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ABSTRACT

An important problem in multiresolution analysis of signals
and images consists in restoring continuous hidden random
variablesx = {xs}s∈S from observed onesy = {ys}s∈S .
This is done classically in the context of Hidden Markov
Trees (HMT). HMT have been generalized recently to Pair-
wise Markov Trees (PMT). In this paper we propose a smooth-
ing restoration algorithm for Gaussian PMT.

1. INTRODUCTION

An important problem in signal and image processing con-
sists in estimating hidden random variablesx = {xs}s∈S
from observed onesy = {ys}s∈S . To that end, Bayesian
restoration algorithms have been developped, mainly in the
framework of Hidden Markov Models (HMM).

On the other hand, it is well known that if(x,y) is
a classical HMM, then the pair(x,y) itself is Markovian.
Conversely, starting from the sole assumption that(x,y) is
Markovian, i.e. that(x,y) is a so-called Pairwise Markov
Model (PMM), is a more general point of view which nev-
ertheless enables the development of similar restoration al-
gorithms. More precisely, some of the classical Bayesian
restoration algorithms used in Hidden Markov Fields (HMF),
Hidden Markov Chains (HMC) or Hidden Markov Trees
(HMT), have been generalized recently to the more general
frameworks of Pairwise Markov Fields (PMF) [1], Pairwise
Markov Chains (PMC) with discrete [2] [3] or continuous
[4] [5] state process, and of Pairwise Markov Trees (PMT)
with discrete [6] [7] or continuous [7] [8] hidden variables.

From now on, we shall focus more specifically on mul-
tiresolution analysis and multiscale algorithms, which are
of interest in a large variety of signal and image processing
problems (see e.g. [9] [10] [11] [12] [13] [14] [15] as well as
the tutorial [16]). Efficient restoration algorithms have been
developed, under the assumption that the stochastic interac-
tions ofx andy are modeled by a hidden Markov tree with
independent noise (HMT-IN) [9] [10] [11] [15].

In this paper we propose a smoothing Kalman-like restora-
tion algorithm for Gaussian PMT. In a PMT the hidden tree
x is not necessarily Markovian, and the observationsy are
not necessarily related tox as simply as in the HMT-IN
case. Yet the conditional law ofx giveny remains Marko-
vian, which in turn enables us to propose an efficient restora-
tion algorithm.

This restoration algorithm (as well as existing restora-
tion algorithms for discrete [6] [7] or continuous [8] PMT)
should also be recast in the framework of artificial intelli-
gence, and in particular of belief propagation - like infer-
ence algorithms. It is well known [17] that the inference
problem in an arbitrary belief network (BN) is an NP-hard
problem, and fast algorithms are known to exist only for par-
ticular subclasses of BN. Now, the PMT structure we deal
with can be seen in two different ways : as a joint structure
z, it is a tree, and thus a particular polytree1, but as an ex-
tended structure(x,y), its topology is no longer that of a
polytree; and yet our restoration algorithm is linear in the
number of nodes.

The rest of this paper is organized as follows. In sec-
tion 2 we briefly recall the three embedded HMT-IN, HMT
and PMT models. In section 3 we propose a general restora-
tion algorithm, which is an adaptation to the continuous case
of the restoration algorithm developped in [7] for the case
where the hidden variablesx are discrete. Finally in section
4 we consider the particular case of Gaussian processes, in
which case the algorithm of section 3 reduces to a Kalman-
like smoothing algorithm.

2. MARKOVIAN MODELS FOR TREES :
HMT-IN ⊂ HMT ⊂ PMT

Let us consider a tree structure indexed on a setS of in-
dices. Notations are as follows :S1 = {r}, S2, . . . , Sn+1

are the successive “generations” of the tree; each nodes

1i.e. a directed acyclic graph in which, between any two nodess andt,
there is at most one path in the underlying undirected graph.



(apart from the root noder) has exactly one fathers−; the
children of nodes are denoted bys+, and the set of all its
descendants bys++ (see fig. 1).

Fig. 1. The tree structure.

Let nowx = {xs}s∈S andy = {ys}s∈S be two sets
of random variables indexed onS. Eachxs (resp.ys) be-
longs toIRp (resp. toIRq). Let p(xs) (resp.p(ys)) denote
the probability density function (p.d.f.) ofxs (resp. ofys)
w.r.t. Lebesgue measure, and for any set of indicesΣ, let
p(xs|{yσ}σ∈Σ) denote the conditional p.d.f. ofxs given
{yσ}σ∈Σ. Other p.d.f. or conditional p.d.f. of interest are
defined similarly.

The restoration algorithms developped in [9] [10] [11]
[15] assume that the stochastic interactions betweenx and
y are modeled by a classical HMT-IN model. In an HMT-
IN model,x is a Markov Tree (MT), and conditionally on
x, the variablesys are independent and satisfyp(ys|x) =
p(ys|xs) :

p(x,y) = p(xr)
∏

s∈S\S1

p(xs|xs−)

︸ ︷︷ ︸
p(x)

×
∏
s∈S

p(ys|xs)︸ ︷︷ ︸
p(y|x)

. (1)

Now, let us introduce the pairzs = (xs,ys), and letz =
{zs}s∈S . A PMT model is a model in which we assume
thatz is an MT :

p(z) = p(zr)
∏

s∈S\S1

p(zs|zs−). (2)

Our interest for PMT comes from the following obser-
vation. A set of variables satisfying (1) also satisfies (2), so
any HMT-IN is a PMT. However, the converse is not true,
as can be seen at the local level : in a PMT the transition
p.d.f. p(zs|zs−) reads

p(zs|zs−) = p(xs,ys|xs− ,ys−)
= p(xs|xs− ,ys−)p(ys|xs,xs− ,ys−) ;

so an HMT-IN is a particular PMT in whichp(xs|xs− ,ys−)
reduces top(xs|xs−) andp(ys|xs,xs− ,ys−) to p(ys|xs).
These simplications are rather rough, and making use of
PMT enables to model more complex physical situations.

Let us also mention an intermediate model, which we
call a Hidden Markov Tree (HMT), in which bothx and
(x,y) are MT but the observationsys are not necessarily
independent conditionally onx. Of course, any HMT-IN is
an HMT, and any HMT is a PMT. However, PMT are more
general than HMT, because if (2) holds, one can show thatx
is not necessarily a MT, as we see from the following result:

Proposition 1 Letz be a dyadic PMT, i.e. a PMT in which
each nodes− (which is not in the last generationn+1) has
exactly two childrens1 ands2. Assume that

For all s ∈ S \ S1, p(xs|xs− ,ys−) = p(xs|xs−). (3)

Thenx is an MT. Conversely, assume thatx is an MT, and
that for all s− ∈ S \ Sn+1, p(zs1 |z−s ) = p(zs2 |z−s ), i.e.
that conditionally on the father, the laws of the children are
equal. Then (3) holds.

Proof of Proposition 1. A proof of Proposition 1 can be
found in [6] (resp. in [8]) for the case where{xs}s∈S are
discrete (resp. continuous) random variables.

3. A SMOOTHING ALGORITHM
FOR CONTINUOUS PMT

From now on we shall assume thatz is a PMT. We assume
for simplicity that the tree is dyadic, and we denote bys1

and s2 the two children ofs−. The aim of this section
consists in computing the posterior p.d.f.p(xs|y) for an
arbitrarys ∈ S. Our smoothing-like algorithm is a two-
step procedure : a first sweep (in the fine-to-coarse direc-
tion) computesp(xr|y), and then a second sweep (in the
coarse-to-fine direction) computesp(xs|y) via a computa-
tional procedure which iterates along the path relating the
root noder to nodes.

Let us first show thatp(xs|xs− ,y) can be computed re-
cursively in the following way (the proof is omitted for want
of space) :

Proposition 2 Let

β(xs) = 1 if s ∈ Sn+1,

= p(y++
s |zs) otherwise. (4)

Thenβ(xs) andp(xs|xs− ,y) can be computed recursively
via the following (backward) recursions : form = n, n −



1, · · · , 1, for all s− ∈ Sm,

β(xs−) =
2∏

i=1

∫
p(zsi

|zs−)β(xsi
)dxsi

, (5)

p(xs|xs− ,y) = p(xs|xs− ,ys− ,ys,ys++)

=
p(zs|zs−)β(xs)∫

p(zs|zs−)β(xs)dxs
. (6)

We now address the computation ofp(xs|y) for a given
nodes ∈ Sm. There is a unique path{σi}m

i=1 (with σ1 = r
andσm = s) relating nodes to the root noder. Along this
path, the conditional law of{xσi

}m
i=1 giveny is Markovian.

Sop(xs|y) can be computed as

p(xs|y) =
∫

p(xr|y)
m∏

i=2

p(xσi
|xσ−i

,y)dxσ1 · · · dxσm−1 ,

(7)
in which {p(xσi

|xσ−i
,y) =}m

i=2 have been computed via
(6), and

p(xr|y) =
p(zr)β(xr)∫

p(zr)β(xr)dxr
. (8)

4. A KALMAN-LIKE SMOOTHING ALGORITHM
FOR GAUSSIAN PMT

The formulas of section 3, which hold irrespective of the
law of z, may prove difficult to compute in the general case.
In the Gaussian case however, the computations can be car-
ried out exactly and yield a Kalman-like smoothing algo-
rithm, as we are going to see in this section2.

Our assumptions are as follows. We assume that[
xs

ys

]
︸ ︷︷ ︸

zs

=
[

F1
s F2

s

H1
s H2

s

]
︸ ︷︷ ︸

Fs

[
xs−

ys−

]
+

[
G11

s G12
s

G21
s G22

s

]
︸ ︷︷ ︸

Gs

[
us

vs

]
︸ ︷︷ ︸

ws

, (9)

in which W = {ws}s∈S\S1 are random vectors which are
zero-mean, independent and independent ofzr. Let us set

E(wswT
s ) = Qs, Q̃s =

[
Q̃11

s Q̃12
s

Q̃21
s Q̃22

s

]
= GsQsGT

s .

(10)
We also assume thatW is Gaussian and thatp(zr) ∼ N (zr, Q̃r).
So z is a Gaussian process, and all conditionnal p.d.f. re-
lated toz are also Gaussian. As a consequence, the general
recursions (5), (6) and (7) of section 3 reduce to recursions
propagating the parameters (means and covariance matri-
ces) of these Gaussian p.d.f., as we now see.

2Our algorithm could of course alternately be obtained as a recursive
linear minimum mean square error restoration procedure; we chose to
adopt the Gaussian point of view because the proofs are obtained in a sim-
pler and more direct way.

We first begin with the following proposition, which
gathers the results obtained by injecting the Gaussian as-
sumption into Proposition 2 (the proof is omitted) :

Proposition 3 Let us assume thatz is a dyadic PMT and
that model (9) holds. Suppose thatp(zr) ∼ N (zr, Q̃r) and
thatp(ws) ∼ N (0,Qs).

Then for alls− ∈ S \ Sn+1, and fori = 1, 2, we have :

β(xs−) ∼ N (

[
M̃s1

M̃s2

]
︸ ︷︷ ︸

Ms−

zs− ,

[
C̃2,2

s1
0

0 C̃2,2
s2

]
︸ ︷︷ ︸

Cs−

), (11)

p(xsi |xs− ,y) ∼ N (Asi|s−xs− + bsi|s− ,Psi|s−), (12)

in which Ms− , Cs− , Asi|s− , bsi|s− and Psi|s− can be
computed sequentially through the following recursions :

Initialization : for s− ∈ Sn and fori = 1, 2,

M̃si
= [H1

si
H2

si
], (13)

C̃2,2
si

= Q̃2,2
si

, (14)

Asi|s− = F1
si
− Q̃1,2

si
(Q̃2,2

si
)−1H1

si
, (15)

bsi|s− = F2
si
ys−+Q̃1,2

si
(Q̃2,2

si
)−1(ysi

−H2
si
ys−),(16)

Psi|s− = Q̃1,1
si

− Q̃1,2
si

(Q̃2,2
si

)−1Q̃2,1
si

. (17)

For s− ∈ Sm with 1 ≤ m ≤ n− 1, and fori = 1, 2,

M̃si
=

[
[0 I]Fsi

Msi
Fsi

]
, (18)

C̃2,2
si

=

 Q̃2,2
si

[Q̃2,1
si

Q̃2,2
si

]MT
si

Msi

[
Q̃1,2

si

Q̃2,2
si

]
Csi + MsiQ̃siM

T
si

, (19)

C̃1,2
si

=
[
Q̃1,2

si
, [Q̃1,1

si
Q̃1,2

si
]MT

si

]
, (20)

Asi|s− = F1
si
− C̃1,2

si
(C̃2,2

si
)−1

 H1
si

Msi

[
F1

si

H1
si

], (21)

bsi|s− = F2
si
ys− (22)

+ C̃1,2
si

(C̃2,2
si

)−1(
[

ysi

y++
si

]
−

 H2
si

Msi

[
F2

si

H2
si

]ys−),

Psi|s− = Q̃1,1
si

− C̃1,2
si

(C̃2,2
si

)−1(C̃1,2
si

)T . (23)

We now turn to the computation ofp(xsi |y) (the proof
is omitted) :

Proposition 4 Let

p(xsi |y) ∼ N (msi ,Psi). (24)



Thenmsi and Psi can be computed sequentially via the
following recursions :

C̃1,2
0 =

[
Q̃1,2

r , [Q̃1,1
r Q̃1,2

r ]MT
r

]
, (25)

C̃2,2
0 =

 Q̃2,2
r [Q̃2,1

r Q̃2,2
r ]MT

r

Mr

[
Q̃1,2

r

Q̃2,2
r

]
Cr + MrQ̃rMT

r

 , (26)

mr = xr + C̃1,2
0 (C̃2,2

0 )−1(
[

yr

y++
r

]
−

[
yr

Mrzr

]
),(27)

Pr = Q̃1,1
r − C̃1,2

0 (C̃2,2
0 )−1(C̃1,2

0 )T , (28)

msi
= Asi|s−ms− + bsi|s− , (29)

Psi = Psi|s− + Asi|s−Ps−AT
si|s− . (30)

5. REFERENCES

[1] W. Pieczynski and A. N. Tebbache, “Pairwise Markov
random fields and segmentation of textured images,”
Machine Graphics and Vision, vol. 9, no. 3, pp. 705–
718, March 2000.

[2] W. Pieczynski, “Pairwise Markov chains,” IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 25, no. 5, pp. 634–639, May 2003.

[3] S. Derrode and W. Pieczynski, “Signal and image
segmentation using pairwise Markov chains,”IEEE
Transactions on Signal Processing, vol. 52, no. 9, pp.
2477–89, 2004.

[4] W. Pieczynski and F. Desbouvries, “Kalman filtering
using pairwise Gaussian models,” inProceedings of
the Icassp, Hong-Kong, April 6-10 2003, vol. 6, pp.
VI–57 – VI–60.

[5] F. Desbouvries and W. Pieczynski, “Particle filtering
in pairwise and triplet Markov chains,” inProceed-
ings of the IEEE - EURASIP Workshop on Nonlin-
ear Signal and Image Processing (NSIP 2003), Grado-
Gorizia, Italy, June 8-11 2003.

[6] W. Pieczynski, “Arbres de Markov couple - pairwise
Markov trees,” Comptes Rendus de l’Académie des
Sciences - Math́ematiques, vol. 335, pp. 79–82, 2002,
Ser. I (in French).

[7] E. Monfrini, J. Lecomte, F. Desbouvries, and
W. Pieczynski, “Image and signal restoration using
pairwise Markov trees,” inProceedings of the 2003
IEEE Workshop on Statistical Signal Processing, St.
Louis, MI, September 2003.

[8] F. Desbouvries and J. Lecomte, “Multiscale Bayesian
estimation in pairwise Markov trees,” inProceedings

of the EUropean SIgnal Processing COnference (EU-
SIPCO), Vienna, Austria, September 2004.

[9] M. Basseville, A. Benveniste, K. C. Chou, S. A.
Golden, R. Nikoukhah, and A. S. Willsky, “Model-
ing and estimation of multiresolution stochastic pro-
cesses,” IEEE Transactions on Information Theory,
vol. 38, no. 2, pp. 766–84, March 1992.

[10] C. A. Bouman and M. Shapiro, “A multiscale random
field model for Bayesian image segmentation,”IEEE
Transactions on Image Processing, vol. 3, no. 3, pp.
162–77, March 1994.

[11] K. C. Chou, A. S. Willsky, and A. Benveniste, “Multi-
scale recursive estimation, data fusion, and regulariza-
tion,” IEEE Transactions on Automatic Control, vol.
39, no. 3, pp. 464–78, March 1994.

[12] M. S. Crouse, R. D. Nowak, and R. G. Baraniuk,
“Wavelet-based statistical signal processing using hid-
den Markov models,” IEEE Transactions on Signal
Processing, vol. 46, no. 4, pp. 886–902, April 1998.

[13] R. H. Riedi, M. S. Crouse, V. J. Ribeiro, and R. G.
Baraniuk, “A multifractal wavelet model with appli-
cation to network traffic,” IEEE Transactions on In-
formation Theory, vol. 45, no. 3, pp. 992–1018, April
1999.

[14] R. Nowak, “Multiscale hidden Markov models for
Bayesian image analysis,” inBayesian inference in
wavelet based models, B. Vidakovic and P. M̈uller,
Eds. Springer-Verlag, New-York, 1999.

[15] J. M. Lafert́e, P. Perez, and F. Heitz, “Discrete Markov
image modeling and inference on the quadtree,”IEEE
Transactions on Image Processing, vol. 9, no. 3, pp.
390–404, March 2000.

[16] A. S. Willsky, “Multiresolution Markov models for
signal and image processing,”Proceedings of the
IEEE, vol. 90, no. 8, pp. 1396–1458, August 2002.

[17] G. F. Cooper, “The computational complexity of prob-
abilistic inference using Bayesian belief networks,”
Artificial Intelligence, vol. 42, pp. 393–405, 1990.


