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Discrete and continuum models for the evolutionary and spatial

dynamics of cancer: a very short introduction through two case

studies

Tommaso Lorenzi∗ Fiona R. Macfarlane† Chiara Villa‡

Abstract

We give a very short introduction to discrete and continuum models for the evolutionary and spatial
dynamics of cancer through two case studies: a model for the evolutionary dynamics of cancer cells under
cytotoxic therapy and a model for the mechanical interaction between healthy and cancer cells during tumour
growth. First we develop the discrete models, whereby the dynamics of single cells are described through a
set of rules that result in branching random walks. Then we present the corresponding continuum models,
which are formulated in terms of non-local and nonlinear partial differential equations, and we summarise
the key properties of their solutions. Finally, we carry out numerical simulations of the discrete models and
we construct numerical solutions of the corresponding continuum models. The biological implications of the
results obtained are briefly discussed.

1 Introduction

Mathematical models have been increasingly used to dissect the variety of complex processes that orchestrate the
evolutionary and spatial dynamics of cancer [2, 7, 6, 11, 21, 34, 47]. In particular, integro-differential equations
and nonlocal partial differential equations (PDEs) for the dynamics of cell population densities (i.e. phenotypic
distributions of cell populations) have helped to elucidate the adaptive processes that are at the root of cancer
resistance to cytotoxic agents [1, 36, 37, 38, 40, 60, 61, 64, 67, 68, 69, 91]. Furthermore, nonlinear PDEs for the
evolution of cellular densities in response to pressure gradients generated by cell proliferation have shed light
on the underpinnings of tumour growth and cancer invasion [3, 4, 8, 17, 21, 22, 23, 24, 25, 26, 27, 31, 33, 39,
49, 70, 86, 92, 93, 94, 97, 109, 108].

PDE models for the evolutionary and spatial dynamics of cancer are amenable to both numerical and analyt-
ical approaches, which support an in-depth theoretical understanding of the application problems under study.
However, defining these models on the basis of phenomenological considerations can hinder a precise mathe-
matical representation of key biological aspects. Therefore, it is desirable to derive them from first principles
as the appropriate continuum limit of discrete models that track the dynamics of single cells (i.e. individual-
based models). In fact, since individual-based models enable a more direct representation of fine details of
cell dynamics, this ensures that key biological aspects are faithfully mirrored in the structure of the PDEs
considered. As a result, the derivation of continuum models for the evolutionary [28, 29, 30, 35, 101] and spa-
tial [9, 12, 20, 25, 32, 41, 42, 43, 45, 52, 53, 55, 56, 57, 59, 71, 74, 75, 76, 77, 78, 80, 82, 83, 84, 85, 99, 100, 103, 104]
dynamics of cell populations from underlying individual-based models has become an active research area.
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In this paper, we give a very short introduction to such discrete and continuum models for the evolutionary
and spatial dynamics of cancer through two case studies. In Section 2, we develop a stochastic individual-based
model for the evolutionary dynamics of cancer cells under cytotoxic therapy, and we introduce the corresponding
deterministic continuum model, which is formulated in terms of a non-local PDE for the cell population density.
In Section 3, we present a stochastic individual-based model for the mechanical interaction between healthy
and cancer cells during tumour growth, and we discuss the corresponding deterministic continuum model,
which comprises a system of coupled nonlinear PDEs for the cell densities. We summarise some properties of
the solutions of the PDEs, we carry out a quantitative comparison between their numerical solutions and the
results of numerical simulations of the corresponding individual-based models, and we infer the key biological
implications of the results obtained. In Section 4, we provide a brief overview of possible developments of the
models that could capture additional layers of biological complexity.

2 Discrete and continuum models for the evolutionary dynamics of
cancer cells under cytotoxic therapy

In this section, we use the modelling framework developed by Stace et al. [101] to define a stochastic individual-
based model for the phenotypic evolution of cancer cells under cytotoxic therapy (Section 2.1). Moreover, we
present a non-local PDE for the cell population density that can be formally derived from this discrete model
by passing to the continuum limit, and we summarise some key properties of its solutions (Section 2.2). Finally,
we carry out a quantitative comparison between the results of numerical simulations of the individual-based
model and numerical solutions of the corresponding PDE (Section 2.3).

2.1 Discrete model

We consider a population of cancer cells exposed to the action of a cytotoxic agent. Cells within the population
proliferate (i.e. divide and die) and undergo heritable, spontaneous phenotypic variations. The phenotypic state
of every cell is characterised by a variable y ∈ R, which represents the rescaled level of expression of a gene that
controls both cell proliferation and cytotoxic-drug resistance [51, 72]. On the basis of previous experimental
and theoretical studies [48, 89, 98], we assume that there is a sufficiently high level of gene expression y∗ which
makes the cells fully resistant to the cytotoxic agent and a sufficiently low level of gene expression y∗ < y∗

conferring the highest rate of cellular division. Without loss of generality, we define y∗ := 1 and y∗ := 0.
We represent each cell as an agent that occupies a position on a lattice, and we model cell proliferation and

heritable, spontaneous phenotypic variations according to a set of simple rules that result in a discrete-time
branching random walk. We discretise the time variable t ∈ R≥0 and the phenotypic state y as tk = kτ with
k ∈ N0 and yi = iχ with i ∈ Z, respectively, where 0 < τ, χ� 1. We introduce the dependent variable Nk

i ∈ N0

to model the number of cells on the lattice site i at the time-step k, and we define the cell population density
and the size of the cell population (i.e. the total number of cells), respectively, as

n(tk, yi) = nki := Nk
i χ
−1, ρ(tk) = ρk :=

∑
i

Nk
i . (1)

Moreover, we define the mean phenotypic state and the related standard deviation, respectively, as

µ(tk) = µk :=
1

ρk

∑
i

yiN
k
i , σ(tk) = σk :=

√
1

ρk

∑
i

y2i N
k
i − (µk)

2
. (2)

The standard deviation σk provides a possible measure of the level of phenotypic heterogeneity within the cell
population at the kth time-step.

2



The dynamic of cancer cells is governed by the following rules.

Mathematical modelling of heritable, spontaneous phenotypic variations We model the effect of
heritable, spontaneous phenotypic variations by allowing cancer cells to update their phenotypic states accord-
ing to a random walk. In particular, at each time-step k every cell in the population can enter into a new
phenotypic state with probability λ ∈ [0, 1], or remain in its current phenotypic state with probability 1− λ. A
focal cell in the phenotypic state yi that undergoes a phenotypic variation can enter either into the phenotypic
state yi−1 or into the phenotypic state yi+1 with probability λ/2.

Mathematical modelling of cell proliferation We allow cancer cells to divide, die or remain quiescent
with probabilities that depend on their phenotypic states, as well as on the environmental conditions given by
the size of the cell population and the concentration of the cytotoxic agent. We assume that a dividing cell is
replaced by two identical progeny cells that inherit the phenotypic state of the parent cell (i.e. the progeny
cells are placed on the original lattice site of the parent cell).

We denote by b(yi) the net division rate of a focal cell in the phenotypic state yi (i.e. the difference between
the rate of cell division and the rate of apoptosis). To take into account the fact that the phenotypic state
y = 0 corresponds to the highest rate of cell division, we let the net cell division rate b : R→ R satisfy following
assumptions

b(0) > 0, b′(0) = 0 and b′′(·) < 0. (3)

The fact that the net proliferation rate b(x) can become negative for values of y sufficiently far from the
maximum point y = 0 models the fact that unfit phenotypic variants cannot survive within the population.

Moreover, to translate into mathematical terms the idea that higher cell numbers correspond to less available
space and resources, and thus to more intense intrapopulation competition, at every time-step k we allow cancer
cells to die due to intrapopulation competition at rate d(ρk), where the function d : R≥0 → R≥0 satisfies the
following assumptions

d(0) = 0 and d′(·) > 0. (4)

Finally, we denote by κ(yi, c
k) the rate at which a focal cell in the phenotypic state yi can be induced to

death by the rescaled concentration c(tk) = ck of the cytotoxic agent, with c : R≥0 → R≥0. Since cells in the
phenotypic state y = 1 are fully resistant to the cytotoxic agent and, for cells in phenotypic states other than
y = 1, the rate of death induced by the cytotoxic agent increases with the dose of the agent, we assume that
the function κ : R× R≥0 → R≥0 satisfies the following conditions

κ(1, c) = 0, ∂yκ(1, c) = 0 and ∂2yyκ(·, c) > 0 ∀ c > 0 (5)

and
κ(·, 0) = 0, ∂cκ(y, ·) ≥ 0 ∀ y 6= 1. (6)

Therefore, at the kth time-step a focal cell on the lattice site i can divide with probability

τ b(yi)+ where b(yi)+ = max (0, b(yi)) , (7)

or die with probability

τ
(
b(yi)− + d(ρk) + κ(yi, c

k
)

where b(yi)− = −min (0, b(yi)) (8)

or remain quiescent with probability

1− τ
(
|b(yi)|+ d(ρk) + κ(yi, c

k)
)

where |b(yi)| = b(yi)+ + b(yi)−. (9)
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We assume the time-step τ to be sufficiently small so that the quantities (7)-(9) are all between 0 and 1. In
this mathematical framework, the fitness of a focal cell in the phenotypic state i at the time-step k under the
environmental conditions determined by the population size ρk and the concentration of the cytotoxic agent ck

(i.e. the phenotypic fitness landscape of the cancer cell population [54, 73, 90]) is defined as

R(yi, ρ
k, ck) := b(yi)− d(ρk)− κ(yi, c

k). (10)

Following Lorenzi et al. [64], among the possible definitions of the functions b(y), d(ρ) and κ(y, c) that satisfy
assumptions (3)-(6) we consider

b(y) := γ − η y2, d(ρ) := ζ ρ, κ(y, c) := c (1− y)2. (11)

In (11), the parameter γ ∈ R>0 is the division rate of the fastest dividing cells in the phenotypic state y = 0,
while the parameter η ∈ R>0 is a nonlinear selection gradient that provides a measure of the strength of natural
selection when the cytotoxic agent is not present. Finally, the parameter ζ ∈ R>0 is inversely proportional
to the carrying capacity of the cancer cell population. Definitions (11) satisfy assumptions (3)-(6) and ensure
analytical tractability of the deterministic continuum counterpart of the model, which is presented in the
next section. Moreover, these definitions lead to a fitness function R(y, ρ, c) that is close to the approximate
fitness landscapes which can be inferred from experimental data through regression techniques [81]. In fact,
substituting (11) into (10), a little algebra shows that

R
(
y, ρ, c

)
= r0(c)− r1(c) (y − Y (c))

2 − ζ ρ (12)

with
r0(c) := γ − η c

η + c
, r1(c) := η + c, Y (c) :=

c

η + c
, (13)

where r0(c) is the maximum fitness, Y (c) is the fittest phenotypic state and r1(c) is a nonlinear selection
gradient.

2.2 Corresponding continuum model and properties of its solutions

Using the formal method presented in [35, 101] and letting τ → 0 and χ→ 0 in such a way that

λχ2

2τ
→ β ∈ R>0, (14)

where the parameter β is the rate of heritable, spontaneous phenotypic variations, it is possible to show that
the deterministic continuum counterpart of the stochastic individual-based model presented in Section 2.1 is
given by the following conservation equation for the population density function of cancer cells n(t, y) ≥ 0:

∂tn− β ∂2yyn = R(y, ρ(t), c(t))n,

ρ(t) :=

∫
R
n(t, y) dy,

(t, y) ∈ (0,∞)× R. (15)

In the non-local PDE (15), the function R(y, ρ, c) is defined according to (10).
Considering the case where the fitness function R(y, ρ, c) is of the form (12) and the concentration of cytotoxic

agent is constant (i.e. c(t) ≡ C ≥ 0), using the method of proof developed in [35, 65], Lorenzi et al. [64] proved
that the solution to the Cauchy problem defined by (15) subject to some non-negative and sufficiently regular
initial condition is such that

ρ(t) −−−→
t→∞

max (0, ρC) with ρC =
1

ζ

(
r0(C)−

√
β r1(C)

)
. (16)
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Moreover, if ρC > 0 there exists a unique non-negative, non-trivial steady-state solution nC(x) of (15), which
is of the Gaussian form

nC(y) =
ρC√
2πσ2

C

exp

[
−1

2

(y − µC)
2

σ2
C

]
(17)

with

µC = Y (C) and σ2
C =

√
β

r1(C)
. (18)

2.3 Quantitative comparison between discrete and continuum models

In this section, we compare the outcomes of numerical simulations of the stochastic individual-based model
presented in Section 2.1 with numerical solutions of the deterministic continuum model given by (15), and
we briefly discuss their biological implications. The results obtained indicate excellent agreement between the
simulation results for the individual-based model, the numerical solutions of the continuum model and the
long-time asymptotic results summarised in Section 2.2.

2.3.1 Numerical methods and set-up of numerical simulations

To construct numerical solutions of (15), we use a uniform discretisation consisting of 1200 points on the interval
[−4, 4] as the computational domain of the independent variable y. We employ a three-point finite difference
explicit scheme for the diffusion term and an explicit finite difference scheme for the reaction term [63] to solve
numerically (15) subject to no-flux boundary conditions and to the following initial condition

n(0, y) := a0 exp
[
−a1(y − a2)2

]
(19)

where
a0 = 2.63× 104, a1 = 39, a2 = 0.5.

In agreement with previous papers [15, 16, 64, 88, 102], we define

γ := 0.6, η := 0.3, ζ := 6× 10−5, β := 5× 10−3 (20)

and we consider the cytotoxic agent concentration to be constant, that is, we assume c ≡ C with C expressed in
terms of the LDα, i.e. the constant value of c that is required to reduce the equilibrium value of the population
size ρ by the α%. The parameter values (20) along with the values of C considered here are such that the cell
population size ρC given by (16) is positive.

An analogous set-up is used to carry out computational simulations of the discrete model with τ := 10−3,
χ := 10−2 and λ such that condition (14) is met. At each time-step, we follow the procedures summarised
hereafter to simulate heritable, spontaneous phenotypic variations and cell proliferation. Numerical simulations
are performed in Matlab and all random numbers mentioned below are real numbers drawn from the standard
uniform distribution on the interval (0, 1) using the built-in function rand.

Numerical simulation of heritable, spontaneous phenotypic variations For each cell, a random number
is generated and it is determined whether or not the cell undergoes a phenotypic variation by comparing this
number with the value of the probability λ. If a cell undergoes a phenotypic variation, a new random number is
generated and if the number is less than or equal to λ/2 then the cell will move into the phenotypic state to the
left of its current state, whereas if the number is greater than λ/2 then the cell will move into the phenotypic
state to the right of its current state. No-flux boundary conditions are implemented by letting the attempted
phenotypic variation of a cell be aborted if it requires moving into a phenotypic state that does not belong to
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the computational domain.

Numerical simulation of cell proliferation The size of the cell population is computed and the proba-
bilities of cell division, death and quiescence are evaluated for every phenotypic state via (7)-(9) and (11). For
each cell, a random number is generated and the cells’ fate is determined by comparing this number with the
probabilities of division, death and quiescence corresponding to the cell phenotypic state.

2.3.2 Main results

The plots in Figure 1 show sample dynamics of the cell population density computed from numerical simulations
of the individual-based model (left panels) and the solution of (15) (right panels) for C = 0 (top panels) and
C > 0 corresponding to the LD80 (bottom panels). Moreover, Figure 2 shows a comparison between the cell
population density computed at the end of numerical simulations of the individual-based model, or the solution
of (15) at the final time of simulations t = 100, and the steady-state solution (17). Finally, Figure 3 displays the
dynamics of the corresponding population size (left panel), mean phenotypic state (central panel) and related
variance (right panel) computed from numerical simulations of the individual-based model (solid lines) and from
numerical solutions of (15) (dashed lines).

In agreement with the asymptotic results summarised in Section 2.2, the numerical results presented in Fig-
ures 1 and 2 demonstrate that the cell population density converges to the steady-state solution nC(y) given
by (17). Accordingly, the numerical results presented in Figure 3 show that the population size, the mean
phenotypic state and the related variance converge, respectively, to the asymptotic values ρC , µC and σ2

C given
by (16) and (18).

Biological implications in brief The results summarised by Figures 1-3 communicate the biological notion
that when the cytotoxic agent is not administered the population evolves to be mainly composed of highly pro-
liferative phenotypic variants (i.e. cells in phenotypic states close to y = 0). On the other hand, administering
the cytotoxic agent leads to a population bottleneck, resulting in a reduced size of the cancer cell population and
a lower level of phenotypic heterogeneity, at the cost of promoting the selection of highly resistant phenotypic
variants (i.e. cells in phenotypic states close to y = 1).

3 Discrete and continuum models for the mechanical interaction
between healthy and cancer cells during tumour growth

In this section, we use the modelling framework developed by Chaplain et al. [32] to define a stochastic individual-
based model for the mechanical interaction between healthy and cancer cells during tumour growth (Section 3.1).
Moreover, we present a system of coupled nonlinear PDEs for the densities of healthy and cancer cells that can
be formally derived from this discrete model by passing to the continuum limit, and we summarise some key
properties of its solutions (Section 3.2). Finally, we carry out a quantitative comparison between the results
of numerical simulations of the individual-based model and numerical solutions of the corresponding PDE
(Section 3.3).
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Figure 1: Dynamics of the cell population density. Dynamics of the solution of (15) (right panels) and
the cell population density computed from numerical simulations of the individual-based model (left panels) for
C = 0 (top panels) and C > 0 corresponding to the LD80 (bottom panels).

3.1 Discrete model

We consider a one dimensional section of a normal tissue composed of healthy cells in homeostatic equilibrium
(i.e. cells for which cellular division is balanced by apoptosis) which is invaded by proliferating cancer cells. We
group healthy cells into a population labelled by the index H, while cancer cells are grouped into a population
labelled by the index C. We focus on a biological scenario whereby cells undergo pressure-driven movement
(i.e. they tend to move toward regions where they feel less compressed) [4].

We represent each cell as an agent that occupies a position on a lattice and model cell movement and
proliferation according to a set of simple rules that result in a discrete-time branching random walk. For ease
of presentation, we let cells be arranged along the real line R.

We discretise the time variable t ∈ R≥0 and the space variable x ∈ R as tk = kτ with k ∈ N0 and xi = iχ
with i ∈ Z, respectively, where 0 < τ, χ � 1. We let the dependent variables Nk

Hi ∈ N0 and Nk
Ci ∈ N0 model,

respectively, the number of healthy cells and cancer cells on the lattice site i at the time-step k, and we define

7



Figure 2: Cell population density at the end of numerical simulations. Plots of the solution of (15) at
the final time of simulations t = 100 (right panel) and of the cell population density computed at the end of
numerical simulations of the individual-based model (left panel) for C = 0 (blue lines) and C > 0 corresponding
to the LD80 (red lines). The black dashed lines highlight the steady-state solution (17).

Figure 3: Dynamics of the population size, mean phenotypic state and related variance. Dynamics
of the population size (left panel), mean phenotypic state (central panel) and related variance (right panel)
corresponding to the cell population densities of Figure 1. Solid lines highlight quantities computed from the
results of numerical simulations of the individual-based model, while dashed lines highlight quantities computed
from numerical solutions of (15). Blue and red lines refer to the case where C = 0 and C > 0 corresponding to
the LD80, respectively.
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the density of cells in population h ∈ {H,C} and the total cell density, respectively, as

ρh(tk, xi) = ρkhi := Nk
hi χ
−1 and ρ(tk, xi) = ρki := ρkHi + ρkCi. (21)

Moreover, for each lattice site i and time-step k we assume the cell pressure p(tk, xi) = pki to be given by
a barotropic relation pki ≡ Π(ρki ), where Π is a function of the total cell density that satisfies the following
conditions

Π(0) = 0,
dΠ

dρ
> 0 for ρ > 0. (22)

The dynamics of healthy and cancer cells are governed by the following rules.

Mathematical modelling of cancer cell proliferation. We allow every cancer cell to divide, die or remain
quiescent with probabilities that depend on the cell pressure, and we assume that a dividing cell is replaced by
two identical progeny cells that are placed on the original lattice site of the parent cell. Focussing on the case
of pressure-limited cell proliferation [10], we let the net cell division rate G be a function of the cell pressure p
that satisfies the following assumptions

dG

dp
< 0, G(P ) = 0 with P ∈ R>0. (23)

In (23), the parameter P represents the pressure at which cell division is exactly balanced by cell death. At the
kth time-step, a focal cancer cell on the lattice site i can divide with probability

τ G(pki )+ where G(pki )+ = max
(
0, G(pki )

)
(24)

or die with probability
τ G(pki )− where G(pki )− = −min

(
0, G(pki )

)
(25)

or remain quiescent with probability

1−
(
τ G(pki )+ + τ G(pki )−

)
= 1− τ |G(pki )|. (26)

We assume the time-step τ to be sufficiently small so that the quantities (24)-(26) are all between 0 and 1.
Under assumptions (23), the probabilities defined via (24)-(26) are such that if pki > P then every cell on the
ith lattice site can only die or remain quiescent at the kth time-step. Therefore, we have that

pki ≤ p for all (k, i) ∈ N0 × Z, with p = max

(
max
i∈Z

p0i , P

)
. (27)

Mathematical modelling of cell movement. We model pressure-driven cell movement by letting healthy
and cancer cells move down pressure gradients according to a biased random walk whereby the movement
probabilities depend on the difference between the pressure at the site occupied by a cell and the pressure at
the neighbouring sites. In particular, for a focal cell of type h ∈ {H,C} on the lattice site i at the time-step k,
we define the probability of moving to the lattice site i− 1 (i.e. the probability of moving left) as

JL
h (pki − pki−1) = νh

(pki − pki−1)+

2 p
(28)

where (pki − pki−1)+ = max
(
0, pki − pki−1

)
, the probability of moving to the lattice site i+ 1 (i.e. the probability

of moving right) as

JR
h (pki − pki+1) = νh

(pki − pki+1)+

2 p
(29)
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where (pki − pki+1)+ = max
(
0, pki − pki+1

)
, and the probability of remaining stationary on the lattice site i as

1− JL
h (pki − pki−1)− JR

h (pki − pki+1). (30)

Here, the coefficient 0 < νh ≤ 1 is directly proportional to the mobility of cells in population h and the parameter
p is defined via (27). The a priori estimate (27) ensures that the quantities (28)-(30) are all between 0 and 1.

3.2 Corresponding continuum model and properties of its solutions

Using the formal method presented in [32] and letting τ → 0 and χ→ 0 in such a way that

νhχ
2

2 p τ
→ µh ∈ R>0 for h ∈ {H,C}, (31)

where the parameter µh is the mobility of cells in population h, it is possible to show that the deterministic
continuum counterpart of the stochastic individual-based model presented in Section 3.1 is given by the following
system of conservation equations for the density of healthy cells ρH(t, x) ≥ 0 and the density of cancer cells
ρC(t, x) ≥ 0:  ∂tρH − µH ∂x (ρH ∂xp) = 0,

∂tρC − µC ∂x (ρC ∂xp) = G(p) ρC ,
(t, x) ∈ (0,∞)× R. (32)

In the system of nonlinear PDEs (32), the cell pressure p(t, x) is defined as a function of the total cell density
ρ(t, x) := ρH(t, x) + ρC(t, x) via a barotropic relation Π(ρ) and the function G(p) satisfies assumptions (23).

Considering the following simplified barotropic relation proposed by Perthame et al. [87]

Π(ρ) := Kγ ρ
γ with γ > 1 and Kγ > 0, (33)

where γ provides a measure of the stiffness of the barotropic relation and Kγ is a scale factor, Lorenzi et al. [66]
proved the existence of travelling-wave solutions to (32) of the form

ρH(t, x) = ρH(z), ρC(t, x) = ρC(z), z = x− σ t, σ > 0

that satisfy the conditions

ρC(z)

 > 0, for z < 0,

= 0, for z ≥ 0,
ρH(z)


= 0, for z < 0,

> 0, for z ∈ [0, `),

= 0, for z ≥ `,

(34)

for some ` > 0, along with the asymptotic condition

ρC(z) −−−−−→
z→−∞

Π−1(P ). (35)

Conditions (34) correspond to a scenario in which healthy and cancer cells do not mix and are separated by a
sharp interface in z = 0. The travelling-wave solutions ρC(z) and ρH(z) are non-negative and non-increasing,
and the corresponding cell pressure p(z) is continuous, non-increasing and has a kink at z = 0 (i.e. at the
interface between the two cell populations) with

sgn
(
p′(0+)− p′(0−)

)
= sgn(µH − µC). (36)

Finally, it was numerically shown that such travelling-wave solutions can become unstable in the case where
µC > µH , which leads to the occurrence of spatial mixing between cancer and healthy cells.
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3.3 Quantitative comparison between discrete and continuum models

In this section, we compare the outcomes of numerical simulations of the stochastic individual-based model
presented in Section 3.1 with numerical solutions of the deterministic continuum model given by (32), and
we briefly discuss their biological implications. The results obtained indicate excellent agreement between the
simulation results for the individual-based model, the numerical solutions of the continuum model and the
travelling-wave results summarised in Section 3.2.

3.3.1 Numerical methods and set-up of numerical simulations

To construct numerical solutions of (32), we use a uniform discretisation consisting of 1001 points on the interval
[0, 100] as the computational domain of the independent variable x. We employ a finite volume method based
on a time-splitting between the conservative and non-conservative parts to solve numerically (32) subject to
no-flux boundary conditions and to the following initial conditions

ρ0C(x) := AC exp
(
−bC x2

)
and

ρ0H(x) :=


0, for x ∈ [0, 13],

AH exp
(
−bH(x− 14)2

)
, for x ∈ (13, 29),

0, for x ∈ [29, 100],

where
AC = 1.25× 104, bC = 6× 10−2, AH = 2.5× 104 and bH = 6× 10−3.

For the conservative parts, transport terms are approximated through an upwind scheme whereby the cell edge
states are calculated by means of a high-order extrapolation procedure [62], while the forward Euler method is
used to approximate the non-conservative parts. We use the following definition of the net cell division rate G

G(p) :=
1

2π
arctan(θ (P − p)), θ = 4× 10−5, P = 5× 109,

and define the cell pressure via the barotropic relation (33) with

Kγ :=
γ + 1

γ
and γ := 2.

An analogous set-up is used to carry out computational simulations of the discrete model with τ = 10−3 and
χ = 0.1. Given the values of νH and νC (see captions of Figure 4 and 5 for parameter values), the values of
µH and µC are defined in such a way that condition (31) is met. At each time-step, we follow the procedures
summarised hereafter to simulate cancer cell proliferation and movement of healthy and cancer cells. Numerical
simulations are performed in Matlab and all random numbers mentioned below are real numbers drawn from
the standard uniform distribution on the interval (0, 1) using the built-in function rand.

Numerical simulation of cancer cell proliferation The number of cells and the cell pressure are com-
puted, and the probabilities of division, death and quiescence of the cancer cells are evaluated via (24)-(26) for
every lattice site. For each cell, a random number is generated and the cells’ fate is determined by comparing
this number with the probabilities of division, death and quiescence at the cell lattice site.
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Numerical simulation of cell movement The cell pressure is computed and used to evaluate the prob-
abilities of moving left, moving right and remaining stationary via (28)-(30) for every lattice site. For each cell,
a random number is generated and it is determined whether or not the cell will move by comparing this number
with the value of the sum of the probability of moving left and the probability of moving right. If a cell moves, a
new random number is generated and the cell move either onto the lattice site to the left or onto the lattice site
to the right of its current lattice site based on a comparison between the random number and the values of the
probability of moving left and the probability of moving right. No-flux boundary conditions are implemented
by letting the attempted movement of a cell be aborted if it requires moving out of the computational domain.

3.3.2 Main results

The plots in Figures 4 and 5 show sample dynamics of the cell pressure (left panel, solid line) and the cell
densities (right panel, solid lines) computed from numerical simulations of the individual-based model and
corresponding numerical solutions of (32) (dashed lines).

In agreement with the travelling-wave results summarised in Section 3.2, the numerical results presented in
Figure 4 show that if νH ≥ νC (i.e. µH ≥ µC) spatial segregation occurs and the two cell populations remain
separated by a sharp interface. Healthy cells stay ahead of cancer cells and cell densities are non-increasing. The
pressure itself is continuous across the interface between the two cell populations, whereas its first derivative
jumps from a smaller negative value to a larger negative value – i.e. the sign of the jump coincides with
sgn(µH − µC) (see the jump condition (36)).

Figure 4: Dynamics of the pressure and the cell densities for νH ≥ νC . Comparison between the results
of numerical simulations of the individual-based model (solid lines) and the numerical solutions of (32) (dashed
lines), for νH ≥ νC (i.e. µH ≥ µC). The left panel displays the cell pressure at three successive time instants
– i.e. t = 5 × 104 (left curve), t = 12 × 104 (central curve) and t = 20 × 104 (right curve) – while the right
panel displays the corresponding densities of cancer cells (red lines) and healthy cells (blue lines). Values of the
cell pressure are in units of 109, while values of the cell densities are in units of 104. Simulations were carried
out with νH = 0.2 and νC = 0.1, and defining the values of the parameters µH and µC in such a way that
condition (31) was met.
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On the other hand, the numerical results displayed in Figure 5 indicate that when νC > νH (i.e. µC > µH)
spatial mixing between cancer cells and healthy cells occurs. This is consistent with the fact that the travelling-
wave solutions discussed in Section 3.2 are expected to be unstable in the case where µC > µH .

Biological implications in brief These results communicate the biological notion that larger values of the
mobility of cancer cells facilitate the formation of infiltrating, malignant patterns of invasion, whereas non-
infiltrating patterns of invasion are to be expected in the scenarios where the mobility of healthy cells is higher
than that of cancer cells.

Figure 5: Dynamics of the pressure and the cell densities for νC > νH . Comparison between the results
of numerical simulations of the individual-based model (solid lines) and the numerical solutions of (32) (dashed
lines), for νC > νH (i.e. µC > µH). The left panel displays the cell pressure at three successive time instants
– i.e. t = 5 × 104 (left curve), t = 7.5 × 104 (central curve) and t = 10 × 104 (right curve) – while the right
panel displays the corresponding densities of cancer cells (red lines) and healthy cells (blue lines). Values of the
cell pressure are in units of 109, while values of the cell densities are in units of 104. Simulations were carried
out with νH = 0.1 and νC = 0.2, and defining the values of the parameters µH and µC in such a way that
condition (31) was met.

4 Conclusions and possible developments of the models

We presented a stochastic individual-based model for the evolutionary dynamics of cancer cells under cytotoxic
therapy and a stochastic individual-based model for the mechanical interaction between healthy and cancer cells
during tumour growth. We showed that the continuum counterpart of the former model is given by a non-local
PDE for the cell population density, while the continuum counterpart of the latter model comprises a system of
coupled nonlinear PDEs for the densities of cancer and healthy cells. We discussed some key properties of the
solutions of the PDEs and compared the results of numerical simulations of the individual-based models with
numerical solutions of the corresponding PDEs. We found excellent quantitative agreement between the nu-
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merical simulation results of discrete and continuum models and briefly discussed their biological implications.
We conclude with an outlook on possible developments of these models.

Possible developments of the model for the evolutionary dynamics of cancer cells under cytotoxic
therapy We let the the concentration of cytotoxic agent remain constant in time. However, the stochastic
individual-based model presented here, as well as the corresponding deterministic continuum model, could be
easily adapted to the case where the dose of cytotoxic agent varies over time. In this regard, it would be inter-
esting to investigate whether the delivery schedules for the cytotoxic agent obtained through numerical optimal
control of the non-local PDE [1, 79] would remain optimal also for the individual-based model. Another track
to follow might be to investigate the effect of stress-induced phenotypic variations triggered by the selective
pressure that cytotoxic agents exert on cancer cells [36]. An additional development of the model presented here
would be to include a spatial structure, for instance by embedding the cancer cells in the geometry of a solid
tumour, and to take explicitly into account the effect of spatial interactions between cancer cells, therapeutic
agents and other abiotic factors, such as oxygen and glucose [67, 68, 106]. In this case, the resulting individual-
based model would be integrated with a system of PDEs modelling the dynamics of the abiotic factors, thus
leading to a hybrid model [5, 13, 14, 18, 19, 44, 46, 50, 58, 95, 96].

Possible developments of the model for the mechanical interaction between healthy and can-
cer cells during tumour growth We focussed on the case of one spatial dimension and considered barotropic
relations that satisfy (22). However, the stochastic individual-based model presented here, as well as the cor-
responding deterministic continuum model, could be adapted to higher spatial dimensions and more realistic
barotropic relations. In this regard, it would be interesting to use such a stochastic individual-based model to
further investigate the formation of finger-like patterns observed for the system of equations (32) posed on a
two dimensional spatial domain [66]. These spatial patterns resemble infiltrating patterns of cancer-cell invasion
commonly observed in breast tumours [107]. An additional development would be to compare the results of
numerical simulations of this model with those obtained from equivalent discrete models defined on irregular
lattices, as well as to investigate how the modelling approach considered here could be related to off-lattice
models of growing cell populations [42, 105].
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