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Abstract

In this paper, an old identity of G. U. Yule among partial cor-

relation coefficients is recognized as being equal to the cosine

law of spherical trigonometry. Exploiting this connection en-

ables us to derive some new (and potentially useful) relations

among partial correlation coefficients. Moreover, this obser-

vation provides new (dual) non-Euclidean geometrical inter-

pretations of the Schur and Levinson-Szegö algorithms.

1 Introduction

Linear prediction and interpolation is a major tool in time se-

ries analysis and in signal processing. In this context, the

Schur and Levinson-Szegö algorithms compute the partial

autocorrelation function of a wide-sense stationary process.

As such, they have found a large variety of electrical engi-

neering applications.

Let us briefly recall the history of these algorithms. At the

beginning of the century, Schur, Carathéodory and Toeplitz

were active in such fields as analytic function theory, Toeplitz

forms and moment problems. In 1917, Schur developped

a recursive algorithm for checking whether a given func-

tion s(z) =

P

1

k=0

s

k

z

k is analytic and bounded by one

in the unit disk [1]. Such functions are characterized by

a sequence of parameters of modulus less than one (the

Schur parameters) which are computed recursively from the

power series coefficients s
k

by an elegant algorithm. On the

other hand, Carathéodory and Toeplitz showed that c(z) =

c

0

+ 2

P

1

k=1

c

k

z

k is analytic and has positive real part for

jzj < 1 if and only if the Toeplitz forms
P

n

i;j=0

a

i

b

�

j

c

j�i

,

with c
�n

= c

�

n

, are positive for all n. Let

s(z) =

c(z) � c

0

c(z) + c

0

() c(z) = c

0

1 + s(z)

1� s(z)

; (1)

since js(z)j � 1 if and only if c(z) has positive real part, the

Schur algorithm implicitely enables to test whether a Toeplitz

form is positive.

On the other hand, Toeplitz forms were studied indepen-

dently by Szegö, who introduced a set of orthogonal poly-

nomials with respect to an (absolutely continuous) positive

measure on the unit circle. These polynomials obey a two-

terms recursion [2] involving a set of parameters of modulus

bounded by one, which later on were recognized to be equal

to the Schur parameters [3]. In the 1940s, Toeplitz forms re-

ceived a revived interest in view of their natural occurrence

in the Kolmogorov-Wiener prediction and interpolation the-

ory of stationary processes (see e.g., [4, ch. 10], as well as

the survey paper [5] and the references therein). Working on

Wiener’s solution of the continuous time prediction problem,

Levinson proposed a fast algorithm for solving Toeplitz sys-

tems; later on, the Levinson recursions were recognized as

being the recurrence relations of Szegö.

Finally, there was an intense activity in these fields

beginning in the late 70s, mainly towards the development

of fast algorithms for numerical linear algebra, on the one

hand, and in the domain of analytic interpolation theory,

on the other hand. Through these new developments and

extensions, new connections with other mathematical topics

and disciplines were developed, including among others

displacement rank theory, J�lossless transfer functions,

modern analytic function theory and operator theory. The

literature on these connections and extensions is vast; the

reader may refer for instance to the papers [6] [7] [8] [9] and

books [10] [11].

The mathematical environment of these algorithms is thus

very rich, and these various interactions have already been

thoroughly investigated by many researchers. In this wealthy

context, our contribution in this paper consists in exhibiting

new unnoticed connections with spherical trigonometry.

As far as geometry is concerned, the Lobachevski geom-

etry was already known to be a natural environment of the

Schur and Levinson-Szegö algorithms, since the core of these

algorithms mainly consists in a linear fractional transforma-

tion leaving the unit circle invariant. However, a new point of

view is obtained when considering the algorithms (via posi-

tive definite Toeplitz forms) in the particular context of their

application to linear prediction. Then, up to an appropriate

normalization, the Schur and Levinson-Szegö algorithms be-

come trigonometric identities in a spherical triangle. Since



the real projective 2-space IP

2 is the quotient space obtained

from the sphere by identifying antipodal points, we see that

the alternate non-Euclidean geometry with constant curva-

ture (i.e., the elliptic one) is indeed another natural geometri-

cal environment of the Schur and Levinson-Szegö algorithms

as well.

Let us briefly outline the underlying mechanisms lead-

ing to this new interpretation. Let fX
i

g be zero-mean

square-integrable random variables, ^

X

1:n

j

the best lin-

ear mean-square estimate of X

j

in terms of fX
i

g

n

i=1

,

and ~

X

1:n

j

= X

j

�

^

X

1:n

j

the corresponding estima-

tion error. The partial correlation coefficient (or par-

cor) of X

0

and X

n+1

, given fX

i

g

n

i=1

, is defined as

�

1:n

0;n+1

= [E(

~

X

1:n

0

)

2

]

�1=2

E(

~

X

1:n

0

~

X

1:n

n+1

)[E(

~

X

1:n

n+1

)

2

]

�1=2.

It is bounded by 1 in magnitude and is classicaly interpreted

as the correlation coefficient of X
0

and X

n+1

, once the in-

fluence of fX
i

g

n

i=1

has been removed. In 1907, G. U. Yule

[12] showed that the parcors could be computed recursively :

�

1:n

0;n+1

=

�

1:n�1

0;n+1

� �

1:n�1

0;n

�

1:n�1

n;n+1

q

1� (�

1:n�1

0;n

)

2

q

1� (�

1:n�1

n;n+1

)

2

: (2)

It happens that this well known formula is formally equal to

the fundamental cosine law of spherical trigonometry :

cosA =

cos a � cos b cos c

sin b sin c

; (3)

which gives an angle of a spherical triangle, in terms of its

three sides (see figure 1). This observation establishes an

unexpected link between statistics and time-series analysis,

on the one hand, and spherical trigonometry (a branch of

trigonometry), on the other hand.

In former papers [13] [14], spherical trigonometry was

shown also to admit a close connection with the electrical

engineering topic of recursive least-squares adaptive filtering

which, as linear regression analysis, is a mean square ap-

proximation problem. Now, the Schur and Levinson-Szegö

algorithms can be written as algebraic recursions within a co-

variance matrix or its inverse; due to the identification (2) =

(3), they admit a connection with spherical trigonometry as

well.

Indeed, the source of such analogies is that (time- or

order-) recursive least-squares algorithms can be devel-

oped from projection identities. In linear regression, one

recognizes that the mean-square error to be minimized

is a distance, so the projection theorem can be applied

in the Hilbert space generated by the random variables.

Introducing a new variable in the regression problem

amounts to updating a projection operator, and the problem

can indeed be described in terms of projections in a space

generated by three vectors. But three unit-length vectors

form a tetrahedron in 3D-space, and deriving projective

identities in a normalized tetrahedron results in deriving

trigonometric relations in the spherical triangle determined

by this tetrahedron (see figure 1, and [14] for details).
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Figure 1: The spherical triangle ABC.

Let us now turn to the organization of this paper. Non-

Euclidean hyperbolic aspects of the Schur algorithm are im-

plicit in [15] but do not seem otherwise to be well known.

Yet the Lobachevski geometry is, by construction, an essen-

tial feature of the algorithm, which deserves to be better ap-

preciated. More precisely, we show in section 2 that Schur’s

layer-peeling type solution to the Carathéodory problem nec-

essarily makes use of automorphisms of the unit disk which,

on the other hand, happen to be the direct isometries of the

Lobachevski plane.

The last two sections are devoted to the new geometrical

interpretations in terms of spherical trigonometry. So in sec-

tion 3, we relate recursive regressions within a set of (n+ 1)

random variables, algebraic manipulations in a covariance

matrix or in its inverse, and spherical trigonometry. We show

that adding (resp. removing) a new variable in the regres-

sion problem which, in terms of Schur complements on the

covariance matrix (resp. on its inverse), amounts to using

the quotient property [16, p. 279], corresponds in terms of

spherical trigonometry to applying the law of cosines (resp.

the polar law of cosines).

Lastly in section 4, we further assume that the random

variables are taken out of a stationary time series, and we use

the results of section 3 to interpret in parallel the Schur and

Levinson-Szegö algorithms in terms of spherical trigonom-

etry. The Schur (resp. Levinson-Szegö) relations consist in

two Schur complement recursions (in the forward and back-

ward sense) in the original covariance matrix (resp. in its

inverse), and can indeed be interpreted in dual spherical tri-

angles. Up to an appropriate normalization, the Schur (resp.



order decreasing Levinson-Szegö) recursions coincide with

two coupled occurrences of the law of cosines (resp. of

the polar law of cosines), and the Levinson-Szegö recursions

with two coupled occurrences of the polar five elements for-

mula.

2 Non-Euclidean (hyperbolic) geometrical as-

pects of the Schur and Levinson-Szegö algo-

rithms

In this section, we first briefly recall the mechanisms under-

lying the Schur algorithm. We next show that the choice by

Schur of a recursive solution to the Carathéodory problem

naturally sets the algorithm in a non-Euclidean hyperbolic

environment.

2.1 The Schur algorithm

The Carathéodory analytic interpolation problem consists in

finding all functions s such that 1. s(z) =

P

n

k=0

a

k

z

k

+

O(z

n+1

), and 2. s 2 S
def

= ff(z) analytic in jzj < 1; and

jf(z)j � 1 for jzj < 1g. In 1917, Schur proposed a ”layer-

peeling” type algorithm [1] (i.e., in which the interpolation

data are processed recursively) which we briefly recall.

Let us first consider the case where there is only one inter-

polation point a
0

. Due to the maximum principle, the prob-

lem has no solution if ja
0

j > 1, and admits the unique solu-

tion s(z) = a

0

if ja
0

j = 1. If ja
0

j < 1, let

s

1

(z) =

1

z

s(z) � a

0

1� a

�

0

s(z)

, s(z) =

zs

1

(z) + a

0

1 + a

�

0

zs

1

(z)

: (4)

Then the key property of this transformation is that s 2

S , s

1

2 S, so that

(s 2 S and s(0) = a

0

), (s(z) =

zs

1

(z) + a

0

1 + a

�

0

zs

1

(z)

and s
1

2 S):

(5)

In the case of a single interpolation point a

0

, equa-

tion (5) provides a parametrization of all solutions to the

Carathéodory problem in terms of an arbitrary Schur func-

tion s

1

. A new interpolation point a
1

can be accomodated

by further restricting this set of possible functions s
1

. From

equation (5), we see that (s 2 S and has interpolation con-

straints (a

0

� � �a

n

)) if and only if (s
1

2 S and has inter-

polation constraints (a

1

0

� � �a

1

n�1

)), in which the a1
i

depend

on the data a
i

. In particular,
s

0

(z)

1!

�

�

�

z=0

= a

1

if and only if

s

1

(0) = a

1

0

: we are thus led back to the same metric con-

strained interpolation problem, but now of order n�1. These

considerations lead by induction to the Schur algorithm 1 :

s

0

(z) = s(z); if js
p

(0)j < 1; s

p+1

(z) =

1

z

s

p

(z)� s

p

(0)

1� s

�

p

(0)s

p

(z)

:

(6)

1In x2.3 we will deal with geometrical aspects of the recursion (6). This

is why the regular case only is considered here; all details of the general case

can be found in [1].

2.2 The Schur mechanism and automorphisms of the

unit circle

Let us now analyse the design of the Schur algorithm in terms

of automorphisms of the unit disk. Automorphisms of a do-

main G are bi-holomorphic mappings of G : Aut(G)

def

=

ff 2 H(G;G); s.t. f�1 exists, and f�1

2 H(G;G)g, where

H(G

1

; G

2

) is the set of holomorphic functions of G
1

onto

G

2

. The Schur class S coincides withH(ID; ID) where ID is

the open unit disk.

The mapping (4) can be decomposed into two steps :

s

0

1

(z) =

s(z) � a

0

1� a

�

0

s(z)

() s(z) =

s

0

1

(z) + a

0

1 + a

�

0

s

0

1

(z)

; (7)

and s

1

(z) =

1

z

s

0

1

(z). Since the transform s 7! s

0

1

in (7)

is a linear fractional transformation (LFT), we begin with

recalling elementary (Euclidean) properties of LFTs [17]

[18]. Let M �ob denote the Möbius group M �ob

def

= fz 7!

az+b

cz+d

; with ad � bc 6= 0g (ad � bc = 0 corresponds to the

trivial situation where the mapping is either constant or un-

defined). Then the mapping

� : GL(2;C) ! M �ob

M =

�

a b

c d

�

7! �

M

; with �
M

(z) =

az+b

cz+d

is a group homomorphism. Since �
M

= �

�M

for all � 2 C

?,

there is no loss of generality in supposing that det(M ) = 1.

From now on we shall thus restrict to SL(2;C). Then the

kernel of � reduces to I and �I, and M �ob is isomorphic to

the associated quotient group : M �ob

�

=

(SL(2;C)=�I).

Now, az+b
cz+d

=

a

c

+

bc�ad

c

2

1

z+d=c

(resp. = a

d

z +

b

d

) if c 6= 0

(resp. c = 0), so any LFT is a succession of translations,

inversions, rotations, and/or homotheties. Since all these ge-

ometrical transformations preserve circles, a LFT maps any

circle in the complex plane (possibly of infinite radius) into

another circle (possibly of infinite radius). In particular, �
M

maps the unit circle TT onto itself if and only if M belongs to

the subgroup SU (1; 1) of SL(2;C) consisting of ��unitary

matrices, with � = diag(+1;�1) :

SU (1; 1) = f

�

a b

b

�

a

�

�

with jaj
2

� jbj

2

= 1g

= fM 2 SL(2;C); s.t. M

�

1 0

0 �1

�

M

H

=

�

1 0

0 �1

�

g:

LetN be the set of such Möbius transforms;N is a subgroup

of M �ob, and

N

def

= fz 7!

az + b

b

�

z + a

�

; s.t. jaj
2

� jbj

2

= 1g

�

=

(SU (1; 1)=�I):

Finally, observe that any �

M

2 N also maps the interior ID

of the unit-circle onto itself (and similarly for its exterior).



We now turn back to the Schur algorithm. Since ja
0

j < 1,

we have

(s(z) 2 H(ID; ID) and s(0) = a

0

) (8)

() (s(z) 2 H(ID; ID) and s(0) = a

0

) (9)

() (s

0

1

(z) 2 H(ID; ID) and s0
1

(0) = 0) (10)

() s

1

(z) 2 H(ID; ID) ; (11)

whence (5). Equivalence (8)/(9) is due to the maximum prin-

ciple and (10)/(11) to the Schwarz lemma. As for (9)/(10), it

holds because s0
1

= �

M

� s, where the mapping �

M

: z 7!

�

M

(z) =

z�a

0

1�a

�

0

z

=

(z�a

0

)=

p

1�ja

0

j

2

(1�a

�

0

z)=

p

1�ja

0

j

2

belongs to N �

Aut(ID). In fact, it is interesting to notice that (7) was the

only possible choice, because, as is well known [19] [20],

the automorphisms of ID indeed coincide with the group of

LFTs which leave the unit-disk invariant :

N = Aut(ID) :

2.3 Hyperbolic geometry of the Schur and Levinson-

Szegö algorithms

We now turn from analytical to geometrical considerations.

These are obtained naturally in the framework of the theory

developped in [21], which aims at describing the holomor-

phic structure of a domain G of C

n in terms of geometric

properties of the space (G; d

G

). If the distance d
G

is cho-

sen such that any holomorphic mapping of G onto itself is

a contraction, then automorphisms of G are isometries with

respect to d

G

and can thus be interpreted (in the spirit of F.

Klein) as rigid motions with respect to the geometry speci-

fied by d
G

.

The Schwarz-Pick lemma [17] [20] [21] [22] provides a

nice illustration of this general methodology to the present

situation; as expected, we shall meet non-Euclidean hyper-

bolic geometry, since G reduces to the unit disk ID, which

is a Euclidean model of the Lobachevski plane (see e.g.

[23]). Let d
M

(:; :) denote the Möbius distance in C : for all

z; z

0

2 C; d

M

(z; z

0

) =

�

�

�

z�z

0

1�z

0�

z

�

�

�

. The Schwarz-Pick lemma

states that any function f belonging to H(ID; ID) is a con-

traction with respect to the Möbius distance :

f 2 H(ID; ID))

for all z; z0 2 ID;

�

�

�

f(z)�f(z

0

)

1�(f(z

0

))

�

f(z)

�

�

�

�

�

�

�

z�z

0

1�z

0�

z

�

�

�

;

equality holds if and only if f belongs to Aut(ID).

Let us now turn back to the discussion at the end of section

2.2. Schur had to chose the functional s 7! s

0

1

(or, in general,

s

p

7! zs

p+1

) withinAut(ID), and automorphisms of ID pre-

serve the Möbius distance d
M

, and thus the Poincaré distance

d

P

(:; :), with d

P

(z; z

0

) = log

1+d

M

(z;z

0

)

1�d

M

(z;z

0

)

. More precisely,

they are well known to coincide with the direct isometries of

the Lobachevski plane (H2

; d

P

) [17] [18] 2 :

N = Aut(ID)

�

=

f direct isometries of (H2

; d

P

)g :

2The full isometry group of (H2

; d

P

) is obtained by including the map

z 7! z

� as a generator.

This geometry is thus, by construction, the natural geometri-

cal environment of the Schur algorithm.

Finally, let us briefly consider the Levinson-Szegö algo-

rithm. It is not a solution to an analytic interpolation prob-

lem, but can nevertheless be rephrased (via the Schur-Cohn

stability test) in the framework of section 2.1 [24], and thus

shares the same geometrical environment. For let a(z) =

P

n

i=0

a

n

i

z

i, b(z) = z

n

(a(1=z

�

))

� and f(z) = b(z)=a(z).

Then f(z) is rational and has modulus 1 on TT. So, by

the maximum modulus theorem, (f(z) is analytic in ID and

jf(z)j = 1 on TT) if and only if (jf(z)j � 1 in ID and

jf(z)j = 1 on TT), i.e., if and only if f is a rational bounded

function of the lossless type (a Blashke product). But this

can be checked via the Schur algorithm, because f = f

0

is

a Blashke product of order n if and only if jf
p

(0)j < 1 for

0 � p � n� 1 and jf
n

(0)j = 1; the recursions coincide with

the order-decreasing Levinson-Szegö algorithm.

3 Schur Complements in R
0:n

=R

�1

0:n

and spher-

ical trigonometry

From now on we shall deal with spherical trigonometry as-

pects of the Schur and Levinson-Szegö algorithms. In this

intermediate section, we first recall some elementary projec-

tive identities. We next bring back from spherical trigonom-

etry some relations among parcors which we will refer to

in sections 3.3 and 4. In the view of section 4, we even-

tually consider Schur complementation in a covariance ma-

trix or in its inverse, because Schur complements provide

the connection between the Schur and Levinson-Szegö al-

gorithms and spherical trigonometry. The reason why is

that algebraically the elementary recursion with pivot t
k;k

:

t

i;j

! t

0

i;j

= t

i;j

� t

i;k

t

�1

k;k

t

k;j

, reduces to a cosine law when

normalized by
p

t

i;i

p

t

j;j

.

3.1 Partial correlation coefficients, recursive projec-

tions and Yule’s parcor identitity

Our geometrical results are based on the properties of orthog-

onal projectors and can thus be formalized in any Hilbert

space. However, the natural framework in this paper is

the space IL

2

(
;A; P ) of complex, zero-mean, square-

integrable random variables defined on (
;A; P ), endowed

with the inner product (X;Y ) = E(XY

�

).

Let P
M

denote the orthogonal projector on the Hilbert

space H(M) generated byM, P?

M

= I�P

M

, ^

A

M the pro-

jection of A ontoM, and ~

A

M

= A �

^

A

M. X denotes nor-

malization to unit norm : X = X(X;X)

�1=2. The (some-

times called total) correlation coefficient �
A;B

(resp. partial

correlation coefficient �M
A;B

) of A and B (resp. of A and B,

with respect to a commun subspaceM) is defined as �
A;B

=

(A;B) = (�

B;A

)

�

(resp. �M
A;B

= (

e

A

M

;

e

B

M

) =

�

�

M

B;A

�

�

).

Let us now consider recursive projections. It is well known

that

P

M;A

= P

M

+ P

~

A

M

; P

?

M;A

= P

?

M

� P

~

A

M

(12)



where P
M;A

, say, is the orthogonal projector onto the closed

subspace generated by M and A. These identities are of

utmost importance in RLS adaptive filtering as well as in

Kalman filtering. From (12), it is easy to show that

~

B

M;A

=

~

B

M

� (

~

B

M

;

~

A

M

)(

~

A

M

;

~

A

M

)

�1

~

A

M

; (13)

which gives the useful relations

(

~

B

M;A

;

~

B

M;A

)=(

~

B

M

;

~

B

M

) = 1� j�

M

A;B

j

2 (14)

and

(

~

A

M;B

;

~

B

M;A

) = ��

M

A;B

: (15)

In order to get spherical trigonometry relations, we need

consider three projection residuals. From (13) we have

(

~

C

M;A

;

~

B

M;A

) = (

~

C

M

;

~

B

M

) (16)

� (

~

C

M

;

~

A

M

)(

~

A

M

;

~

A

M

)

�1

(

~

A

M

;

~

B

M

)

Dividing by (

~

C

M

;

~

C

M

)

1=2

(

~

B

M

;

~

B

M

)

1=2, and using (14),

we get

�

M;A

C;B

=

�

M

C;B

� �

M

C;A

�

M

A;B

q

1� j�

M

C;A

j

2

q

1� j�

M

A;B

j

2

; (17)

which is formally equal to (3) (at least in the real case), up to

a straightforward identification of variables.

3.2 New relations among parcors induced by spherical

trigonometry

Let us first briefly recall some facts from spherical trigonom-

etry (and in particular the duality principle). Three points

A; B and C on the sphere (0; 1) determine the spherical tri-

angle ABC, which consists of the 3 arcs of great circles AB,

AC and BC obtained by intersecting the sphere and the planes

OAB, OAC and OBC (see figure 1). A spherical triangle has 6

elements : the 3 sides a; b and c, and the 3 angles A;B and

C. The side a, say, is defined as the angle dBOC and is equal

to the length of the arc BC. The angle A, say, is defined as

the dihedral angle between the planes OAB and OAC, and is

also equal to the angle made by the tangents to the spherical

triangle ABC at point A.

We now turn to the duality principle of spherical trigonom-

etry. Let A0 be the pole (with respect to the equator passing

through B and C) which is in the same hemisphere as A; B0

and C

0 are defined similarly. The spherical triangle A0B0C0 is

the polar triangle of ABC. In A

0

B

0

C

0, the elements a0 and A

0,

say, are equal respectively to � �A and �� a (see e.g., [25]

[26]). So, for any spherical trigonometry formula there ex-

ists a dual relation, obtained by replacing (a; b; c; A;B;C)

by (� �A; ��B; � �C; �� a; �� b; �� c), respectively.

There are three degrees of freedom in a spherical triangle,

so there cannot be more than three distinct relations among

the six elements. All the spherical trigonometry relations can

thus be derived from the three cosine laws obtained by per-

muting variables into (3). Now, the identification (3) = (17)

enables us to hint that some spherical trigonometry relations

might hold as well when transposed to the parcors frame-

work, and indeed they do. Similarly, they can all be derived

from (17); however, though purely algebraic, these relations

are not necessarily intuitive.

Among any 4 elements there exists one and only one re-

lation. These 15 relations are the 3 cosine laws, the 3 co-

sine laws in the polar triangle, the 3 self-dual sine formu-

las and the 6 self-dual cotangent formulas. They all have a

parcor equivalent. However, there are many different rela-

tions among any 5 elements (or between the 6), and it always

seems possible to find new ones. Thus we give only one of

them, the five elements formula. For sake of brevity, proofs

are omitted.

3.2.1 The cosine law in the polar triangle

In the polar triangle, the cosine law reads :

cos a =

cosA + cosB cosC

sinB sinC

: (18)

Similarly, (17) admits the polar version :

�

M

C;B

=

�

M;A

C;B

+ �

M;B

C;A

�

M;C

A;B

q

1� j�

M;B

C;A

j

2

q

1� j�

M;C

A;B

j

2

; (19)

which was already known to Yule [12, (19) p. 93].

3.2.2 The sine law

The spherical triangle self-dual sine law is the following for-

mula :
sinA

sina

=

sinB

sin b

=

sinC

sin c

: (20)

Similarly, the following relation holds among parcors :

v

u

u

t

1� j�

M;A

B;C

j

2

1� j�

M

B;C

j

2

=

v

u

u

t

1� j�

M;B

C;A

j

2

1� j�

M

C;A

j

2

=

v

u

u

t

1� j�

M;C

A;B

j

2

1� j�

M

A;B

j

2

:

(21)

3.2.3 The cotangent formulas

These are the 6 self-dual formulas obtained by permuting

variables into the equation

cot b sin a = cosC cos a+ sinC cotB : (22)

Similarly, the following relation among parcors holds :

�

�

M

A;C

=

q

1� j�

M

A;C

j

2

�
q

1� j�

M

B;C

j

2

= �

M;C

A;B

�

M

B;C

+

q

1� j�

M;C

A;B

j

2

�

�

M;B

A;C

=

q

1� j�

M;B

A;C

j

2

�

(23)



3.2.4 The five elements formula

These are the 6 formulas obtained by permuting variables

into

cos b sin c = sin b cosA cos c+ sin a cosB : (24)

The dual equations are

cosB sinC = � sinB cos a cosC + sinA cos b : (25)

Similarly, the following relations among parcors hold :

�

M

C;A

q

1� j�

M

B;A

j

2

= (26)
q

1� j�

M

C;A

j

2

�

M;A

C;B

�

M

B;A

+

q

1� j�

M

C;B

j

2

�

M;B

C;A

�

M;B

C;A

q

1� j�

M;C

B;A

j

2

= (27)

�

q

1� j�

M;B

C;A

j

2

�

M

C;B

�

M;C

B;A

+

q

1� j�

M;A

C;B

j

2

�

M

C;A

3.3 Schur Complements in R

0:n

=R

�1

0:n

and spherical

trigonometry

We now consider covariance matrices and their inverses.

Let fX
i

g

n

i=0

be scalar random variables. For p � q, let

X

p:q

= [X

p

� � �X

q

]

T . In all this section, we will assume

that : fX
i

g

n

i=0

belong to IL

2

(
;A; P ), and that the covari-

ance matrix R
0:n

= E(X

0:n

X

H

0:n

) of X
0:n

is invertible.

In the sequel, the general notation fX
i

H(X

l

1

;���;X

l

k

)

of sec-

tion 3.1 is simplified to ~

X

l

1

;���;l

k

i

. Let p � r; s � q. Since

we will essentially use contiguous sets of indices (with-

out loss of generality), we also replace ~

X

i

H(fX

m

g

p�m�q

)

,

~

X

i

H(fX

m

g

m6=r

p�m�q

)

and ~

X

i

H(fX

m

g

m6=r;m6=s

p�m�q

)

respectively by
~

X

p:q

i

, ~

X

[p:q]nr

i

and ~

X

[p:q]nr;s

i

. Similar notations are adopted

for the correlation coefficients, so that the partial correlation

coefficient (of order q � p) �
H(fX

m

g

m6=r

p�m�q

)

X

i

;X

j

, say, is denoted

simply by �

[p:q]nr

i;j

. In our conventions, the order of the sec-

ondary (upper) indices p and q is meaningful : ~

X

p:q

i

, �
p:q

i;j

(and later on R

p:q

i;j

, r
p:q

i;j

, P
p:q

i;j

and p

p:q

i;j

) reduce respectively

to X
i

, �
i;j

, R
i;j

, r
i;j

, P
i;j

and p

i;j

if p > q. In this way the

notation changes continuously from the total to the partial

situation. For instance, there is no conceptual need to distin-

guish between total and partial correlation coefficients since

a total correlation coefficient is simply a parcor of order 0.

In this section, we shall first recall (and slightly extend)

some results [27] [28] [29] [30] giving the covariance ma-

trix of X
0:n

(resp. its inverse) in terms of covariances of

the random variables fX
i

g

n

i=0

(resp. of the random vari-

ables f ~X
[0:n]ni

i

g

n

i=0

). We thus get lemmas 3.1 and 3.2, which

are generalized to theorem 3.1 by considering Schur comple-

ments in R

0:n

and in R

�1

0:n

. Lastly these recursions receive

a spherical trigonometry interpretation. We begin with the

following elementary results.

Lemma 3.1 Let R
0:n

= ( r

i;j

)

n

i;j=0

and P

0:n

= R

�1

0:n

=

( p

i;j

)

n

i;j=0

. Then for all i; j 2 [0 � � �n],

r

i;j

= (X

i

; X

j

) ; (28)

p

i;j

= (

~

X

[0:n]ni

i

(

~

X

[0:n]ni

i

;

~

X

[0:n]ni

i

)

;

~

X

[0:n]nj

j

(

~

X

[0:n]nj

j

;

~

X

[0:n]nj

j

)

):(29)

Lemma 3.2 Let R
0:n

= ( r

i;j

)

n

i;j=0

and P

0:n

= R

�1

0:n

=

( p

i;j

)

n

i;j=0

. Then for all i; j 2 [0 � � �n],

r

i;j

p

r

i;i

r

j;j

= (X

i

; X

j

) = �

i;j

; (30)

p

i;j

p

p

i;i

p

j;j

= (

~

X

[0:n]ni

i

;

~

X

[0:n]nj

j

) = ��

[0:n]ni;j

i;j

: (31)

We are now ready to extend lemma 3.2. Let M =

�

A B

C D

�

with A invertible. Then the Schur complement

(M=A) of A in M is defined as (M=A) = D � CA

�1

B.

The following theorem encompasses and generalizes lemma

3.2 (which corresponds to the particular case p = �1) :

Theorem 3.1 Let R
0:n

= (r

i;j

)

n

i;j=0

and P

0:n

= R

�1

0:n

=

(p

i;j

)

n

i;j=0

. Let moreover R

0:p

0:n

= (r

0:p

i;j

)

n

i;j=p+1

(resp.

P

0:p

0:n

= (p

0:p

i;j

)

n

i;j=p+1

) be the Schur complement of R
0:p

in R

0:n

(of the (p + 1) � (p + 1) top left corner

[I

p+1

0]P

0:n

[I

p+1

0]

T of P
0:n

in P

0:n

). For p = �1, we set

R

0:p

0:n

= R

0:n

, P
0:p

0:n

= P

0:n

, r
0:p

i;j

= r

i;j

, p
0:p

i;j

= p

i;j

, and

�

0:p

i;j

= �

i;j

. Then for all p 2 [�1; 0; � � �; n � 1], and for all

i; j 2 [p+ 1 � � �n],

r

0:p

i;j

=

q

r

0:p

i;i

r

0:p

j;j

= �

0:p

i;j

; (32)

p

0:p

i;j

=

q

p

0:p

i;i

p

0:p

j;j

= ��

[p+1:n]ni;j

i;j

: (33)

We now turn to the connection with the spherical trigonome-

try cosine laws :

Corollary 3.1 Up to normalization, an elementary (i.e. rank

1) Schur complement step on R
0:p

0:n

(resp. on P
0:p

0:n

) performs

the law of cosines (3) (resp. the polar law of cosines (18)) :

For all p 2 [�1; 0; � � �; n�2], and for all i; j 2 [p+2 � � �n],

�

0:p+1

i;j

=

�

0:p

i;j

� �

0:p

i;p+1

�

0:p

p+1;j

q

1� j�

0:p

i;p+1

j

2

q

1� j�

0:p

p+1;j

j

2

; (34)

�

[p+2:n]ni;j

i;j

=

�

[p+1:n]ni;j

i;j

+ �

[p+1:n]ni;p+1

i;p+1

�

[p+1:n]np+1;j

p+1;j

q

1� j�

[p+1:n]ni;p+1

i;p+1

j

2

q

1� j�

[p+1:n]np+1;j

p+1;j

j

2

:

(35)

Proof :

The Schur complementation step R

0:p

0:n

!

(R

0:p

0:n

=r

0:p

p+1;p+1

) = R

0:p+1

0:n

reads componentwise :

r

0:p+1

i;j

= (

~

X

0:p

i

;

~

X

0:p

j

)� (

~

X

0:p

i

;

~

X

0:p

p+1

) (

~

X

0:p

p+1

;

~

X

0:p

p+1

)

�1



(

~

X

0:p

p+1

;

~

X

0:p

j

) = (

~

X

0:p+1

i

;

~

X

0:p+1

i

), due to (16). Normaliz-

ing as in section 3.1 we get (34).

We next consider (35). Similarly, from the quotient

property of Schur complements (see e.g. [16]), we have

(P

0:p

0:n

=p

0:p

p+1;p+1

) = P

0:p+1

0:n

. But this equality reads com-

ponentwise

p

0:p

i;j

� p

0:p

i;p+1

(p

0:p

p+1;p+1

)

�1

p

0:p

p+1;j

= p

0:p+1

i;j

:

Dividing by

q

p

0:p

i;i

q

p

0:p

j;j

, and using (33), we get

�

[p+1:n]ni;j

i;j

+ �

[p+1:n]ni;p+1

i;p+1

�

[p+1:n]np+1;j

p+1;j

=

q

p

0:p+1

i;i

=p

0:p

i;i

�

[p+2:n]ni;j

i;j

q

p

0:p+1

j;j

=p

0:p

j;j

. Remarking from (29) and

from the equality P

0:p

0:n

= P

p+1:n

that p

0:p

i;i

=

(

~

X

[p+1:n]ni

i

;

~

X

[p+1:n]ni

i

)

�1, and using (14), we see that
q

p

0:p+1

i;i

=p

0:p

i;i

=

q

1� j�

[p+1:n]ni;p+1

i;p+1

j

2. We thus get (35),

which is the polar cosine law (19) = (18).

4 Non-Euclidean (spherical) geometrical as-

pects of the Schur and Levinson-Szegö algo-

rithms

From now on, we shall further assume that [X
0

X

1

� � �X

n

] =

[X

t

X

t�1

� � �X

t�n

]; where fX
t

; t 2 ZZg is a zero-mean, dis-

crete time, wide sense stationary time series. As a conse-

quence, R
0:n

is a Toeplitz matrix. For simplicity, let us de-

noteR
0:n

by R
n

and r
i;j

by r
j�i

. The parcors satisfy a shift-

invariance property : for all i; j; k; p; q 2 ZZ; p � q; i; j 62

fp; � � � ; qg, �
p:q

i;j

= �

p+k:q+k

i+k;j+k

. Among all correlation coeffi-

cients (total or partial), the function f�(p) = �

1:p�1

0;p

g

p2IN

?

(with �(1) = �

0;1

, as in theorem 3.1) is the partial autocor-

relation function of the process.

Let us now turn back to the Schur and Levinson-Szegö al-

gorithms. In this final section, we shall write the commun

(lattice) recursions of both algorithms as two Schur comple-

ment recursions (in the forward and backward directions),

but acting on the covariance matrix (in the Schur case) or on

its inverse, i.e., on the covariance matrix of the normalized

interpolation process (in the Levinson-Szegö case). From

section 3.3, the link with spherical trigonometry will fol-

low immediately : up to normalization, the Schur (resp. in-

verse Levinson-Szegö) algorithm performs the law of cosines

(resp. the polar law of cosines). This is a new feature of

the classical duality of the Schur and Levinson-Szegö algo-

rithms. As for the Levinson-Szegö algorithm, it is an imple-

mentation of the polar five elements formula.

4.1 Spherical geometry of the Schur algorithm

The new (spherical) geometrical interpretation of the algo-

rithm stems from the connection between the Schur algo-

rithm and linear regression. Let us thus initialize (6), via

(1), with

s

0

(z) =

r

1

z + r

2

z

2

+ � � �

r

0

+ r

1

z + r

2

z

2

+ � � �

:

In this case, for all p � 1 the Schur parameter s
p

(0) is equal

to the (partial) correlation coefficient �
1:p�1

0;p

. It is convenient

to write the algorithm in vector form [31] [32] : for p � 1,

2

6

6

6

6

6

6

4

u

0

p�1

v

1

p�1

u

1

p�1

v

2

p�1

...
...

u

k

p�1

v

k+1

p�1

...
...

3

7

7

7

7

7

7

5

�

1 �s

p

(0)

�s

�

p

(0) 1

�

=

2

6

6

6

6

6

6

4

u

0

p

0

u

1

p

v

1

p

...
...

u

k

p

v

k

p

...
...

3

7

7

7

7

7

7

5

; (36)

with initialization u0
0

= r

0

, and ui
0

= v

i

0

= r

i

for i > 0.

From the point of view of analytic interpolation theory,

which was that of section 2.1, this p

th step of the algo-

rithm incorporates the new data r
p

in the covariance exten-

sion problem. This problem is recursive and “hierarchical”

by nature : given (r

0

; � � � ; r

p�1

) such that R
p�1

is positive

definite (> 0), R
p

> 0 if and only if r
p

belongs to a disk

(of decreasing radius r
0

Q

p�1

i=1

(1 � j�

1:i�1

0;i

j

2

)), the center of

which depends on (r

0

; � � � ; r

p�1

). So for all k � 0, the row

number k of (36) integrates the contribution of the correlation

lag r

p

in the subsequent (possible) compatibibility of r
p+k

with (r

0

; � � � ; r

p+k�1

). In particular, the row number zero

tells whether r
p

is compatible with the data (r

0

; � � � ; r

p�1

)

via the following test : assuming that R
p�1

> 0, R
p

> 0 if

and only if js
p

(0) = v

1

p�1

=u

0

p�1

j < 1.

This progressive incorporation of the constraints

r

2

; � � � ; r

p

; � � � in the analytic interpolation problem

corresponds to the progressive incorporation of the random

variables X

t�1

; � � � ; X

t�p+1

; � � � in the linear prediction

problem, and thus to the progressive updating of the asso-

ciated projection operator (this, of course, is nothing but

the classical lattice or Gram-Schmidt interpretation of the

Schur algorithm [33]). To see this, let us rewrite the Schur

algorithm in terms of projective identities. It is easily seen

(by induction) that for k � 0, the two recursions of the row

number k of (36) are two coupled occurrences of the same

identity (16) :
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: (37)

Since all these quantities are covariances of estimation er-

rors, they reduce to parcors when appropriately normalized;

so a connection of the recursive equations (37) with spherical

trigonometry is expected.

In fact, both equations are easily seen to

be Schur complement recursions in R

1:p�1

0:n

def

=

((

~

X

t�p+1:t�1

t�i

;

~

X

t�p+1:t�1

t�j

))

n

i;j=0

. These two Schur

complementation steps correspond to augmenting the set

of variables fX
t�i

g

p�1

i=1

in the projective space in its two

(contiguous) opposite directions : the forward one X

t



and the backward one X

t�p

. Because of stationarity,

the resulting quantities still are covariances of estimation

residuals with respect to the same subspace, because the

right hand side of (37) also reads [(

~

X

t�p:t�1

t�p�1

;

~

X

t�p:t�1

t�p�k�1

)

(

~

X

t�p:t�1

t

;

~

X

t�p:t�1

t�p�k

)], and the two coefficients in the

transformation matrix reduce to ��
1:p�1

0;p

and �(�
1:p�1

0;p

)

�.

From the discussion in section 3, the link with spherical

trigonometry is immediate :

Theorem 4.1

Up to normalization, an elementary step of the Schur al-

gorithm performs two coupled occurrences of the law of

cosines : for all p � 1, and for all k � 0,
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Proof.

Divide (37) by ( ~X
t�p+1:t�1

t

;

~

X

t�p+1:t�1

t

)

1=2

(

~

X

t�p+1:t�1

t�p�k

;

~

X

t�p+1:t�1

t�p�k

)

1=2, which is equal to (

~

X
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t�p

;

~

X
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t�p

)

1=2

(

~

X

t�p+1:t�1

t�p�k

;

~

X

t�p+1:t�1

t�p�k

)

1=2, and use

(14).

4.2 Spherical geometry of the Levinson-Szegö algo-

rithm

We now turn to the spherical geometry of the Levinson-

Szegö algorithm. Remember from Theorem 3.1 that succes-

sive Schur complements in R
0:n

(resp. in R

�1

0:n

) correspond

to an increase (resp. a reduction) in the number of variables

in the regression problem. So, as was already the case at the

end of section 2, the comparison with the Schur algorithm

indeed proves easier when dealing with order-decreasing re-

cursions.

Let us introduce the forward j

th

�order linear predic-

tion coefficients f�a
j

i

g

j

i=1

by ~

X

t�j:t�1

t

=

P

j

i=0

a

j

i

X

t�i

with a

j

0

= 1: From the Wiener Hopf equations, and

Theorem 3.1, we get a

j

i
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t
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(

~

X
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t�i

;

~

X

[t�j:t]nt�i

t�i

). So the order-decreasing

Levinson-Szegö recursions read :
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(39)

(the first equation is valid for 1 � k � p, with p � 2, and the

second for 0 � k � p� 1 with p � 2).

These equations are Schur complement recursions inR�1

0:p

;

they correspond to reducing the set of variables fX
t�i

g

p

i=0

in the projective space in its two (extremum) opposite di-

rections : the forward one X
t

and the backward one X
t�p

.

From the discussion in section 3.3, we thus expect that, after

appropriate normalization of the covariances of the estima-

tion errors, (39) will reduce to some spherical trigonometry

polar law.

This hint is enforced when looking at the ran-

dom variables in the left hand side of (37) and

(39). Let Z = (fX

t�i

g

0�i�p

; X

t�m

), (A;B;C) =

(X

t

; X

t�p

; X

t�m

), and M = H(Z n fX

t

; X

t�p

; X

t�m

g).

So M = H(fX

t�i

g

1�i�p�1

) if m � p, and M =

H(fX

t�i

g

i6=m

1�i�p�1

) if 1 � m � p � 1. Then (37)

can be visualized as projective identities within the tetra-

hedron (
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;

~

B

M

;
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C

M

), and (39) as projective identities

within the tetrahedron (
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), which

can easily be shown [14] to be the polar tetrahedron of

(

~

A

M

;

~

B

M

;

~

C

M

).

Theorem 4.2

Up to normalization, an elementary step of the order-

decreasing Levinson-Szegö algorithm (resp. of the Levinson-

Szegö algorithm) performs two coupled occurrences of the

polar law of cosines (resp. of the polar five elements for-

mula) :

For all p � 2, and for all 1 � k � p � 1,
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Proof :

Using (15), (39) can be rewritten as :
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ing (14), we get (40) = (41).

5 Conclusion

In this paper, we addressed non-Euclidean geometrical as-

pects of the Schur and Levinson-Szegö algorithms. We

showed that the Lobachevski geometry is, by construction,

the natural geometrical environment of these algorithms,

since they call for automorphisms of the unit disk. By con-

sidering the algorithms in the particular context of their ap-

plication to linear prediction, we next gave them a new in-

terpretation in terms of spherical trigonometry. The role of

Schur complementation in linear regression analysis was em-

phasized, because of the natural link between this basic alge-

braic mechanism and the spherical trigonometry cosine laws.

Lastly, the Schur (resp. Levinson-Szegö) algorithm received

a direct (resp. polar) spherical trigonometry interpretation,

which is a new feature of the classical duality of both algo-

rithms.

Finally, let us briefly mention that these interpretations

provide the algorithms with structural constraints of a

geometrical nature. The Lobachevski invariants are the

Poincaré distance and the cross ratio (because of the use

of linear fractional transformations), and those of spherical

trigonometry are expressed by the relations among parcors

given in section 3.2. These constraints could hopefully

be used in the design of practical algorithms; this point is

currently under investigation.
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[17] C. Carathéodory, Theory of functions of a complex

variable, Chelsea Pub. Company, New York 1954.

[18] B.A. Dubrovin, A.T. Fomenko and S.P. Novikov, Mod-

ern geometry - Methods and applications. Part I, 2nd

edition, Springer Verlag, New York 1993.

[19] R. Remmert, Theory of complex functions, Springer-

Verlag, New York 1991.

[20] L. V. Ahlfors, Conformal invariants - Topics in geomet-

ric function theory, McGraw Hill book company, New

York 1973.

[21] M. Jarnicki and P. Pflug, Invariant distances and metrics

in complex analysis, Walter de Gruyter, Berlin 1993.

[22] R. B. Burckel, An introduction to classical complex

analysis. Volume 1, Birkäuser Verlag, Basel 1979.
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