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IMAGE AND SIGNAL RESTORATION USING PAIRWISE MARKOV TREES

This work deals with the statistical restoration of a hidden signal using Pairwise Markov Trees (PMT). The latter PMT, recently introduced in the case of discrete hidden signal, are here applied to unsupervised image segmentation and it is showed that they work better then the classical Hidden Markov Trees (HMT). Further, considering a PMT in a linear Gaussian model with continuous hidden data, which is new, we give the formulas of an original extension of the classical Kalman filter.

INTRODUCTION

Hidden Markov models (HMM), like hidden Markov chains (HMC), hidden Markov fields (HMF), or hidden Markov trees (HMT) admit numerous applications in various domains, and in particular in signal and image processing. These models have been recently generalized to pairwise Markov chains (PMC [START_REF] Pieczynski | Pairwise Markov Chains[END_REF]), pairwise Markov fields (PMF [START_REF] Pieczynski | Pairwise Markov random fields and segmentation of textured images[END_REF]), and pairwise Markov trees (PMT [START_REF] Pieczynski | Arbres de Markov Couple -Pairwise Markov Trees[END_REF]) The aim of this paper is to present some further properties of the PMT introduced in [START_REF] Pieczynski | Arbres de Markov Couple -Pairwise Markov Trees[END_REF] (in French). On the one hand, we present an application to unsupervised image segmentation of the PMT with discrete hidden process. On the other hand, we propose an original extension of the well known Kalman filter to the PMT with continuous hidden process. The latter extends analogous results proposed in the case of PMC [START_REF] Desbouvries | Particle Filtering with Pairwise Markov Processes[END_REF][START_REF] Pieczynski | Kalman Filtering using Pairwise Gaussian Models[END_REF].

HIDDEN, PAIRWISE, AND TRIPLET MARKOV TREE

Let S be a finite set of points and
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( two stochastic processes indexed on S . Each s X takes its values in Ω (which will be a finite set in the next section and N R in section 3) and s Y takes its values in the set of observations, which will be real numbers R in the next section and q R in section 3. Let 
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(ii) the Hidden Markov Tree (HMT), in which X is a Markov tree as above and the pairwise process
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, is a Pairwise Markov Tree (PMT), which means that its distribution verifies : 
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DISCRETE HIDDEN PROCESS

Let us assume that

{ } k ω ω ..., , 1 = Ω
, which mean that the hidden process is a finite valued one. Let Z be a PMT defined with [START_REF] Desbouvries | Particle Filtering with Pairwise Markov Processes[END_REF]. Then the distribution

y p of X conditional to y Y =
keeps the same form (1). More precisely, for s child of - s , we have [START_REF] Pieczynski | Arbres de Markov Couple -Pairwise Markov Trees[END_REF] :
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Otherwise, we have the following result, showing the greater generality of PMT with respect to HMT [START_REF] Pieczynski | Arbres de Markov Couple -Pairwise Markov Trees[END_REF] :

Proposition 1
Let Z be a PMT defined with (2) and let (P) be the following property : For each
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Then :

1. (P) implies that Z is a HMT (i.e., X is a Markov tree); 
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where ) ( s s x α is calculated using the path 

r s s = 1 , …, s s n = by ) ( ) ( 1 1 s s s s x x β α = , ) ( ) ( ) ( 1 1 1 1 - - - - ∑ Ω ∈ = i i i s i i i i s s s s y s s x x p x ω α α ω (6) 
ω ω = = Ω ∈
. When the segmentation is performed in an unsupervised manner, which is important in real applications, one has to estimate the model parameters from y Y = . The general methods like Expectaion-Maximization (EM [START_REF] Laferté | Discrete Markov image modeling and inference on the quadtree[END_REF]) or Iterative Conditional Estimation (ICE [START_REF] Pieczynski | Pairwise Markov Chains[END_REF]) have been applied in the HMT and can be extended to the PMT and TMT cases. Classical HMT prove useful in statistical unsupervised segmentation problems [START_REF] Laferté | Discrete Markov image modeling and inference on the quadtree[END_REF]. The aim of the example presented in Figure 1 is to show that the greater generality of PMT can improve the results obtained with HMT. The class image is a 128x128 image and the Markov tree structure is a quad-tree [START_REF] Laferté | Discrete Markov image modeling and inference on the quadtree[END_REF]. So, we have the root and seven "generations", with the last generation 7 S being the set of 128x128 pixels. The noisy image Gaussian noise on the generation 6 S , and then using (2) to obtain 7 ) ( S s s y ∈ . In the classical HMT case, we consider that only the last generation 7 S is noisy according to (1).
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The results prented in Figure 1 are obtained in an unsupervised manner, the parameters being estimated with ICE.

True image Noisy image

HMT based method : error rate of 7.71%

PMT based method : error rate of 1.52% 

CONTINUOUS HIDDEN PROCESS

Let us now consider a PMT ) , ( Y X Z = , in which each s X takes its values in N R and each s Y takes its values in q R . Equations ( 3)-( 6) still hold (with the obvious difference that sums should be replaced by intergrals), but may be difficult to compute in the general case. So, let us now address the particular case in which in addition Z is a Gaussian process. Injecting this assumption in the algorithm of section 3 immediately leads to a Kalman-like smoothing algorithm which is omitted here for want of space.

In this section, we will rather show that in Gaussian case, it is also possible to develop a Kalman-like adaptive filtering algorithm for PMT. Recalling that Let us assume that Z is a PMT and that model (7) 
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 1 Figure 1. HMT and PMT based unsupervised Bayesian segmentation results.

  need the following notation : For n fixed, is an extension of the classical Kalman filter Proposition 2 (Kalman filter for PMT)
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  Our assumptions are as follows. We assume that the model is linear and Gaussian
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  Z . We also assume that
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Measurement-update equations L defined in [START_REF] Whittaker | Graphical models in applied multivariate statistics[END_REF], the dimension of which is proportional to the number of variables in generation 1 + n of the tree. However, this full-size matrix inversion can be avoided by conditioning w.r.t. each variable in 1 + n y one after the other; -In more general PMT which are neither linear nor Gaussian, one could consider to propose "Particle filtering", which would extend this king of methods proposed in the case of PMC [START_REF] Desbouvries | Particle Filtering with Pairwise Markov Processes[END_REF] and TMC [START_REF] Desbouvries | Particle Filtering in Pairwise and Triplet Markov Chains[END_REF].

CONCLUSIONS

Recent PMT, strictly more general that HMT, can be used in discrete or continuous hidden signal restoration, as well in a supervised manner than in an unsupervised one. Its greater generality can lead to an improvement of the results obtained with the classical HMT. As further research we may mention the possibilities of extending PMT to Pairwise Markov Graphical models, with the associated methods of hidden process restoration and parameter estimation [14].