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Evolutionary dynamics in vascularised tumours under chemotherapy

Chiara Villa∗ Mark A. J. Chaplain† Tommaso Lorenzi‡

Abstract

We consider a mathematical model for the evolutionary dynamics of tumour cells in vascularised tumours
under chemotherapy. The model comprises a system of coupled partial integro-differential equations for the
phenotypic distribution of tumour cells, the concentration of oxygen and the concentration of a chemother-
apeutic agent. In order to disentangle the impact of different evolutionary parameters on the emergence
of intra-tumour phenotypic heterogeneity and the development of resistance to chemotherapy, we construct
explicit solutions to the equation for the phenotypic distribution of tumour cells and provide a detailed
quantitative characterisation of the long-time asymptotic behaviour of such solutions. Analytical results are
integrated with numerical simulations of a calibrated version of the model based on biologically consistent
parameter values. The results obtained provide a theoretical explanation for the observation that the phe-
notypic properties of tumour cells in vascularised tumours vary with the distance from the blood vessels.
Moreover, we demonstrate that lower oxygen levels may correlate with higher levels of phenotypic variabil-
ity, which suggests that the presence of hypoxic regions supports intra-tumour phenotypic heterogeneity.
Finally, the results of our analysis put on a rigorous mathematical basis the idea, previously suggested by
formal asymptotic results and numerical simulations, that hypoxia favours the selection for chemoresistant
phenotypic variants prior to treatment. Consequently, this facilitates the development of resistance following
chemotherapy.

1 Introduction

Previous empirical and theoretical work has suggested that spatial variation in oxygen levels can foster the
emergence of intra-tumour phenotypic heterogeneity [4, 26, 29, 33, 50, 56, 58, 73]. In particular, it has been
hypothesised that the nonlinear interplay between impaired oxygen delivery caused by structural abnormalities
present in the tumour vasculature [21, 25, 42, 43, 61, 75, 76], limited oxygen diffusion and oxygen consumption
by tumour cells may lead to the creation of distinct ecological niches in vascularised tumours, whereby tumour
cells with different phenotypic characteristics can be selected [4, 17, 27, 37, 40, 49]. This hypothesis is supported
by a growing body of experimental and clinical studies indicating that: well-oxygenated parts of the tumour are
densely populated by cells characterised by higher oxygen uptake and faster proliferation via aerobic pathways;
hypoxic parts of the tumour (i.e. regions where oxygen levels are below normal physiological levels) are mainly
occupied by cells that display higher levels of hypoxia-inducible factors, such as HIF-1 [21, 30, 47, 61, 68, 69, 71,
74, 80], which typically correlate with slower proliferation via anaerobic pathways and higher levels of resistance
to chemotherapy [15, 23].

In this paper, we use a mathematical model for the evolutionary dynamics of tumour cells in vascularised
tumours under chemotherapy to gain a deeper understanding of the adaptive process that underpins the emer-
gence of intra-tumour phenotypic heterogeneity and the development of resistance to chemotherapeutic agents.
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The model comprises a system of coupled partial integro-differential equations for the phenotypic distribution
of tumour cells, the concentration of oxygen and the concentration of a chemotherapeutic agent.

Non-local partial differential equations (PDEs) similar to the one that governs the evolution of the phenotypic
distribution of tumour cells in our model and related integro-differential equations have recently received in-
creasing attention from the mathematical community – see for instance [2, 3, 9, 12, 13, 14, 16, 22, 38, 41, 57]. In
particular, our work follows earlier papers on the analysis and numerical simulation of integro-differential equa-
tions and non-local PDEs modelling the emergence of intra-tumour phenotypic heterogeneity [41, 53, 54, 57, 77].
The focus of these papers is on the cases where tumour cells do not change their phenotypic state or the rate of
phenotypic variation is small. The main novelty of our work is that we allow tumour cells to undergo sponta-
neous epimutations (i.e. heritable phenotypic changes that occur randomly due to non-genetic instability and
are not induced by any selective pressure [39]) and we do not impose any smallness assumptions on the rate
at which such phenotypic changes occur. In this more general scenario, building upon the method of proof
presented in [5, 8, 18, 52], we carry out an analytical study of evolutionary dynamics. In particular, we con-
struct explicit solutions to the equation for the phenotypic distribution of tumour cells and, considering the case
where the concentrations of oxygen and chemotherapeutic agent are stationary, we provide a detailed quantita-
tive characterisation of the long-time asymptotic behaviour of such solutions. The analytical results obtained
are integrated with numerical simulations of a calibrated version of the model based on biologically consistent
parameter values, in order to further assess the impact of the dynamics of oxygen and chemotherapeutic agent
on the phenotypic evolution of tumour cells.

The paper is organised as follows. In Section 2, we introduce the equations of the model and the underlying
modelling assumptions. In Section 3, we present the results of our analytical study of evolutionary dynamics. In
Section 4, we report on numerical solutions that confirm and extend the analytical results obtained. Section 5
concludes the paper and provides a brief overview of possible research perspectives.

2 Mathematical model

We model the evolution of tumour cells within a region of a vascularised tumour along with the dynamical
interactions that occur between tumour cells and both oxygen and a chemotherapeutic agent, which are released
from the intra-tumoural vascular network.

The tumour region is approximated as a bounded set Ω ⊂ Rd, with smooth boundary ∂Ω, where d = 1, 2, 3
depending on the biological scenario under study. The spatial position of tumour cells is described by a vector
x ∈ Ω and the phenotypic state of every cell is modelled by a scalar variable y ∈ R, which represents the rescaled
level of a hypoxia-inducible factor. Building upon the ideas presented in [51, 63], we assume that there is a
sufficiently high level of expression of the hypoxia-inducible factor yH conferring both the highest rate of cellular
division via anaerobic energy pathways and the highest level of resistance to chemotherapy, while there is a
sufficiently low level of expression of the hypoxia-inducible factor yL < yH providing the highest rate of cellular
division via aerobic energy pathways. Without loss of generality, we define yH := 1 and yL := 0, so that values
of y → 1 correspond to phenotypic variants with higher rates of cellular division via anaerobic energy pathways
and higher levels of chemoresistance (i.e. anaerobic and chemoresistant phenotypic variants), whereas values of
y → 0 correspond to phenotypic variants with higher rates of cellular division via aerobic energy pathways (i.e.
aerobic phenotypic variants).

The phenotypic distribution of tumour cells at time t ∈ [0,∞) and position x is described by the function
n(t,x, y), while the functions s(t,x) and c(t,x) describe, respectively, the oxygen concentration and the concen-
tration of the chemotherapeutic agent at time t and position x. Moreover, at each time t, we define the density
of tumour cells at position x as

ρ(t,x) :=

∫
R
n(t,x, y) dy, (1)

2



while the local mean phenotypic state and the related variance are defined, respectively, as

µ(t,x) :=
1

ρ(t,x)

∫
R
y n(t,x, y) dy and σ2(t,x) :=

1

ρ(t,x)

∫
R
y2 n(t,x, y) dy − µ2(t,x). (2)

2.1 Dynamics of tumour cells

The local phenotypic distribution of tumour cells n(t,x, y) is governed by the following non-local PDE
∂tn = β ∂2yyn+R

(
y, ρ(t,x), s(t,x), c(t,x)

)
n, (t,x, y) ∈ (0,∞)× Ω× R,

ρ(t,x) :=

∫
R
n(t,x, y) dy.

(3)

In the reaction-diffusion equation (3), the diffusion term models the effect of spontaneous epimutations, which
occur at rate β > 0 [19, 51], while the non-local reaction term models the effect of cell division and death. The
function R

(
y, ρ(t,x), s(t,x), c(t,x)

)
represents the fitness of tumour cells in the phenotypic state y at position x

and time t under the local environmental conditions given by the cell density ρ(t,x), the oxygen concentration
s(t,x) and the concentration of chemotherapeutic agent c(t,x) (i.e. the phenotypic fitness landscape of the
tumour at position x and time t). In particular, we consider

R
(
y, ρ, s, c

)
:= p(y, s)− ζ ρ− k(y, c) (4)

with
p(y, s) := f(y) + g(y, s). (5)

Here, ζ > 0, f(y) is a C2-function such that

arg max
y∈R

f(y) = 1, f(1) > 0, ∂2yyf < 0, (6)

g(y, s) is a C2-function of y and a C1-function of s that satisfies the following assumptions

arg max
y∈R

g(y, s) = 0, g(0, s) > 0, ∂2yyg(·, s) < 0 ∀ s ∈ (0,∞), lim
s→∞

g(0, s) > f(1) (7)

g(·, 0) = 0, ∂s|g(·, s)| ≥ 0 ∀ s ∈ (0,∞), (8)

and k(y, c) is a C2-function of y and a C1-function of c that satisfies the following assumptions

arg min
y∈R

k(y, c) = 1, k(1, c) = 0, ∂2yyk(·, c) > 0 ∀ c ∈ (0,∞), (9)

k(·, 0) = 0, ∂ck(·, c) ≥ 0 ∀ c ∈ (0,∞). (10)

Definition (4) along with assumptions (9) and (10) models a biological scenario whereby the background fitness
of tumour cells in the phenotypic state y at position x and time t is given by a function p(y, s(t,x)), the value
of which is reduced:

• due to competition for limited space, by a certain amount which is the same for all phenotypic variants and
is proportional to ρ(t,x), with a proportionality constant ζ that is related to the local carrying capacity
of the tumour;
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• due to the cytotoxic action of the chemotherapeutic agent, by a certain amount k(y, c) which increases
monotonically with the concentration of the chemotherapeutic agent c and is smaller for phenotypic
variants with y → 1, which are characterised by higher levels of chemoresistance, and is null for the
phenotypic variant corresponding to y = 1, since such a phenotypic variant is assumed to be completely
resistant to the chemotherapeutic agent.

Definition (5) corresponds to the case where the background fitness p(y, s) is defined as a linear combination
of the background fitness associated with anaerobic energy pathways f(y) and the background fitness associated
with aerobic energy pathways g(y, s). In particular, assumptions (6)-(8) translate into mathematical terms the
following biological ideas:

• The state y = 1 corresponds to the phenotypic variant with the maximal background fitness associated
with anaerobic energy pathways, whereas the state y = 0 corresponds to the phenotypic variant with the
maximal background fitness associated with aerobic energy pathways.

• Due to the fact that less fit phenotypic variants are driven to extinction by natural selection, the back-
ground fitness associated with anaerobic (or aerobic) energy pathways can be negative for phenotypic
variants with values of y sufficiently far from 1 (or 0).

• Because of the fitness cost associated with a less efficient anaerobic metabolism [11], the maximal back-
ground fitness of aerobic phenotypic variants in well-oxygenated environments is larger than the maximal
background fitness of anaerobic phenotypic variants.

• In the absence of oxygen, the background fitness p(y, s) coincides with the background fitness associated
with anaerobic energy pathways f(y).

• The larger is the oxygen concentration, the stronger is the impact of the background fitness associated
with aerobic energy pathways g(y, s) on the background fitness p(y, s).

In particular, following the modelling strategies presented in [53], here we use the definitions

f(y) := ϕ
[
1− (1− y)2

]
, g(y, s) := γs

s

αs + s

(
1− y2

)
, k(y, c) := γc

c

αc + c
(1− y)2, (11)

where ϕ > 0 is the maximal background fitness of anaerobic phenotypic variants, γs > ϕ is the maximal
background fitness of aerobic phenotypic variants, αs > 0 and αc > 0 are the Michaelis-Menten constants of
oxygen and chemotherapeutic agent respectively, and γc > 0 is the maximal reduction of the background fitness
of aerobic phenotypic variants due to the cytotoxic action of the chemotherapeutic agent. Definitions (11) satisfy
assumptions (6)-(10), ensure analytical tractability of the model and lead to a fitness function R

(
y, ρ, s, c

)
that

is close to the approximate fitness landscapes which can be inferred from experimental data through regression
techniques – see, for instance, equation (1) in [60]. In fact, with these definitions, after a little algebra, the
difference p(y, s)− k(y, c) in (4) can be rewritten as

p(y, s)− k(y, c) = a(s, c)− b(s, c) (y − h(s, c))
2

(12)
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where

a(s, c) := γs
s

αs + s
− γc

c

αc + c
+

(
ϕ+ γc

c

αc + c

)2

ϕ+ γs
s

αs + s
+ γc

c

αc + c

, (13)

b(s, c) := ϕ+ γs
s

αs + s
+ γc

c

αc + c
(14)

and

h(s, c) :=
ϕ+ γc

c

αc + c

ϕ+ γs
s

αs + s
+ γc

c

αc + c

. (15)

Here, a(s, c) is the maximum fitness, h(s, c) is the fittest phenotypic state and b(s, c) is the selection gradient
under the environmental conditions corresponding to the oxygen concentration s(t,x) and the concentration of
chemotherapeutic agent c(t,x). We remark that b(s, c) is a selection gradient in that it provides a measure of
the strength of the selective pressure exerted on tumour cells by oxygen and the chemotherapeutic agent [46].
Notice that,

h : [0,∞)× [0,∞)→ [0, 1], lim
s→0

h(s, ·) = 1, lim
s→∞

h(s, 0) =
1

1 +
γs
ϕ

,

and

lim
c→∞

h(s, c) =
1

1 +
γs

ϕ+ γc

s

αs + s

∀s ∈ [0,∞).

Hence, consistent with our modelling assumptions,

• for any concentrations of oxygen and chemotherapeutic agent, the fittest phenotypic state is between y = 0
(i.e. the state corresponding to the phenotypic variant with the highest rate of cellular division via aerobic
energy pathways) and y = 1 (i.e. the state corresponding to the phenotypic variant with the highest rate
of cellular division via anaerobic energy pathways and the highest level of resistance to chemotherapy);

• in hypoxic conditions (i.e. when s→ 0), the fittest phenotypic state is y = 1;

• when there is no chemotherapeutic agent (i.e. when c ≡ 0), in well-oxygenated environments (i.e. when
s→∞) the larger is the ratio between the maximal background fitness of aerobic phenotypic variants γs
and the maximal background fitness of anaerobic phenotypic variants ϕ, the closer the fittest phenotypic
state will be to y = 0;

• under high-dose chemotherapy, the smaller is the ratio between the maximal background fitness of aerobic
phenotypic variants γs and the maximal reduction of the background fitness of aerobic phenotypic variants
due to the cytotoxic action of the chemotherapeutic agent γc, the closer the fittest phenotypic state will
be to y = 1.
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2.2 Dynamics of abiotic factors

The oxygen concentration s(t,x) and the concentration of chemotherapeutic agent c(t,x) are governed by the
following partial integro-differential equations

∂ts = Ds ∆xs−
∫
R
rs(y, s)n(t,x, y) dy − λss+ qs(t,x), (t,x) ∈ (0,∞)× Ω (16)

and

∂tc = Dc ∆xc−
∫
R
rc(y, c)n(t,x, y) dy − λcc+ qc(t,x), (t,x) ∈ (0,∞)× Ω (17)

coupled with (3) and subject to zero-flux boundary conditions, i.e.

∇xs · u = 0 and ∇xc · u = 0 on ∂Ω, (18)

where u is the unit normal to ∂Ω that points outward from Ω. In (16) and (17), the parameters Ds > 0 and
Dc > 0 are the diffusion coefficients of oxygen and chemotherapeutic agent, the functions rs(y, s) and rc(y, c)
are the consumption rates of oxygen and chemotherapeutic agent by tumour cells in the phenotypic state y, the
parameters λs > 0 and λc > 0 are the natural decay rates of oxygen and chemotherapeutic agent, and the source
terms qs(t,x) and qc(t,x) model the influx of oxygen and chemotherapeutic agent from the intra-tumoural blood
vessels at position x ∈ Ω and at time t.

We assume that the oxygen is consumed only by phenotypic variants corresponding to values of y for which
the fitness associated with aerobic energy pathways g(y, s) is positive and we let oxygen consumption occur at
a rate proportional to g(y, s). Moreover, we assume that the chemotherapeutic agent is consumed by pheno-
typic variants corresponding to different y at different rates proportional to the amount k(y, c) by which their
background fitness is reduced due to the cytotoxic action of the chemotherapeutic agent. In accordance with
these assumptions, we use the following definitions

rs(y, s) := ηs (g(y, s))+ and rc(y, s) := ηc k(y, c), (19)

where ηs > 0 and ηc > 0 are constants of proportionality and (·)+ denotes the positive part of (·). As done
in [77], we let ω ⊂ Ω be the set of points within the tumour tissue which are occupied by blood vessels and,
since we do not consider the formation of new blood vessels, we assume ω to be given and remain constant in
time. Therefore, we define the source terms qs and qc as

qs(t,x) := is(t,x) 1ω(x) and qc(t,x) := ic(t,x) 1ω(x), (20)

where 1ω is the indicator function of the set ω, and is(t,x) and ic(t,x) are the rates of inflow of oxygen and
chemotherapeutic agent through intra-tumoural blood vessels at position x ∈ ω and time t.

3 Analysis of evolutionary dynamics

In order to obtain a comprehensive analytical description of the evolutionary dynamics of tumour cells, in this
section we focus on a scenario where the concentrations of oxygen and chemotherapeutic agent are given and
stationary, i.e. when, instead of being solutions of (16) and (17), the functions s(t,x) and c(t,x) are given and
satisfy the following assumptions

s(t,x) ≡ S(x) and c(t,x) ≡ C(x), (21)

with
S ∈ C(Ω) with S : Ω→ R≥0 and C ∈ C(Ω) with C : Ω→ R≥0. (22)
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Under assumptions (21) and (22), we introduce the abridged notation

a ≡ a(S(x), C(x)), b ≡ b(S(x), C(x)), h ≡ h(S(x), C(x)).

In this scenario, we construct explicit solutions of (3) (cf. Proposition 1) and we study the asymptotic behaviour
of such solutions for t→∞ (cf. Theorem 1). In agreement with much of the previous work on the mathematical
analysis of the evolutionary dynamics of continuously-structured populations [62, 66], we focus on the case where
at time t = 0 the local phenotypic distribution of tumour cells is of the following Gaussian form

n(0,x, y) = ρ0(x)

√
v0(x)

2π
exp

[
−v0(x)

2
(y − µ0(x))

2

]
, ∀ x ∈ Ω (23)

where v0(x) := 1/σ2
0(x) and

ρ0 ∈ C(Ω) with ρ0 : Ω→ R>0, σ2
0 ∈ C(Ω) with σ2

0 : Ω→ R>0, µ0 ∈ C(Ω) with µ0 : Ω→ R. (24)

Proposition 1. Let assumptions (4), (12)-(15), (21) and (22) hold. Then, (3) subject to (23) and (24) admits
the exact solution

n(t,x, y) = ρ(t,x)

√
v(t,x)

2π
exp

[
−v(t,x)

2
(y − µ(t,x))

2

]
, ∀ x ∈ Ω, (25)

with ρ(t,x), µ(t,x) and v(t,x) := 1/σ2(t,x) being solutions of the Cauchy problem

∂tv = 2
(
b− βv2

)
, v ≡ v(t,x),

∂tµ =
2 b

v
(h− µ) , µ ≡ µ(t,x),

∂tρ =

[(
a− b

v
− b (µ− h)

2

)
− ζρ

]
ρ, ρ ≡ ρ(t,x),

v(0,x) = 1/σ2
0(x), µ(0,x) = µ0(x), ρ(0,x) = ρ0(x),

(t,x) ∈ (0,∞)× Ω. (26)

Theorem 1. Let assumptions (4), (12)-(15), (21) and (22) hold. Then, the solution of (3) subject to (23)
and (24) is such that

ρ(t, ·) −→ ρ∞(S,C), µ(t, ·) −→ µ∞(S,C), σ2(t, ·) −→ σ2
∞(S,C) as t→∞, (27)

with

ρ∞(S,C) = max

(
0,
a(S,C)−

√
β b(S,C)

ζ

)
, µ∞(S,C) = h(S,C), σ2

∞(S,C) =

√
β

b(S,C)
. (28)

The proofs of Proposition 1 and Theorem 1 are reported in Appendix A and Appendix B, respectively.
These results provide a mathematical formalisation of the idea that, when the concentrations of oxygen and
chemotherapeutic agent are given and stationary (i.e. s(t,x) ≡ S(x) and c(t,x) ≡ C(x)), the tumour cell
density ρ(t,x), the local mean phenotypic state µ(t,x) and the related variance σ2(t,x) converge to some
equilibrium values which are determined by the local concentrations of oxygen and chemotherapeutic agent.
This is illustrated by the heat maps in Figure 1, which show how, for the biologically consistent parameter
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Figure 1: Plots of ρ∞(S,C), µ∞(S,C) and σ2
∞(S,C). Plots of the equilibrium cell density ρ∞, the equilibrium

local mean phenotypic state µ∞ and the related variance σ2
∞ defined via (28) as functions of the stationary

concentrations of oxygen S and chemotherapeutic agent C. The plots refer to the parameter values listed in
Table 1. The cell density is in units of 108 and the concentrations of oxygen and chemotherapeutic agent are
scaled by the reference values S0 and C0 given in Table 1, respectively.

values listed in Table 1, the values of ρ∞, µ∞ and σ2
∞ defined via (28) vary as functions of S and C. Notice

that the parameter values in Table 1 are such that ρ∞ > 0.
These results demonstrate that spatial variations of the oxygen concentration determine spatial variations

of the tumour cell density, of the local mean phenotypic state and the related variance. Specifically, under
the parameter values listed in Table 1, the tumour cell density ρ∞ is an increasing function of the oxygen
concentration. Moreover, the local mean phenotypic state µ∞ coincides with the fittest phenotypic state h, which
decreases from values close to y = 1 (i.e. the state corresponding to the phenotypic variant with the highest
rate of cellular division via anaerobic energy pathways) to values close to y = 0 (i.e. the state corresponding
to the phenotypic variant with the highest rate of cellular division via aerobic energy pathways) for increasing
values of the oxygen concentration. This suggests that aerobic phenotypic variants are to be expected to colonise
oxygenated regions of the tumour, while anaerobic phenotypic variants are likely to populate poorly-oxygenated
regions. Finally, the local phenotypic variance σ2

∞ is a decreasing function of the oxygen concentration, which
supports the idea that higher levels of phenotypic variability may occur in hypoxic regions of the tumour.

On the other hand, larger values of the concentration of chemotherapeutic agent bring about smaller values
of the tumour cell density ρ∞, a shift of the local mean phenotypic state µ∞ (i.e. the fittest phenotypic state h)
from values closer to y = 0 to values closer to y = 1 (i.e. the state corresponding to the anaerobic phenotypic
variant with the highest level of resistance to chemotherapy), and smaller values of the local phenotypic variance
σ2
∞. This indicates that the selective pressure exerted by the chemotherapeutic agent causes a population

bottleneck in tumour cells leading to a reduction in cell density coming along with the selection of more
chemoresistant phenotypic variants and lower levels of phenotypic variability.

Remark 1. Under the assumptions of Theorem 1, in the case where (16) and (17) subject to (18) and coupled
with (3) admit classical solutions s(t,x) and c(t,x) that converge to some limits s∞(x) and c∞(x) as t → ∞,
we expect the long-time asymptotic limit of the local phenotypic distribution of tumour cells n(t,x, y) to be of
the Gaussian form

n∞(x, y) =
ρ∞(x)√
2π σ2

∞(x)
exp

[
− 1

2σ2
∞(x)

(
y − µ∞(x)

)2]
(29)
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where

ρ∞(x) = max

(
0,
a(s∞(x), c∞(x))−

√
β b(s∞(x), c∞(x))

ζ

)
, (30)

µ∞(x) = h(s∞(x), c∞(x)) and σ2
∞(x) =

√
β

b(s∞(x), c∞(x))
. (31)

4 Numerical simulations

We complement the analytical results of evolutionary dynamics presented in Section 3 with numerical solutions
of the model equations. In Section 4.1, we describe the set-up of numerical simulations and the methods
employed to construct numerical solutions. In Section 4.2, we consider the case of a one-dimensional spatial
domain whereby the concentrations of oxygen and chemotherapeutic agent are stationary. In Section 4.3, we
focus on the case of a two-dimensional spatial domain and let the dynamics of oxygen and chemotherapeutic
agent be governed by (16) and (17). All simulations are carried out using the parameter values listed in Table 1,
which are chosen to be consistent with the existing literature.

4.1 Set-up of numerical simulations and numerical methods

Set-up of numerical simulations of Section 4.2. For the numerical simulations we report on in Sec-
tion 4.2, we define Ω := (0, 0.05) and assume that increasing values of x ≡ x correspond to increasing values
of the distance from a blood vessel located in x = 0. Under the parameter values listed in Table 1, the values
of x are in units of cm. Under assumptions (21) and (22), we define S(x) and C(x) as shown by the plots in
Figure 2. Here, the stationary oxygen concentration S(x) is defined in such a way as to match the experimental
oxygen distribution presented in [35, Fig. 3]. Furthermore, the stationary concentration of chemotherapeutic
agent C(x) is defined in such a way as to have a behaviour qualitatively similar to that of S(x) and the value
of C(0) is chosen in agreement with experimental data presented in [35].

We complement (3) with initial condition (23) and assume

σ2(0,x) ≡ σ2
0 = 1 , µ(0,x) ≡ µ0 = 0.5 and ρ(0,x) ≡ ρ0 ≈ 108. (32)

Assumptions (32) correspond to a biological scenario whereby at the initial time t = 0 tumour cells are uniformly
distributed across the spatial domain Ω and are mainly found in the phenotypic state y = 0.5.

Set-up of numerical simulations of Section 4.3. For the numerical simulations we report on in Section 4.3,
we define Ω := (0, 0.5) × (0, 0.5) in order to model the cross-section of a vascularised tumour tissue. Under
the parameter values listed in Table 1, the values of x ∈ Ω are in units of cm. We let the dynamics of oxygen
and chemotherapeutic agent be governed by (16)-(18). Moreover, we assume the rate of inflow of oxygen and
chemotherapeutic agent through intra-tumoural blood vessels to be constant in time and the same for all vessels,
i.e. we define the functions is(t,x) and ic(t,x) in (20) as

is(t,x) ≡ Is and ic(t,x) ≡ Ic, (33)

with the values of Is and Ic being those given in Table 1.
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Figure 2: Stationary concentrations of oxygen and chemotherapeutic agent considered in Sec-
tion 4.2. Plots of the oxygen concentration S(x) and the concentration of chemotherapeutic agent C(x) used
to obtain the numerical results of Figure 3 and Figure 4. The coloured dots highlight the values of S(x) and
C(x) corresponding to the lines of the same colours in Figure 3 and Figure 4 – i.e. S(x) and C(x) at x = 0.007
(red), x = 0.015 (blue) and x = 0.035 (green). The space variable x is in units of cm, while both S(x) and C(x)
are in units of g cm−3. The oxygen concentration S(x) is defined in such a way as to match the experimental
pO2 profile presented in [35, Fig. 3]. The conversion from mmHg of pO2 to g cm−3 of oxygen concentration
was performed using the conversion factor 1mmHg = 4.6× 10−8 g cm−3, which was estimated using the ideal
gas law. The concentration of chemotherapeutic agent C(x) is defined in such a way as to have a behaviour
which is qualitatively similar to that of S(x) and the value of C(0) is chosen in agreement with experimental
data presented in [35].

We complement (3) with the initial condition defined via (23) and (32), while (16) and (17) are complemented
with the following initial conditions

s(0,x) = S0 1ω(x) and c(0,x) = C0 1ω(x), (34)

with the values of S0 and C0 being those given in Table 1. These initial conditions correspond to a biological
scenario whereby at the initial time t = 0 tumour cells are uniformly distributed across the spatial domain Ω
and are mainly found in the phenotypic state y = 0.5, while the oxygen and the chemotherapeutic agent are
concentrated in correspondence of the blood vessels.

Numerical methods. Numerical solutions are constructed using a uniform discretisation of the interval
[0, 0.05] or the square [0, 0.5]× [0, 0.5] as the computational domain of the independent variable x. Moreover, a
uniform discretisation of the set [−7, 7] is used as the computational domain of the independent variable y. We
consider t ∈ [0,T], with T > 0 being the final time of simulations. The final time T is chosen sufficiently large
so as to ensure that the solutions are at numerical equilibrium at the end of simulations. The exact values of T
are reported in the captions of Figures 3-9. We discretise the interval [0,T] with a uniform step. The method
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Table 1: Parameter values used in numerical simulations

Parameter Biological meaning Value Reference
αc Michaelis-Menten constant of chemotherapeutic agent 2× 10−6 g cm−3 [59]
αs Michaelis-Menten constant of oxygen 1.5× 10−7 g cm−3 [17]
β Rate of spontaneous epimutation 10−6 s−1 [19]
Dc Diffusivity of chemotherapeutic agent 4.4× 10−6 cm2 s−1 [65]
Ds Diffusivity of oxygen 2× 10−5 cm2 s−1 [36]
γc Maximal reduction of bkg fitness of aerobic phenotype due to chemotherapy 1.8× 10−4 s−1 [78]
γs Maximal bkg fitness of aerobic phenotype 1× 10−4 s−1 [78]
ζ Rate of cell death due to competition for space 2× 10−13 cm3 s−1 cells−1 [48]
ηc Conversion factor for cell consumption of chemotherapeutic agent 4× 10−11 g cells−1 [59]
ηs Conversion factor for cell consumption of oxygen 2× 10−11 g cells−1 [17]
λc Rate of natural decay of chemotherapeutic agent 2.3× 10−4 s−1 [65]
λs Rate of natural decay of oxygen 2.78× 10−6 s−1 [20]
ϕ Maximal bkg fitness of anaerobic phenotype 1× 10−5 s−1 [34]
Ic Constant rate of inflow of chemotherapeutic agent through blood vessels 2.5× 10−6 g cm−3 s−1 [59]
Is Constant rate of inflow of oxygen through blood vessels 6.3996× 10−7 g cm−3 s−1 [45]
C0 Reference value for the concentration of chemotherapeutic agent 2.5× 10−6 g cm−3 [59]
S0 Reference value for the concentration of oxygen 6.3996× 10−7 g cm−3 [45]

for solving numerically (3) subject to the zero-flux boundary conditions

∂yn(·, ·,−7) = 0 and ∂yn(·, ·, 7) = 0

is based on an explicit finite difference scheme in which a three-point stencil is used to approximate the diffusion
term in y and an explicit finite difference scheme is used for the non-local reaction term. Furthermore, the
method for solving numerically (16) and (17) subject to the zero-flux boundary conditions (18) is based on
an explicit finite difference scheme whereby a five-point stencil is used to approximate the diffusion terms and
an explicit finite difference scheme is used for the other terms. Finally, numerical solutions to the Cauchy
problem (26) are constructed using the explicit Euler method. All numerical computations are performed in
Matlab.

4.2 One-dimensional numerical results under stationary concentrations of oxygen
and chemotherapeutic agent

The sample of numerical results presented in Figure 3 refer to the case where the oxygen concentration s(t, x) ≡
S(x) and the concentration of cytotoxic agent c(t, x) ≡ 0, while the results presented in Figure 4 refer to the
case where s(t, x) ≡ S(x) and c(t, x) ≡ C(x), with S(x) and C(x) being defined as illustrated by the plots in
Figure 2.

Agreement between analytical and numerical results. In agreement with the results established by
Proposition 1, the numerical results displayed in the top rows of Figure 3 and Figure 4 show that there is a perfect
match between the cell density ρ(t, x), the local mean phenotypic state µ(t, x) and the related variance σ2(t, x)
computed via numerical integration of the local cell phenotypic distribution n(t, x, y), which is obtained by
solving numerically (3) subject to the initial condition defined via (23) and (32), and the corresponding quantities
obtained by solving numerically the Cauchy problem (26) complemented with (32). Similarly, the sample of
numerical results presented in the bottom rows of Figure 3 and Figure 4 show that the local cell phenotypic
distribution n(t, x, y) matches the exact local cell phenotypic distribution (25). Moreover, in accordance with
the asymptotic results established by Theorem 1, the cell density, the local mean phenotypic state and the
related variance converge, respectively, to the equilibrium values ρ∞(x), µ∞(x) and σ2

∞(x) given by (28).
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Tumour cell dynamics in the absence of chemotherapeutic agent. The numerical results of Figure 3
show that, in the absence of chemotherapeutic agent, since the stationary oxygen concentration S(x) decreases
monotonically with the distance from the blood vessel located at x = 0 (vid. Figure 2), the cell density ρ(t, x)
at equilibrium is maximal in the vicinity of the blood vessel (cf. red line), where the oxygen concentration
is higher, and decreases monotonically as the distance from the vessel increases (cf. blue and green lines).
Accordingly, the local mean phenotypic state at equilibrium increases from values closer to y = 0 (i.e. the state
corresponding to the phenotypic variant with the highest rate of cellular division via aerobic energy pathways)
to values closer to y = 1 (i.e. the state corresponding to the phenotypic variant with the highest rate of cellular
division via anaerobic energy pathways) moving away from the blood vessel. Moreover, the local phenotypic
variance σ2(t, x) at equilibrium is a monotonically increasing function of the distance from the blood vessel (i.e.
local phenotypic variability increases with the distance from the blood vessel).

Tumour cell dynamics in the presence of chemotherapeutic agent. A comparison of the numerical
results of Figure 3 and Figure 4 reveals that in the regions in close proximity of the blood vessel (cf. red lines),
where its concentration is higher, the chemotherapeutic agent leads to the occurrence of a population bottleneck
in tumour cells, which results into: a reduction of the equilibrium value of the cell density ρ(t, x); a selective
sweep toward more resistant phenotypic variants, as demonstrated by the fact that the equilibrium value of
the local mean phenotypic state µ(t, x) shifts from values closer to y = 0 (i.e. the state corresponding to the
phenotypic variant with the highest rate of cellular division via aerobic energy pathways) to values closer to
y = 1 (i.e. the state corresponding to the anaerobic phenotypic variant with the highest level of resistance to
chemotherapy); a reduction of the equilibrium value of the local phenotypic variance σ2(t, x). Moreover, moving
away from the blood vessel, since its concentration decreases, the chemotherapeutic agent has a weaker impact
on the dynamics of tumour cells (cf. blue lines). As a result, the evolution of tumour cells in regions distal to
the blood vessel is hardly affected by the chemotherapeutic agent (cf. green lines).

Tumour cell dynamics for different delivered doses of chemotherapeutic agent. The numerical
results of Figure 5 reproduce a realistic scenario whereby variation in the delivered dose of the chemotherapeutic
agent leads to pronounced changes in the agent concentration in close proximity of the blood vessel while
leaving the concentration far from the blood vessel almost unchanged (vid. the stationary distributions of
chemotherapeutic agent displayed in the first panel of Figure 5). These results indicate that increasing the
value of the delivered dose leads to a reduction in the number of tumour cells at the cost of promoting a
selective sweep toward more resistant phenotypic variants in the vicinity of the blood vessel – i.e. for values of
x sufficiently close to 0, the area under the curve of the equilibrium local cell phenotypic distribution shrinks
(vid. the plots in the second and third panel of Figure 5) and the equilibrium value of the local mean phenotypic
state progressively shifts from values closer to y = 0 to values closer to y = 1 (vid. the insets in the second
and third panel of Figure 5). This supports the idea that higher doses of chemotherapeutic agent removes the
selective barrier limiting the growth of less proliferative and more resistant phenotypic variants in vascularised
areas of the tumour.

4.3 Two-dimensional numerical results under dynamical concentrations of oxygen
and chemotherapeutic agent

In the remainder of this section, we use the notation x ≡ (x1, x2). The sample of numerical results presented in
Figure 6 and Figure 7 refer to the case where the oxygen concentration s(t, x1, x2) is governed by (16), subject
to the initial condition (34) and the boundary condition (18), while the concentration of chemotherapeutic
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Figure 3: One-dimensional numerical results under stationary concentration of oxygen and in the
absence of chemotherapeutic agent. Top row. Plots of the cell density ρ(t, x) (left panel), the local mean
phenotypic state µ(t, x) (central panel) and the related variance σ2(t, x) (right panel) at x = 0.007 (red, solid
lines), x = 0.015 (blue, solid lines) and x = 0.035 (green, solid lines) obtained by solving numerically (3) subject
to the initial condition defined via (23) and (32), under the stationary concentration of oxygen s(t, x) ≡ S(x)
displayed in Figure 2 and the stationary concentration of chemotherapeutic agent c(t, x) ≡ 0 (i.e. in the
absence of chemotherapeutic agent). The black, dashed lines highlight the corresponding quantities obtained
by solving numerically the Cauchy problem (26) complemented with (32). Bottom row. Plots of the local cell
phenotypic distribution n(t, x, y) obtained by solving numerically (3) subject to the initial condition defined
via (23) and (32), under the stationary concentration of oxygen s(t, x) ≡ S(x) displayed in Figure 2 and the
stationary concentration of chemotherapeutic agent c(t, x) ≡ 0 (i.e. in the absence of chemotherapeutic agent),
at x = 0.007 (left panel), x = 0.015 (central panel) and x = 0.035 (right panel). Different solid, coloured lines
correspond to different time instants t and the dashed lines highlight the exact solution (25) with σ2(t, x), µ(t, x)
and ρ(t, x) given by numerical solutions of the Cauchy problem (26) complemented with (32). The bullets on
the axis of abscissas highlight the value of the mean phenotypic state µ(t, x) at t = 5. The time variable t is in
units of 104 s, the space variable x is in units of cm and the parameters values used are those listed in Table 1.

agent c(t, x1, x2) ≡ 0. On the other hand, the results presented in Figure 8 and Figure 9 refer to the case where
s(t, x1, x2) and c(t, x1, x2) are governed by (16) and (17), respectively, subject to the initial conditions (34) and
the boundary conditions (18). In both cases, the set of points within the tumour tissue which are occupied by
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Figure 4: One-dimensional numerical results under stationary concentrations of oxygen and
chemotherapeutic agent. Top row. Plots of the cell density ρ(t, x) (left panel), the local mean pheno-
typic state µ(t, x) (central panel) and the related variance σ2(t, x) (right panel) at x = 0.007 (red, solid lines),
x = 0.015 (blue, solid lines) and x = 0.035 (green, solid lines) obtained by solving numerically (3) subject to the
initial condition defined via (23) and (32), and under the stationary concentrations of oxygen s(t, x) ≡ S(x) and
chemotherapeutic agent c(t, x) ≡ C(x) displayed in Figure 2. The black, dashed lines highlight the correspond-
ing quantities obtained by solving numerically the Cauchy problem (26) complemented with (32). Bottom row.
Plots of the local cell phenotypic distribution n(t, x, y) obtained by solving numerically (3) subject to the initial
condition defined via (23) and (32), and under the stationary concentrations of oxygen S(x) and chemothera-
peutic agent C(x) displayed in Figure 2, at x = 0.007 (left panel), x = 0.015 (central panel) and x = 0.035 (right
panel). Different solid, coloured lines correspond to different time instants t and the dashed lines highlight the
exact solution (25) with σ2(t, x), µ(t, x) and ρ(t, x) given by numerical solutions of the Cauchy problem (26)
complemented with (32). The filled bullets on the axis of abscissas highlight the value of the mean phenotypic
state µ(t, x) at t = 5, while the empty bullets highlight the corresponding values obtained in the case where
c(t, x) ≡ 0 (i.e. in the absence of chemotherapeutic agent). The time variable t is in units of 104 s, the space
variable x is in units of cm and the parameters values used are those listed in Table 1.

blood vessels (i.e. the set ω) is defined as illustrated by the plots in the first panels of Figure 6 and Figure 8.
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Figure 5: One-dimensional numerical results for different delivered doses of chemotherapeutic
agent. Plots of the local cell phenotypic distributions n(T, x, y) at x = 0.007 (second panel), x = 0.015
(third panel) and x = 0.035 (fourth panel) obtained by solving numerically (3) subject to the initial condi-
tion defined via (23) and (32), under the stationary concentration of oxygen S(x) displayed in Figure 2 and
different stationary concentrations of chemotherapeutic agent. In particular, the three stationary concentra-
tions of chemotherapeutic agent displayed in the first panel are used, that is, C1(x) = 0.5C(x) (dotted line),
C2(x) = C(x) (dashed line) and C3(x) = 1.5C(x) (solid line), where C(x) is the reference concentration of
chemotherapeutic agent displayed in Figure 2. In the second, third and fourth panels, the local cell phenotypic
distributions at t = T corresponding to C1 (dotted lines), C2 (dashed lines) and C3 (solid lines) are displayed,
and the markers on the axis of abscissas highlight the value of the mean phenotypic state µ(T, x) corresponding
to C1 (square), C2 (bullet) and C3 (diamond). The insets in the second and third panel display a close-up of
the axis of abscissas. The space variable x is in units of cm, T = 106 s and the parameters values used are those
listed in Table 1.

Agreement between analytical and numerical results. The sample of numerical results presented in
Figure 6 and Figure 8 show that, in the case of constant influx from intra-tumoural blood vessels, the concen-
tration of oxygen s(t, x1, x2) and the concentration of chemotherapeutic agent c(t, x1, x2) obtained by solving
numerically (16) and (17), subject to the initial conditions (34) and the boundary conditions (18), converge to
some equilibria s∞(x1, x2) and c∞(x1, x2). As a result, in agreement with our expectation based on the results
established by Theorem 1 (cf. Remark 1), the cell density ρ(t, x1, x2) and the local mean phenotypic state
µ(t, x1, x2) computed via numerical integration of the local cell phenotypic distribution n(t, x1, x2, y), which is
obtained by solving numerically (3) subject to the initial condition defined via (23) and (32), converge to the
equilibrium values ρ∞(x1, x2) and µ∞(x1, x2) given by (30) and (31). Moreover, the sample of numerical results
presented in Figure 7 and Figure 9 show that the local phenotypic distribution of tumour cells n(t, x1, x2, y)
converges to the equilibrium phenotypic distribution n∞(x1, x2, y) given by (29).

Emergence of spatial gradients of oxygen and chemotherapeutic agent. The numerical results of
Figure 6 and Figure 8 show that, as one would expect based on the experimental results presented by [35],
the equilibrium concentration of oxygen s(T, x1, x2) and the equilibrium concentration of chemotherapeutic
agent c(T, x1, x2) are maximal in the vicinity of the blood vessels and decrease monotonically with the distance
from the blood vessels. Moreover, these results demonstrate that the nonlinear interplay between the spatial
distribution of the blood vessels, the reaction-diffusion dynamics of oxygen and chemotherapeutic agent, and
their consumption by tumour cells leads naturally to the emergence of spatial inhomogeneities in the equilibrium
concentrations of such abiotic factors.
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Tumour cell dynamics. The plots in Figures 6- 9 demonstrate that the qualitative behaviour of the nu-
merical results obtained under stationary concentrations of oxygen and chemotherapeutic agents displayed in
Figure 3 and Figure 4 remains unchanged when dynamical concentrations of oxygen and chemotherapeutic
agent are considered. Specifically, in the absence of chemotherapy, when moving away from the blood vessels,
the equilibrium value of the cell density ρ(t, x1, x2) decreases, the local mean phenotypic state µ(t, x1, x2) at
equilibrium increases from values close to y = 0 to values close to y = 1, and the equilibrium value of the related
variance σ2(t, x1, x2) increases (vid. Figure 6 and Figure 7). When chemotherapy is administered, its effect
is more pronounced in the proximity of the blood vessels and consists in a reduction of the equilibrium value
of ρ(t, x1, x2), a shift of the equilibrium value of µ(t, x1, x2) toward y = 1 and a reduction of the equilibrium
value of σ2(t, x1, x2) compared to the case where the chemotherapeutic agent is not present. Moreover, the
evolutionary dynamics of tumour cells is weakly affected by chemotherapy in regions far from the blood vessels,
where the concentration of chemotherapeutic agent is lower (vid. Figure 8 and Figure 9).

5 Conclusions and research perspectives

Conclusions. The results of our analysis of evolutionary dynamics recapitulate previous theoretical re-
sults [4, 6, 7, 26, 33, 40, 44, 53, 54, 56, 73, 77] and experimental data [61, 69, 73, 74] by demonstrating that
spatial inhomogeneities in the concentration of oxygen promote the selection of different phenotypic variants at
different positions within the tumour. More specifically, our analytical results indicate that the tumour tissue
in the vicinity of blood vessels is to be expected to be densely populated by aerobic phenotypic variants, while
poorly oxygenated regions of the tumour are more likely to be sparsely populated by anaerobic phenotypic vari-
ants. Furthermore, the analytical results obtained support the idea that higher levels of phenotypic variability
may occur in hypoxic regions of the tumour, which provides a theoretical basis for experimental results such as
those presented in [10].

Coherently with observations made in previous theoretical and experimental studies [1, 15, 65, 72, 79], our
analytical results also suggest that hypoxia favours the selection for chemoresistant phenotypic variants prior to
treatment. Consequently, this facilitates the development of resistance following chemotherapy. Moreover, these
results put on a rigorous mathematical basis the idea, previously suggested by formal analysis and numerical
simulations [53, 67], that chemotherapy removes the selective barrier limiting the growth of chemoresistant
phenotypic variants by killing aerobic phenotypic variants in well-oxygenated regions of the tumour.

The results of our analysis of evolutionary dynamics are confirmed by the numerical results presented. Such
numerical results also indicate that gradients of oxygen and chemotherapeutic agents, which are released from
the intra-tumoural vascular network, naturally emerge in vascularised tumours due to the nonlinear interplay
between the spatial distribution of the blood vessels, the reaction-diffusion dynamics of oxygen and chemother-
apeutic agents, and their consumption by tumour cells.

Research perspectives. We plan to extend our analytical results to the case where spatial movement of
tumour cells is incorporated into the model. Based on the formal asymptotic results that we presented in [77],
in the case where cell movement is modelled through Fick’s first law, we expect the qualitative behaviour of
the results obtained in this paper to remain unchanged in the asymptotic regime where the rate of spontaneous
phenotypic variation and the cell diffusivity tend to zero. However, further developments of the method of proof
employed here are required in order to carry out a similar analysis of evolutionary dynamics in more general
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Figure 6: Two-dimensional numerical results under dynamical concentration of oxygen and in
the absence of chemotherapeutic agent. Top row. Plots of the oxygen concentration s(T, x1, x2) (second
panel), the cell density ρ(T, x1, x2) (third panel) and the local mean phenotypic state µ(T, x1, x2) (fourth
panel), with T = 5× 105s, obtained by solving numerically (3) and (16) imposing the initial conditions defined
via (23), (32) and (34), the boundary condition (18) and assuming c(t, x1, x2) ≡ 0 (i.e. in the absence of
chemotherapeutic agent). The set ω in (20) consists of the parts of Ω highlighted in red in the first panel.
Central row. Plots of the oxygen concentration s(T, x1, 0.4) (second panel), the cell density ρ(T, x1, 0.4) (third
panel, blue line) and the local mean phenotypic state µ(T, x1, 0.4) (fourth panel, blue line). The plot of the
oxygen concentration s(T, x1, x2) is displayed in the first panel, where the white, dashed line highlights the 1D
cross-section corresponding to x2 = 0.4. The red lines in the third and fourth panels highlight ρ∞(x1, 0.4) and
µ∞(x1, 0.4) computed through (30) and (31) with s∞(x1, 0.4) := s(T, x1, 0.4) and c∞ ≡ 0. Bottom row. Same
as the central row but for x2 = 0.2. The space variables x1 and x2 are in units of cm, and the parameters values
used are those listed in Table 1.

scenarios.

It would also be useful to consider a discrete version of the continuum model presented here, whereby the
dynamics of tumour cells would be described in terms of a branching random walk, while the concentrations
of oxygen and chemotherapeutic agent would be governed by discrete balance equations. This would make it
possible to study stochastic effects which are relevant at low tumour cell densities and cannot be easily captured
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Figure 7: Two-dimensional numerical results under dynamical concentration of oxygen and in the
absence of chemotherapeutic agent. Plots of the oxygen concentration s(T, x1, x2) (first panel) and the
local cell phenotypic distribution n(T, x1, x2, y) at (x1, x2) = (0.15, 0.4) (second panel), (x1, x2) = (0.16, 0.4)
(third panel) and (x1, x2) = (0.3, 0.4) (fourth panel), with T = 5 × 105s, obtained by solving numerically (3)
and (16) imposing the initial conditions defined via (23), (32) and (34), the boundary condition (18) and
assuming c(t, x1, x2) ≡ 0 (i.e. in the absence of chemotherapeutic agent). The set ω in (20) consists of the parts
of Ω highlighted in red in the first panel of Figure 6. The white, dashed line in the first panel highlights the 1D
cross-section corresponding to x2 = 0.4 and the bullets highlight the points (0.15, 0.4), (0.16, 0.4) and (0.3, 0.4).
In the second, third and fourth panels, the bullets on the axis of abscissas highlight the value of the local mean
phenotypic state µ(T, x1, x2) and the black, dashed lines highlight the asymptotic limit (29) with ρ∞(x1, x2),
µ∞(x1, x2) and σ2

∞(x1, x2) computed through (30) and (31) with s∞(x1, 0.4) := s(T, x1, 0.4) and c∞ ≡ 0. The
space variables x1 and x2 are in units of cm, and the parameters values used are those listed in Table 1.

by deterministic models formulated in terms of differential equations. In this regard, we plan to extend the
formal methods that we developed in [70] in order to identify the corresponding discrete counterpart of our
continuum model.

Moreover, building upon the ideas presented in [7, 8], it would be interesting to study the effect on the evo-
lutionary dynamics of tumour cells of fluctuations in the rate of oxygen inflow, which are known to influence
intra-tumour phenotypic heterogeneity [31, 56, 67]. It would also be interesting to include the effect of temporal
variation in the spatial distribution of intra-tumoural blood vessels, which would make it possible to explore
the influence of angiogenesis on the evolutionary dynamics of tumour cells in vascularised tumours. In addi-
tion, the model considered here could be further developed to incorporate a more comprehensive description
of cell metabolism that captures acidosis and enhanced tumour invasiveness caused by the presence of hypoxic
cells [24, 27, 28, 32, 44, 55, 58, 68, 80].

Finally, as similarly done in [5] and [64], it would be relevant to address numerical optimal control of the
model equations in order to identify possible delivery schedules of the chemotherapeutic agent that make it
possible to minimise the number of tumour cells at the end of the treatment or the average number of tumour
cells during the course of treatment. In particular, it would be relevant to verify whether the results presented
in [5] for a spatially homogeneous model – which indicate that continuous administration of a relatively low
dose of the chemotherapy performs more closely to the optimal dosing regimen to minimise the average number
of tumour cells during the course of treatment – carry through when spatial reaction-diffusion dynamics of
the chemotherapeutic agent are incorporated into the model. In this regard, it would be interesting to assess
the impact of molecular properties of the chemotherapeutic agent (e.g. decay, diffusion and cellular uptake
rates) and structural properties of the intra-tumoural vascular network (e.g. vascular density and blood vessels
distribution) on the optimal chemotherapy schedule.
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Figure 8: Two-dimensional numerical results under dynamical concentrations of oxygen and
chemotherapeutic agent. Top row. Plots of the oxygen concentration s(T, x1, x2) (second panel), the concen-
tration of chemotherapeutic agent c(T, x1, x2) (third panel), the cell density ρ(T, x1, x2) (fourth panel) and the
local mean phenotypic state µ(T, x1, x2) (fifth panel), with T = 5× 105s, obtained by solving numerically (3),
(16) and (17) imposing the initial conditions defined via (23), (32) and (34), and the boundary conditions (18).
The set ω in (20) consists of the parts of Ω highlighted in red in the first panel. Central row. Plots of the oxy-
gen concentration s(T, x1, 0.4) (third panel, blue line), the concentration of chemotherapeutic agent c(T, x1, 0.4)
(third panel, orange line), the cell density ρ(T, x1, 0.4) (fourth panel, blue line) and the local mean phenotypic
state µ(T, x1, 0.4) (fifth panel, blue line). The plots of the oxygen concentration s(T, x1, x2) and the concen-
tration of chemotherapeutic agent c(T, x1, x2) are displayed in the first and second panels, where the white,
dashed lines highlight the 1D cross-section corresponding to x2 = 0.4. The red lines in the fourth and fifth
panels highlight ρ∞(x1, 0.4) and µ∞(x1, 0.4) computed through (30) and (31) with s∞(x1, 0.4) := s(T, x1, 0.4)
and c∞(x1, 0.4) := c(T, x1, 0.4). Bottom row. Same as the central row but for x2 = 0.2. The space variables x1
and x2 are in units of cm, and the parameters values used are those listed in Table 1.

References

[1] J. Adamski, A. Price, C. Dive, and G. Makin, Hypoxia–induced cytotoxic drug resistance in osteosar-
coma is independent of hif-1alpha, PloS One, 8 (2013), p. e65304.

[2] M. Alfaro, H. Berestycki, and G. Raoul, The effect of climate shift on a species submitted to dis-
persion, evolution, growth, and nonlocal competition, SIAM Journal on Mathematical Analysis, 49 (2017),
pp. 562–596.

[3] M. Alfaro, J. Coville, and G. Raoul, Travelling waves in a nonlocal reaction-diffusion equation as

19



Figure 9: Two-dimensional numerical results under dynamical concentrations of oxygen and
chemotherapeutic agent. Plots of the oxygen concentration s(T, x1, x2) (first panel), the concentration
of chemotherapeutic agent c(T, x1, x2) (second panel) and the local phenotypic cell distribution n(T, x1, x2, y)
at (x1, x2) = (0.15, 0.4) (third panel), (x1, x2) = (0.16, 0.4) (fourth panel) and (x1, x2) = (0.3, 0.4) (fifth panel),
with T = 5 × 105s, obtained by solving numerically (3), (16) and (17) imposing the initial conditions defined
via (23), (32) and (34), and the boundary conditions (18). The set ω in (20) consists of the parts of Ω high-
lighted in red in the first panel of Figure 8. The white, dashed lines in the first and second panels highlight
the 1D cross-section corresponding to x2 = 0.4 and the bullets highlight the points (0.15, 0.4), (0.16, 0.4) and
(0.3, 0.4). In the third, fourth and fifth panels, the filled bullets on the axis of abscissas highlight the value of
the mean phenotypic state µ(T, x1, x2), while the empty bullets highlight the corresponding values obtained in
the case where c(t, x1, x2) ≡ 0 (i.e. in the absence of chemotherapeutic agent). Moreover, the black, dashed
lines highlight the asymptotic limit (29) with ρ∞(x), µ∞(x) and σ2

∞(x) computed through (30) and (31) with
s∞(x1, 0.4) := s(T, x1, 0.4) and c∞(x1, 0.4) := c(T, x1, 0.4). The space variables x1 and x2 are in units of cm,
and the parameters values used are those listed in Table 1.

a model for a population structured by a space variable and a phenotypic trait, Communications in Partial
Differential Equations, 38 (2013), pp. 2126–2154.

[4] K. O. Alfarouk, M. E. Ibrahim, R. A. Gatenby, and J. S. Brown, Riparian ecosystems in human
cancers, Evolutionary Applications, 6 (2013), pp. 46–53.

[5] L. Almeida, P. Bagnerini, G. Fabrini, B. D. Hughes, and T. Lorenzi, Evolution of cancer cell
populations under cytotoxic therapy and treatment optimisation: insight from a phenotype-structured model,
ESAIM: Mathematical Modelling and Numerical Analysis (ESAIM: M2AN), 53 (2019), pp. 1157–1190.

[6] A. R. Anderson, A. M. Weaver, P. T. Cummings, and V. Quaranta, Tumor morphology and
phenotypic evolution driven by selective pressure from the microenvironment, Cell, 127 (2006), pp. 905–
915.
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[20] P. Cumsille, A. Coronel, C. Conca, C. Quiñinao, and C. Escudero, Proposal of a hybrid approach
for tumor progression and tumor-induced angiogenesis, Theoretical Biology and Medical Modelling, 12
(2015), p. 1.

[21] M. W. Dewhirst, Y. Cao, and B. Moeller, Cycling hypoxia and free radicals regulate angiogenesis
and radiotherapy response, Nature Reviews Cancer, 8 (2008), p. 425.

[22] P. Domschke, D. Trucu, A. Gerisch, and M. A. Chaplain, Structured models of cell migration
incorporating molecular binding processes, Journal of Mathematical Biology, 75 (2017), pp. 1517–1561.

[23] R. E. Durand and J. A. Raleigh, Identification of nonproliferating but viable hypoxic tumor cells in
vivo, Cancer research, 58 (1998), pp. 3547–3550.

[24] K. Eales, K. Hollinshead, and D. Tennant, Hypoxia and metabolic adaptation of cancer cells, Onco-
genesis, 5 (2016), p. e190.

[25] D. Fukumura, D. G. Duda, L. L. Munn, and R. K. Jain, Tumor microvasculature and microen-
vironment: novel insights through intravital imaging in pre-clinical models, Microcirculation, 17 (2010),
pp. 206–225.

21



[26] J. Gallaher and A. R. Anderson, Evolution of intratumoral phenotypic heterogeneity: the role of trait
inheritance, Interface Focus, 3 (2013), p. 20130016.

[27] R. Gatenby, K. Smallbone, P. Maini, F. Rose, J. Averill, R. Nagle, L. Worrall, and
R. Gillies, Cellular adaptations to hypoxia and acidosis during somatic evolution of breast cancer, British
Journal of Cancer, 97 (2007), p. 646.

[28] R. A. Gatenby and R. J. Gillies, Glycolysis in cancer: a potential target for therapy, The International
Journal of Biochemistry & Cell Biology, 39 (2007), pp. 1358–1366.

[29] L. Gay, A.-M. Baker, and T. A. Graham, Tumour cell heterogeneity, F1000Research, 5 (2016), p. 238.

[30] A. Giatromanolaki, M. Koukourakis, E. Sivridis, H. Turley, K. Talks, F. Pezzella, K. Gat-
ter, and A. Harris, Relation of hypoxia inducible factor 1α and 2α in operable non-small cell lung cancer
to angiogenic/molecular profile of tumours and survival, British Journal of Cancer, 85 (2001), p. 881.

[31] R. J. Gillies, J. S. Brown, A. R. Anderson, and R. A. Gatenby, Eco-evolutionary causes and
consequences of temporal changes in intratumoural blood flow, Nature Reviews Cancer, 18 (2018), pp. 576–
585.

[32] R. J. Gillies and R. A. Gatenby, Hypoxia and adaptive landscapes in the evolution of carcinogenesis,
Cancer and Metastasis Reviews, 26 (2007), pp. 311–317.

[33] R. J. Gillies, D. Verduzco, and R. A. Gatenby, Evolutionary dynamics of carcinogenesis and why
targeted therapy does not work, Nature Reviews Cancer, 12 (2012), pp. 487–493.

[34] J. D. Gordan, J. A. Bertout, C.-J. Hu, J. A. Diehl, and M. C. Simon, HIF-2α promotes hypoxic
cell proliferation by enhancing c-myc transcriptional activity, Cancer Cell, 11 (2007), pp. 335–347.

[35] G. Helmlinger, F. Yuan, M. Dellian, and R. K. Jain, Interstitial pH and pO2 gradients in solid
tumors in vivo: high-resolution measurements reveal a lack of correlation, Nature Medicine, 3 (1997), p. 177.

[36] L. Hlatky and E. Alpen, Two-dimensional diffusion limited system for cell growth, Cell Proliferation,
18 (1985), pp. 597–611.

[37] M. Hockel and P. Vaupel, Tumor hypoxia: definitions and current clinical, biologic, and molecular
aspects, Journal of the National Cancer Institute, 93 (2001), pp. 266–276.
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[79] M. Wartenberg, F. C. Ling, M. Möschen, F. Klein, H. Acker, M. Gassmann, K. Petrat,
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A Proof of Proposition 1

Substituting (4) and (12) into (3) yields

∂n

∂t
= β

∂2n

∂y2
+
[
a− b (y − h)2 − ζ ρ(t,x)

]
n, n ≡ n(t,x, y), (t,x, y) ∈ (0,∞)× Ω× R. (35)

Building upon the results presented in [5, 18, 52], we make the ansatz (25). Substituting this ansatz into (35)
and introducing the notation v(t,x) := 1/σ2(t,x) we find

∂tρ

ρ
+
∂tv

2v
=
∂tv

2
(y − µ)

2 − ∂tµ v (y − µ) + β
[
v2 (y − µ)

2 − v
]

+ a− b (y − h)
2 − ζρ. (36)

Equating the second-order terms in y gives the following differential equation for v alone

∂tv + 2βv2 = 2 b. (37)

Moreover, equating the coefficients of the first-order terms in y, and eliminating ∂tv from the resulting equation,
yields

∂tµ =
2b(h− µ)

v
. (38)

Lastly, choosing y = µ in (36) gives

∂tρ

ρ
+
∂tv

2v
= −βv + a− b(µ− h)2 − ζ ρ (39)

and eliminating ∂tv from (39) we obtain

∂tρ =

[(
a− b

v
− b (µ− h)

2

)
− ζρ

]
ρ. (40)

Under the initial condition (23), we have

v(0,x) = v0(x), µ(0,x) = µ0(x), ρ(0,x) = ρ0(x),

and imposing these initial conditions for (37), (38) and (40) we arrive at the Cauchy problem (26) for the
functions v(t,x), µ(t,x) and ρ(t,x).

B Proof of Theorem 1

Under assumptions (21) and (22), Proposition 1 ensures that for any (t,x) ∈ [0,∞) × Ω the solution of (3)
subject to (23) and (24) is of the Gaussian form (25). Therefore, building upon the method of proof presented
in [8, 18], we prove Theorem 1 by studying the behaviour of the components of the solution to the Cauchy
problem (26) for t→∞.

Step 1: asymptotic behaviour of v(t,x) ≡ 1/σ2(t,x) for t → ∞. Solving (26)1 subject to the initial
condition v(0,x) = v0(x) gives

v(t, ·) =

√
b

β

√
b

β
+ v0 −

(√
b

β
− v0

)
exp

(
−4
√
b β t

)
√
b

β
+ v0 +

(√
b

β
− v0

)
exp

(
−4
√
bβ t
) , (41)

26



which implies that

v(t, ·) −→

√
b

β
exponentially fast as t→∞. (42)

Step 2: asymptotic behaviour of µ(t,x) for t → ∞. Solving (26)2 subject to the initial condition
µ(0,x) = µ0(x) yields

µ(t, ·) = µ0 exp

(
−2b

∫ t

0

dz

v(z, ·)

)
+ h

[
1− exp

(
−2b

∫ t

0

dz

v(z, ·)

)]
, (43)

which implies that
µ(t, ·) −→ h exponentially fast as t→∞. (44)

Step 3: asymptotic behaviour of ρ(t,x) for t→∞. We define

w(t,x) ≡ w(v(t,x), µ(t,x), S(x), C(x)) :=

(√
b β − b

v

)
− b (µ− h)

2

and rewrite (26)3 as

∂tρ =
[(
a−

√
b β + w

)
− ζρ

]
ρ. (45)

Solving (45) subject to the initial condition ρ(0,x) = ρ0(x) yields

ρ(t, ·) =

ρ0 exp

[(
a−

√
b β
)
t+

∫ t

0

w(z, ·) dz

]
1 + ζ ρ0

∫ t

0

exp

[(
a−

√
b β
)
z +

∫ z

0

w(τ, ·) dτ

]
dz

. (46)

The asymptotic results (42) and (44) ensure that

w(t, ·) −→ 0 exponentially fast as t→∞, (47)

and, therefore, (46) allows us to conclude that

if
√
b(S(x), C(x))β ≥ a(S(x), C(x)) then ρ(t,x) −→ 0 as t→∞. (48)

On the other hand, the asymptotic result (47) implies that in the asymptotic regime t→∞ we have

exp

[(
a−

√
b β
)
t+

∫ t

0

w(z, ·) dz

]
∼ A(S,C) exp

[(
a−

√
b β
)
t
]
,

and also that, under the additional assumption
√
b β < a,∫ t

0

exp

[(
a−

√
b β
)
z +

∫ z

0

w(τ, ·) dτ

]
dz ∼ A(S,C)

exp
[(
a−
√
b β
)
t
]

a−
√
b β

,

for some positive function A(S,C). These asymptotic relations, along with (46), allow us to conclude that

if
√
b(S(x), C(x))β < a(S(x), C(x)) then ρ(t,x) −→

a(S(x), C(x))−
√
b(S(x), C(x))β

ζ
as t→∞. (49)

Taken together, the asymptotic results (48) and (49) ensure that

ρ(t, ·) −→ max

(
0,
a−
√
b β

ζ

)
as t→∞. (50)

Claims (27)-(28) follow from the asymptotic results (42), (44) and (50).
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