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In a near future, because of climate change and the necessary reduction of soil artificialization, cities will be likely to seek for free spaces for their development by reusing already artificialized areas. One possibility could be to look at infrastructures dedicated to car mobility, infrastructures that sprawl over very wide areas and that cover a substantial part of city surfaces. This work investigates the possibility of reducing cities streets-networks by converting several lanes streets into one-way streets with only one lane.

would be assigned to these new projects. According to Adam Millard-Ball, based on previous studies, streets right-of-way represents an important percentage of cities area, between 13% and 30% in US [START_REF] Millard-Ball | The width and value of residential streets[END_REF] and streets sprawling is still going on.Based on these elements, we focus on the reduction of urban networks, and study some graph related problems.

Reducing streets-network sprawl can be done in several ways. Several types of streets can be distinguished with respect to their direction and their number of lanes. Neglecting traffic density, the target goal consists in minimizing the sprawl of streets while keeping some streets-network properties and respecting some constraints: (i) adding new lanes and new streets is not allowed, (ii) removing a street reduced to only one lane is not allowed (iii) removing a lane from a multilane street is allowed (iv) reversing the direction of a lane is not allowed and, probably the most important constraint, (v) any place in the city has to be reachable from any other place in the city, a.k.a. the strong connectivity constraint.

Streets-networks can be modeled by directed multi-graphs (digraphs). In such digraphs, each crossroad or round-about is a node (or vertex). Nodes are linked by various types of streets, and each street lane in the network is associated to an arc in the graph model. Every one way streets can be modeled as a set of arcs pointing in the same direction, and every two-ways streets are represented in the model by two sets of arcs with opposite orientations. We denote by G = (V, A) the digraph model of the original streets-network and G = (V , A ) the digraph obtained after removing some arcs. Note that V = V , we then denote u V the node u in G and u V the same node in G . Two objectives are considered. The first objective is to minimize the number of arcs in the graph while respecting the strong connectivity constraint and such that if two vertices were connected in G they still have to be connected in G . The second objective is to minimize the difference of the sum of eccentricities of nodes between G and G . This problem belongs to the family of problems investigating strong orientation optimization issues [START_REF] Burkard | Minimum-cost strong network orientation problems: Classification, complexity, and algorithms[END_REF], where the goal consists in finding a strong orientation of a graph (1-graph or multigraph, already directed or not) allowing some operations (arc removal or arc reversal for instance) and under some constraints (e.g. minimizing the sum of the distances between all pairs of nodes). However, the hypotheses considered in the present work do not allow a change in the nodes's neighborhood, if two nodes are linked in the original graph, they have to be still connected in the modified graph and this constitutes a main variation with respect to state-of-the-art methods.

Method, Experiments and Analysis

According to the objectives, the designed method aims at removing as many arcs as possible while keeping the eccentricity values as small as possible and under the strong connectivity constraint.

First note that without loss of generality, from a strong connectivity point of view, every set of arcs pointing in the same direction can be reduced to only one arc. In addition, such operations have no impact on the values of nodes eccentricities. Thus, for the method, the focus will be on graphs for which between any two neighbor nodes there are either two arcs pointing in opposite direction or only one arc. We call double arcs, arcs sharing the same extremities but pointing in opposite directions. The original graph is the graph with double arcs and the reduced graph is the graph obtained after removing part or all double arcs from the original graph. Both the original graph and the reduced graph are strongly connected.

Two objectives are considered: minimizing the number of double arcs and minimizing the sum of the eccentricities. We measure the first one as one as the ratio between the number of conserved double arcs and the total number of double arcs in the original graph. We measure the second objective as the percentage of increase of the sum of eccentricities in the reduced graph compared to this sum in the original graph.

The problem is thus a biobjective optimization problem. The presented method aims at determining a Pareto front. As a preliminary work, we have chosen a simple iterative method described by Algorithm 1. Starting from an original graph with many double arcs, the method consists in removing part of these double arcs, modify some arcs orientation in order to make it strongly connected again and then to compute the sum of eccentricities on it. This process provides a point composed of the values of the two objectives. For the experiments, we build a generic manhattan-like street-network generator based on a partial grid with one or two lanes streets as illustrated on Figure 1. According to Robbins' theorem [START_REF] Ellis | A theorem on graphs, with an application to a problem of traffic control[END_REF], generated networks are bridgeless graphs, and according to the underlying application, graphs are already strongly connected. A random number of double arcs are removed from the original graph while keeping the strong connectivity property. For one original graph many reduced graphs can be extracted by removing a variable number of double arcs. For each of these reduced graph the sum of eccentricities is computed, we thus get a solution represented by a couple of values corresponding to the two objectives: the percentage of conserved double arcs (the smaller the better) and the percentage of increase for the sum of eccentricities with respect to the original graph (the smaller the better). Let us consider two solutions S = (o 1 , o 2 ) and S = (o 1 , o 2 ), then if both o 1 < o 1 and o 2 < o 2 , we say that S is dominated by S and should be removed from the set of solutions. The set of non dominated solutions builds a Pareto front. For each original graph it is possible to build such a Pareto front as illustrated on Figure 1 (right side).

Conclusion and Future Works

In this work, we've studied the problem of the minimization streets-network sprawl by a reduction in the number of lanes for existing streets. The variant of the considered problem does not allow arcs reversal. The preliminary results obtained from the analysis of instances of streets-networks produced by a generator designed on purpose, show that a reduction of almost 50% of double arcs (two ways streets) entails a small increase (10%) for the maximum distance between any couple of places in the city. Perspectives are to apply the method on real streets-networks in order to obtain a lower bound on the surface that could saved by reducing streets-networks in small, medium and large cities.
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 1 Fig. 1 Manhattan-like streets-network model. Original streets-network (left side) and reduced network (in the middle) and the computed Pareto front (right side).