, p.328], resulting in the nondimensional parameter ρ̂0 = 1. Hence,
we take ρ0 = 1.

Parameters in the force balance equation (16) The elastic modulus, or Young modulus, E is usually
itself used to nondimensionalise the other parameters in the dimensional correspondent of equation (16) and,
therefore, does not appear in the nondimensional system [6, 22, 53, 53, 51, 58, 61]. This corresponds to the
nondimensional value E = 1, which is what we take for our baseline parameter set. The viscosity coefficient η
has been taken with nondimensional values in low orders of magnitude, such as η ∼ 10−3− 10−1 [6, 16, 22, 61],
as well as in high orders of magnitude, such as η ∼ 102 − 103 [22, 58]. It is, however, generally taken to be
η = 1 [6, 12, 16, 53, 51, 61], which is what we choose for our baseline parameter set. When the constitutive
model includes two elastic moduli, i.e. for the SLS model (5), or two viscosity coefficients, i.e. for the Jeffrey
model (6), we take E1 = E2 = E/2 = 0.5 and η1 = η2 = η/2 = 0.5 as done by [1]. The cell traction parameter
τ takes nondimensional values spanning many orders of magnitude: it can be found as low as τ = 10−5 [18] and
as high as τ = 10 [6, 16, 61], but it is generally taken to be of order τ ∼ 1 [6, 12, 22, 51, 61] and many works
consider τ ∼ 10−2−10−1 [12, 18, 53, 58]. Hence, for our baseline parameter set we choose τ = 0.2. The cell-cell
contact inhibition parameter λ generally takes nondimensional values in the range [10−2, 1] [6, 12, 51, 61], so we
choose λ = 0.5 for our baseline parameter set. The long-range cell traction parameter β, when present, takes
nondimensional values in the range [10−3, 10−2] [6, 16, 22, 45, 51, 61] so we choose β = 0.005 for our baseline
parameter set. The elasticity of the external elastic substratum s, which is sometimes ignored or substituted
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with a viscous drag, has been taken to have nondimensional values as low as s ∈ [10−1, 1] [12, 53, 58] but is
generally chosen in the range [10, 400] [6, 22, 51, 61]. Hence, we take s = 10 for our baseline parameter set.

Parameters in the 2D system (29)-(33) For the parameters in the 2D system (29)-(33) and initial con-
dition (36) that also appear in the equations (10), (11), (16) and initial conditions (28), we make use of the
same nondimensional values selected in the one-dimensional case (see previous paragraphs). The Poisson ratio
ν, which can only take values in the range [0.1, 9.45], has been estimated to be in the range [0.2, 0.3] for the
biological tissue considered in mechanochemical models in the current literature [2, 16, 40, 45]. Hence, we
choose ν = 0.25 for our baseline parameter set. This results in E′ = E/(1 + ν) = 0.8 and ν′ = ν/(1− 2ν) = 0.5
according to definitions (33). In addition, under the simplifying assumption (A.4) introduced in Appendix B,
the bulk viscosity takes the value µ = ν′η = 0.5η = 0.5, which is in agreement with the fact that the bulk
and shear viscosities are usually assumed to take values of a similar order of magnitude in the extant litera-
ture [2, 40, 45, 48].

B Derivation of the two-dimensional Kelvin-Voigt and Maxwell mod-
els (31)

Landau & Lifshitz derived from first principles the stress-strain relations that give the two-dimensional versions
of the linear elastic model (1) and of the linear viscous model (2) in isotropic materials [31], which read,
respectively, as

σe =
E

1 + ν

(
εe +

ν

1− 2ν
θeI
)

and σv = η ∂tεv + µ∂tθvI . (A.1)

Here, E is Young’s modulus, ν is Poisson’s ratio, I is the identity tensor, η is the shear viscosity and µ is the
bulk viscosity. Moreover, εe and θe are the strain and dilation under a purely elastic deformation ue while εv
and θv are the strain and dilation under a purely viscous deformation uv, which are all defined via (32).

In the case of a linearly viscoelastic material satisfying Kelvin-Voigt model, the two dimensional analogue
of (3) is simply given by

σ = σe + σv = E′ε+ E′ν′θI + η ∂tε+ µ∂tθI . (A.2)

Here E′ and ν′ are defined via (33) and there is no distinction between the strain or dilation associated with
each component (i.e. ε = εe = εv and θ = θe = θv), as the viscous and elastic components are connected in
parallel. This is the stress-strain constitutive equation that is typically used to describe the contribution to the
stress of the cell-ECM system coming from the ECM in two-dimensional mechanochemical models of pattern
formation [16, 18, 27, 36, 40, 47, 51, 52, 53, 54, 58, 59, 61].

On the other hand, deriving the two-dimensional analogues of Maxwell model (4), of the SLS model (5)
and of the Jeffrey model (6) is more complicated due to the presence of elements connected in series. In the
case of Maxwell model, using the fact that the overall strain and dilation will be distributed over the different
components (i.e. ε = εe + εv and θ = θe + θv) along with the fact that the stress on each component will be
the same as the overall stress (i.e. σ = σe = σv), one finds

1

η
σ +

1

E′
∂tσ = ∂tε+ ν′∂tθI +

(
µ

η
− ν′

)
∂tθv I , (A.3)

with E′ and ν′ being defined via (33). Under the simplifying assumption that

µ

η
= ν′ (A.4)
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the stress-strain constitutive equation (A.3) can be rewritten in the form given by the generic two-dimensional
constitutive equation (31) under the parameter choices reported in Table 3. Dividing (A.2) by η, under the
simplifying assumption (A.4), the stress-strain constitutive equation for the Kelvin-Voigt model (A.2) can be
rewritten as

1

η
σ =

E′

η
ε+

E′ν′

η
θI + ∂tε+ ν′ ∂tθI ,

which is in the form given by the generic two-dimensional constitutive equation (31) under the parameter choices
reported in Table 3.
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Supplementary Information: Numerical Schemes

In this document (supplementary information) we report on details of the numerical schemes employed to
obtain the numerical results presented in the above named publication (main publication). For details of
the equations referred to in this document, please see the main publication. Numerical solutions are com-
puted using Matlab, and the files containing the code corresponding to the schemes presented below can
be found on GitLab (https://git-ce.rwth-aachen.de/alf.gerisch/VillaEtAl2021BullMathBiol).

Numerical schemes for the system of PDEs (10), (11) and (16)

Numerical solutions for the system of implicit, time-dependent and spatially one-dimensional PDEs (10),
(11) and (16) are obtained exploiting the Method of Lines. We make use of a uniform discretisation of
the spatial domain [l, L] consisting of K + 1 grid points, or grid cell centres, while, at first, leaving the
time variable continuous. We denote the spatial grid width by ∆x. The normalised cell density n(t, x),
the normalised ECM density ρ(t, x) and the displacement of a material point of the cell-ECM system
u(t, x) are approximated as

n(t, xi) ≈ Ni(t) , ρ(t, xi) ≈ Pi(t) , u(t, xi) ≈ Ui(t) for i = 0, . . . ,K .

Thanks to the periodic boundary conditions we have

N0(t) = NK(t) , P0(t) = PK(t) and U0(t) = UK(t) ,

and consequently have 3 × K time-continuous approximations to determine. We collect them in the
vectors N(t), P (t), U(t) and denote their time-derivatives by N ′(t), P ′(t), U ′(t). The discretization of
the spatial derivatives in the PDE system will then result in an implicit system of 3 ×K ODEs for the
variables N(t), P (t), U(t) and their time-derivatives of the following form

F (N,P,U,N ′, P ′, U ′) =




fn(N,P,N ′, U ′)

fρ(P, P
′, U ′)

fu(N,P,U,N ′, P ′, U ′)


 = 0 . (S.1)

In this system fn(N,P,N ′, U ′) = 0, fρ(P, P
′, U ′) = 0 and fu(N,P,U,N ′, P ′, U ′) = 0 are each systems of

K ODEs obtained, respectively, from PDEs (10), (11) and (16), using second-order central finite difference
approximations for the spatial derivatives and the first-order upwind scheme for the advection terms, as
detailed below for each equation.
In order to solve system (S.1), we make use of the Matlab solver ode15i, which uses a variable-order
(orders 1 to 5) backward difference formula (BDF) method in a form suitable to an implicit system
of ODEs. Initial conditions N(0), P (0) and U(0) are given by the appropriate equivalent of initial
conditions (28), and we make use of the Matlab function decic to obtain consistent initial conditions
N ′(0), P ′(0) and U ′(0) such that (S.1) is satisfied at initial time t = 0.
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Useful matrices. In order to apply the first-order upwind scheme we need to compute variables and
derivatives at the grid cell interfaces, i.e. half-way between grid points, in addition to those at the grid
cell centres. We here clarify the notation adopted throughout the rest of this document.
The K×K matrices Mx and Mxx are used to approximate, using second-order finite differences, the
first-order and the second-order derivatives in space, respectively, of a periodic grid function at the grid
cell centres and are therefore given by

Mx :=
1

2∆x




0 1 −1

−1 0 1
. . .

. . .
. . .

−1 0 1

1 −1 0




and Mxx :=
1

∆x2




−2 1 1

1 −2 1
. . .

. . .
. . .

1 −2 1

1 1 −2



. (S.2)

We make use of the notation −⇀· to indicate a shift from the grid cell centres to the (right) grid cell
interfaces. In particular to approximate the value of a periodic grid function at these grid cell interfaces
we multiply it by the K×K matrix

−⇀
M :=

1

2




1 1

1 1
. . .

. . .

1 1

1 1



. (S.3)

In addition, the K×K matrices
−⇀
Mx and

−↼
Mx are used to approximate the first-order derivatives in space

of a periodic grid function at the (right) grid cell interfaces, when the grid function is given in the grid
cell centres, and at the grid cell centres, when the grid function is given in the (right) grid cell interfaces,
respectively. These are given by

−⇀
Mx :=

1

∆x




−1 1

−1 1
. . .

. . .

−1 1

1 −1




and
−↼
Mx :=

1

∆x




1 −1

−1 1
. . .

. . .

−1 1

−1 1



. (S.4)

Note that, even though these two matrices are multiplied by 1/∆x, they still stem from second-order
finite difference approximations, calculated on a staggered grid shifted by half the grid cell width.
Convention: In the formulas which follow below, we use the convention that any product of a matrix
from above with a vector of length K is a matrix-vector product but any operation between two vectors,
in particular multiplication, division, or exponentiation, are understood element-wise.

Numerical scheme for the balance equation (10). We rewrite the balance equation (10) as

∂tn − D∂2xxn + ∂x(φn) − rn(1− n) = 0 with φ = α∂xρ+ ∂tu ,

which, upon spatial discretisation, leads to the following system of K ODEs

fn(N,P,N ′, U ′) = N ′ −DMxxN + A
(−⇀

Φ , N
)
− rN(1−N) = 0 (S.5)

with
−⇀
Φ indicating the advective velocity computed at the grid cell interfaces, that is

−⇀
Φ = α

−⇀
Mx P +

−⇀
MU ′ , (S.6)
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and the matrices Mxx,
−⇀
M and

−⇀
Mx are defined in (S.2), (S.3) and (S.4), respectively. The function

A
(−⇀

Φ , N
)

computes the contribution of advection, given advective velocity and advected quantity as
inputs, at the grid cell centres as

A
(−⇀

Φ , N
)

:=
−↼
Mx
−⇀
F
(−⇀

Φ , N
)

(S.7)

where the matrix
−↼
Mx is defined in (S.4) and the advective flux

−⇀
F at the grid cell interfaces is computed

using first-order upwinding, i.e.

[−⇀
F
(−⇀

Φ , N
)]
i

:=





(−⇀
Φ i

)+
Ni +

(−⇀
Φ i

)−
Ni+1 for i = 1, ...,K − 1

(−⇀
ΦK

)+
NK +

(−⇀
ΦK

)−
N1 for i = K

(S.8)

with (·)+ and (·)− being the positive and negative parts of the input variable, i.e.

(Φ)+ := max(0,Φ) and (Φ)− := min(0,Φ) . (S.9)

Numerical scheme for the transport equation (11). We rewrite the transport equation (11) as

∂tρ + ∂x(∂tu ρ) = 0

which, upon spatial discretisation, leads to the following system of K ODEs

fρ(P, P
′, U ′) = P ′ + A

(−⇀
MU ′, P

)
= 0 , (S.10)

where the function A
(−⇀
MU ′, P

)
is defined in (S.7), together with definitions (S.8) and (S.9), with advection

velocity given by U ′ calculated at the cell interfaces using
−⇀
M defined in (S.3).

Numerical scheme for the force-balance equation (16). We solve the system of PDEs (10), (11)
and (16) for the Kelvin-Voigt (3) and the Maxwell (4) models. In these cases we have b2 = a2 = 0, and
the force-balance equation (16) reads as

b1 ∂
3
xxtu+ b0 ∂

2
xxu − a1s ∂t(ρu) − a0 sρu + ∂x

(
a1 ∂tσc + a0 σc

)
= 0 with σc = τ

n

1 + λn2
(
ρ+β ∂2xxρ

)
.

Upon spatial discretisation, this leads to the following system of K ODEs

fu(N,P,U,N ′, P ′, U ′) = b1MxxU
′ + b0MxxU − a1s(PU)′ − a0sPU + MxT1(N,P,N ′, P ′) = 0 (S.11)

with

T1(N,P,N ′, P ′) = τ
[
a1 Λ2(N)N ′MT1P + a1 Λ1(N)MT1P

′ + a0 Λ1(N)MT1P
]
, (S.12)

where the functions Λ1 and Λ2 are defined as

Λ1(N) :=
N

1 + λN2
and its derivative Λ2(N) :=

1− λN2

(1 + λN2)2
, (S.13)

while the K×K matrix MT1 is given by

MT1 := I + βMxx , (S.14)

where I is the K×K identity matrix and Mx is defined in (S.2).
This scheme is valid as long as b2 = a2 = 0 and can therefore also be applied when considering the
linear elastic model (1), the linear viscous model (2), and the SLS model (5). On the other hand, in the
case where b2 6= 0 (i.e. when the Jeffrey model (6) is considered) the above numerical scheme cannot
be directly employed due to the presence of a second-order derivative in t. We could still, however, take
a similar approach and make use of the ode15i solver by introducing extra variables for the first-order
derivatives in t of n and ρ, thus formally reducing the PDE (16) to first-order in time, at the cost of
increasing the number of equations in the Method of Lines ODE system.
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Numerical scheme for the system of PDEs (29)

Similarly as done for the spatially one-dimensional model, numerical solutions for the system of implicit,
time-dependent and spatially two-dimensional PDEs (29), together with (30)-(32), are obtained exploiting
the Method of Lines. We make use of a uniform discretisation of the square spatial domain [l, L]× [l, L]
consisting of (K + 1)×(K + 1) grid points, while leaving the time variable continuous. The spatial grid
width, in both spatial directions, is denoted by ∆x again. The normalised cell density n(t, x1, x2), the
normalised ECM density ρ(t, x1, x2) and the displacement of a material point of the cell-ECM system
u(t, x1, x2) =

(
u1(t, x1, x2), u2(t, x1, x2)

)ᵀ
are approximated as

n(t, xi, xj) ≈ Ni,j(t) , ρ(t, xi, xj) ≈ Pi,j(t) for i, j = 0, . . . ,K ,

u1(t, xi, xj) ≈ (U1)i,j(t) , u2(t, xi, xj) ≈ (U2)i,j(t) for i, j = 0, . . . ,K .

Thanks to the periodic boundary conditions, we can drop the index values i = 0 and j = 0 and conse-
quently have 4×K2 time-continuous approximations to determine. We collect them in the matrices N(t),
P (t), U1(t), U2(t) and denote their time-derivatives by N ′(t), P ′(t), U ′1(t), U ′2(t). The discretization of
the spatial derivatives in the PDE system will then result in an implicit system of 4×K2 ODEs for the
variables N(t), P (t), U1(t), U2(t) and their time-derivatives of the following form

F (N,P,U1, U2, N
′, P ′, U ′1, U

′
2) =




fn(N,P,N ′, U ′1, U
′
2)

fρ(P, P
′, U ′1, U

′
2)

fu1(N,P,U1, U2, N
′, P ′, U ′1, U

′
2)

fu2
(N,P,U1, U2, N

′, P ′, U ′1, U
′
2)




= 0 . (S.15)

In this system fn(N,P,N ′, U ′1, U
′
2) = 0, fρ(N,P,N

′, U ′1, U
′
2) = 0, fu1

(N,P,U1, U2, N
′, P ′, U ′1, U

′
2) = 0

and fu2
(N,P,U1, U2, N

′, P ′, U ′1, U
′
2) = 0 are each systems of K2 ODEs obtained from the system of

PDEs (29), using second-order central finite difference approximations for the spatial derivatives and the
first-order upwind scheme for the advection terms, as detailed below for each equation.
In order to solve system (S.15), we make, similarly to the spatially one-dimensional case, use of the
Matlab solver ode15i. Initial conditions N(0), P (0), U1(0) and U2(0) are given by the appropriate
equivalent of initial conditions (36), and we make use of the Matlab function decic to obtain consistent
initial conditions N ′(0), P ′(0), U ′1(0) and U ′2(0) such that (S.15) is satisfied at initial time t = 0.

Useful functions In order to solve the system (S.15) we need to compute variables and derivatives
at the grid cell centers and interfaces, both in the x1- and the x2-direction. We here introduce the
functions that will be used in the rest of this document to compute the aforementioned quantities in
the different directions. These rely on the fact that the matrices (S.2)-(S.4) act on column vectors and
therefore, when applied to an K×K argument matrix, they will act on each column of that, which in our
framework corresponds to computing the quantity of interest in the x1-direction. In order to compute
the same quantities in the x2-direction, we need the operating matrix to act on each row of the argument
matrix of interest, which can be achieved by matrix transposition of the argument matrix before and of
the product matrix after matrix multiplication. Hence the functions Mx1(N) and Mx2(N) are used to
approximate the first-order derivative of the variable of interest, say N , at the grid cell centres in the x1-
and x2-directions respectively, and are defined as

Mx1(N) := MxN , and Mx2(N) :=
[
MxN

ᵀ]ᵀ , (S.16)

where the matrix Mx is defined in (S.2). Similarly, the functions Mxx1(N) and Mxx2(N) are used to
approximate the second-order derivative of the variable of interest at the grid cell centres in the x1- and
x2-directions, respectively, and are defined as

Mxx1(N) := MxxN , and Mxx2(N) :=
[
MxxN

ᵀ]ᵀ , (S.17)
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where the matrix Mxx is defined in (S.2). Then the function Mx1x2(N) is used to approximate the
second-order mixed derivative in space at the grid cell centres and is defined as

Mx1x2(N) := Mx2

(
Mx1(N)

)
=
[
Mx

(
MxN

)ᵀ]ᵀ
. (S.18)

In order to approximate the value of a variable in the centres of the (right or upper) grid cell interfaces

in the x1- and x2-direction, we make use of the functions
−⇀
M1 and

−⇀
M2, respectively, which are defined as

−⇀
M1(N) :=

−⇀
MN , and

−⇀
M2(N) :=

[−⇀
MNᵀ]ᵀ , (S.19)

with the matrix
−⇀
M defined in (S.3). In a similar fashion we define the functions A1

(−⇀v1 , N
)

and A2

(−⇀v2 , N
)

which approximate the contribution of advection in the x1- and x2-direction, respectively, given as input
the advective velocity at the grid cell interfaces in the direction of interest – say v1 and v2 are, respectively,
the first and second components of the advective velocity – and the advected quantity. These are given
by

A1

(−⇀v1, N
)

:= A
(−⇀v1 , N

)
and A2

(−⇀v2 , N
)

:=
[
A
(−⇀v2ᵀ, Nᵀ)]ᵀ , (S.20)

with the function A
(−⇀v1, N

)
given by (S.7) together with definitions (S.8) and (S.9).

Convention: With the definitions above, we have hidden all applications of the matrices from the
spatially one-dimensional case in newly defined functions. Consequently, in the formulas which follow
below, we use the convention that any further operation between matrices, in particular multiplication,
division, or exponentiation, are understood element-wise.

Numerical scheme for the balance equation (29)1. We rewrite the balance equation (29)1 as

∂tn − D
[
∂2x1x1

n+∂2x2x2
n
]

+ ∂x1
(φ1 n) + ∂x2

(φ2 n) − rn(1−n) = 0 with φi = α∂xi
ρ+∂tui i = 1, 2 ,

which, upon spatial discretisation, leads to the following system of K2 ODEs

fn(N,P,N ′, U ′1, U
′
1) = N ′−D

[
Mxx1(N)+ Mxx2(N)

]
+A1

(−⇀
Φ 1, N

)
+A2

(−⇀
Φ 2, N

)
−rN(1−N) = 0 (S.21)

with the functions Mxx1(·) and Mxx2(·) defined in (S.17), and the components of the advective velocity
at the grid cell interfaces given by

−⇀
Φ 1 = α

−⇀
Mx1(P ) +

−⇀
M1(U ′1) and

−⇀
Φ 2 = α

−⇀
Mx2(P ) +

−⇀
M2(U ′2) , (S.22)

where functions
−⇀
Mx1(·) and

−⇀
Mx2(·) are defined in (S.16),

−⇀
M1(·) and

−⇀
M2(·) are defined in (S.19), and

functions A1(·, ·) and A2(·, ·) are defined in (S.20).

Numerical scheme for the transport equation (29)2. We rewrite the transport equation (29)2 as

∂tρ + ∂x1(∂tu1 ρ) + ∂x2(∂tu2 ρ) = 0

which, upon spatial discretisation, leads to the following system of K2 ODEs

fρ(P, P
′, U ′1, U

′
2) = P ′ + A1

(−⇀
M1(U ′1), P

)
+ A2

(−⇀
M2(U ′2), P

)
= 0 , (S.23)

where the functions A1(·, ·) and A2(·, ·) are defined in (S.20) and functions
−⇀
M1(·) and

−⇀
M2(·) are defined

in (S.19).
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Numerical scheme for the force balance equation (29)3. We rewrite the first component of the
force balance equation (29)3, complemented with (30)-(32), as

b1

(
∂2x1x1

∂tu1 +
1

2

[
∂2x2x2

∂tu1 + ∂2x1x2
∂tu2

])
+ b0

(
∂2x1x1

u1 +
1

2

[
∂2x2x2

u1 + ∂2x1x2
u2
])

+

c1
(
∂2x1x1

∂tu1 + ∂2x1x2
∂tu2

)
+ c0

(
∂2x1x1

u1 + ∂2x1x2
u2
)

+

∂x1
[a1∂tσc + a0σc]− a1s(u1∂tρ+ ρ∂tu1)− a0sρu1 = 0 ,

(S.24)

and, similarly, we rewrite the second component as

b1

(
∂2x2x2

∂tu2 +
1

2

[
∂2x1x2

∂tu1 + ∂2x1x1
∂tu2

])
+ b0

(
∂2x2x2

u2 +
1

2

[
∂2x1x2

u1 + ∂2x1x1
u2
])

+

c1
(
∂2x2x2

∂tu2 + ∂2x1x2
∂tu1

)
+ c0

(
∂2x2x2

u2 + ∂2x1x2
u1
)

+

∂x2
[a1∂tσc + a0σc]− a1s(u2∂tρ+ ρ∂tu2)− a0sρu2 = 0 ,

(S.25)

where σc is defined by

σc = τ
n

1 + λn2
(
ρ+ β∂2x1x1

ρ+ β∂2x2x2
ρ
)
. (S.26)

Upon spatial discretisation, these lead to the following systems of K2 ODEs

fu1(N,P,U,N ′, P ′, U ′) = b1
(
Mxx1(U ′1) +

1

2
(Mxx2(U ′1) + Mx1x2(U ′2) )

)
+

b0
(
Mxx1(U1) +

1

2
(Mxx2(U1) + Mx1x2(U2) )

)
+

c1
(
Mxx1(U ′1) + Mx1x2(U ′2)

)
+ c0

(
Mxx1(U1) + Mx1x2(U2)

)
+

Mx1

(
T2(N,P,N ′, P ′)

)
− a1s(PU ′1 + P ′U1)− a0sPU1 = 0

(S.27)

and

fu2(N,P,U,N ′, P ′, U ′) = b1
(
Mxx2(U ′2) +

1

2
(Mx1x2(U ′1) + Mxx1(U ′2) )

)
+

b0
(
Mxx2(U2) +

1

2
(Mx1x2(U1) + Mxx1(U2) )

)
+

c1
(
Mxx2(U ′2) + Mx1x2(U ′1)

)
+ c0

(
Mxx2(U2) + Mx1x2(U1)

)
+

Mx2

(
T2(N,P,N ′, P ′)

)
− a1s(PU ′2 + P ′U2)− a0sPU2 = 0 .

(S.28)

Here

T2(N,P,N ′, P ′) = τ
[
a1 Λ2(N)N ′MT2(P ) + a1 Λ1(N)MT2(P ′) + a0 Λ1(N)MT2(P )

]
, (S.29)

where the functions Λ1 and Λ2 are defined as in (S.13), while the function MT2(P ) is given by

MT2(P ) := P + β
[
Mxx1(P ) + Mxx2(P )

]
, (S.30)

where the functions Mxx1(·) and Mxx2(·) are defined in (S.17).

Remark: The Matlab solver ode15i allows for the specification of the sparsity pattern of Jacobian
matrices. In particular in the spatially two-dimensional simulations this leads, in comparison to not
specifying these patterns, to substantial savings in required CPU time. For details on these patterns we
refer to the available Matlab implementation for the numerical solution of the PDE systems.
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