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A MULTISCALE SMOOTHING ALGORITHM FOR PAIRWISE MARKOV TREES

An important problem in multiresolution analysis of signals and images consists in restoring continuous hidden random variables x = {x s } s∈S from observed ones y = {y s } s∈S . This is done classically in the context of Hidden Markov Trees (HMT). HMT have been generalized recently to Pairwise Markov Trees (PMT). In this paper we propose a smoothing restoration algorithm for Gaussian PMT.

INTRODUCTION

An important problem in signal and image processing consists in estimating hidden random variables x = {x s } s∈S from observed ones y = {y s } s∈S . To that end, Bayesian restoration algorithms have been developped, mainly in the framework of Hidden Markov Models (HMM).

On the other hand, it is well known that if (x, y) is a classical HMM, then the pair (x, y) itself is Markovian. Conversely, starting from the sole assumption that (x, y) is Markovian, i.e. that (x, y) is a so-called Pairwise Markov Model (PMM), is a more general point of view which nevertheless enables the development of similar restoration algorithms. More precisely, some of the classical Bayesian restoration algorithms used in Hidden Markov Fields (HMF), Hidden Markov Chains (HMC) or Hidden Markov Trees (HMT), have been generalized recently to the more general frameworks of Pairwise Markov Fields (PMF) [START_REF] Pieczynski | Pairwise Markov random fields and segmentation of textured images[END_REF], Pairwise Markov Chains (PMC) with discrete [START_REF] Pieczynski | Pairwise Markov chains[END_REF] [3] or continuous [START_REF] Pieczynski | Kalman filtering using pairwise Gaussian models[END_REF] [5] state process, and of Pairwise Markov Trees (PMT) with discrete [6] [7] or continuous [START_REF] Monfrini | Image and signal restoration using pairwise Markov trees[END_REF] [8] hidden variables.

From now on, we shall focus more specifically on multiresolution analysis and multiscale algorithms, which are of interest in a large variety of signal and image processing problems (see e.g. [START_REF] Basseville | Modeling and estimation of multiresolution stochastic processes[END_REF] [10] [11] [12] [13] [14] [START_REF] Laferté | Discrete Markov image modeling and inference on the quadtree[END_REF] as well as the tutorial [START_REF] Willsky | Multiresolution Markov models for signal and image processing[END_REF]). Efficient restoration algorithms have been developed, under the assumption that the stochastic interactions of x and y are modeled by a hidden Markov tree with independent noise (HMT-IN) [START_REF] Basseville | Modeling and estimation of multiresolution stochastic processes[END_REF] [10] [START_REF] Chou | Multiscale recursive estimation, data fusion, and regularization[END_REF] [START_REF] Laferté | Discrete Markov image modeling and inference on the quadtree[END_REF].

In this paper we propose a smoothing Kalman-like restoration algorithm for Gaussian PMT. In a PMT the hidden tree x is not necessarily Markovian, and the observations y are not necessarily related to x as simply as in the HMT-IN case. Yet the conditional law of x given y remains Markovian, which in turn enables us to propose an efficient restoration algorithm.

This restoration algorithm (as well as existing restoration algorithms for discrete [6] [7] or continuous [START_REF] Desbouvries | Multiscale Bayesian estimation in pairwise Markov trees[END_REF] PMT) should also be recast in the framework of artificial intelligence, and in particular of belief propagation -like inference algorithms. It is well known [START_REF] Cooper | The computational complexity of probabilistic inference using Bayesian belief networks[END_REF] that the inference problem in an arbitrary belief network (BN) is an NP-hard problem, and fast algorithms are known to exist only for particular subclasses of BN. Now, the PMT structure we deal with can be seen in two different ways : as a joint structure z, it is a tree, and thus a particular polytree1 , but as an extended structure (x, y), its topology is no longer that of a polytree; and yet our restoration algorithm is linear in the number of nodes.

The rest of this paper is organized as follows. In section 2 we briefly recall the three embedded HMT-IN, HMT and PMT models. In section 3 we propose a general restoration algorithm, which is an adaptation to the continuous case of the restoration algorithm developped in [START_REF] Monfrini | Image and signal restoration using pairwise Markov trees[END_REF] for the case where the hidden variables x are discrete. Finally in section 4 we consider the particular case of Gaussian processes, in which case the algorithm of section 3 reduces to a Kalmanlike smoothing algorithm.

MARKOVIAN MODELS FOR TREES : HMT-IN ⊂ HMT ⊂ PMT

Let us consider a tree structure indexed on a set S of indices. Notations are as follows : S 1 = {r}, S 2 , . . . , S n+1 are the successive "generations" of the tree; each node s (apart from the root node r) has exactly one father s -; the children of node s are denoted by s + , and the set of all its descendants by s ++ (see fig. 1).

Fig. 1. The tree structure.

Let now x = {x s } s∈S and y = {y s } s∈S be two sets of random variables indexed on S. Each x s (resp. y s ) belongs to IR p (resp. to IR q ). Let p(x s ) (resp. p(y s )) denote the probability density function (p.d.f.) of x s (resp. of y s ) w.r. 

p(x, y) = p(x r ) s∈S\S1 p(x s |x s -) p(x) × s∈S p(y s |x s ) p(y|x) . (1)
Now, let us introduce the pair z s = (x s , y s ), and let z = {z s } s∈S . A PMT model is a model in which we assume that z is an MT :

p(z) = p(z r ) s∈S\S1 p(z s |z s -). (2) 
Our interest for PMT comes from the following observation. A set of variables satisfying (1) also satisfies (2), so any HMT-IN is a PMT. However, the converse is not true, as can be seen at the local level : in a PMT the transition p.d.f. p(z s |z s -) reads p(z s |z s -) = p(x s , y s |x s -, y s -) = p(x s |x s -, y s -)p(y s |x s , x s -, y s -) ; so an HMT-IN is a particular PMT in which p(x s |x s -, y s -) reduces to p(x s |x s -) and p(y s |x s , x s -, y s -) to p(y s |x s ). These simplications are rather rough, and making use of PMT enables to model more complex physical situations. Let us also mention an intermediate model, which we call a Hidden Markov Tree (HMT), in which both x and (x, y) are MT but the observations y s are not necessarily independent conditionally on x. Of course, any HMT-IN is an HMT, and any HMT is a PMT. However, PMT are more general than HMT, because if (2) holds, one can show that x is not necessarily a MT, as we see from the following result: Proposition 1 Let z be a dyadic PMT, i.e. a PMT in which each node s -(which is not in the last generation n + 1) has exactly two children s 1 and s 2 . Assume that For all s ∈ S \ S 1 , p(x s |x s -, y s -) = p(x s |x s -). (3) Then x is an MT. Conversely, assume that x is an MT, and that for all s -∈ S \ S n+1 , p(z s1 |z - s ) = p(z s2 |z - s ), i.e. that conditionally on the father, the laws of the children are equal. Then (3) holds.

Proof of Proposition 1. A proof of Proposition 1 can be found in [START_REF] Pieczynski | Arbres de Markov couple -pairwise Markov trees[END_REF] (resp. in [START_REF] Desbouvries | Multiscale Bayesian estimation in pairwise Markov trees[END_REF]) for the case where {x s } s∈S are discrete (resp. continuous) random variables.

A SMOOTHING ALGORITHM FOR CONTINUOUS PMT

From now on we shall assume that z is a PMT. We assume for simplicity that the tree is dyadic, and we denote by s 1 and s 2 the two children of s -. The aim of this section consists in computing the posterior p.d.f. p(x s |y) for an arbitrary s ∈ S. Our smoothing-like algorithm is a twostep procedure : a first sweep (in the fine-to-coarse direction) computes p(x r |y), and then a second sweep (in the coarse-to-fine direction) computes p(x s |y) via a computational procedure which iterates along the path relating the root node r to node s.

Let us first show that p(x s |x s -, y) can be computed recursively in the following way (the proof is omitted for want of space) :

Proposition 2 Let β(x s ) = 1 if s ∈ S n+1 , = p(y ++ s |z s ) otherwise . ( 4 
)
Then β(x s ) and p(x s |x s -, y) can be computed recursively via the following (backward) recursions : for m = n, n -

1, • • • , 1, for all s -∈ S m , β(x s -) = 2 i=1 p(z si |z s -)β(x si )dx si , (5) p(x s |x s -, y) = p(x s |x s -, y s -, y s , y s ++ ) = p(z s |z s -)β(x s ) p(z s |z s -)β(x s )dx s . ( 6 
)
We now address the computation of p(x s |y) for a given node s ∈ S m . There is a unique path {σ i } m i=1 (with σ 1 = r and σ m = s) relating node s to the root node r. Along this path, the conditional law of {x σi } m i=1 given y is Markovian. So p(x s |y) can be computed as

p(x s |y) = p(x r |y) m i=2 p(x σi |x σ - i , y)dx σ1 • • • dx σm-1 , (7) in which {p(x σi |x σ - i , y) =} m
i=2 have been computed via (6), and

p(x r |y) = p(z r )β(x r ) p(z r )β(x r )dx r . (8) 

A KALMAN-LIKE SMOOTHING ALGORITHM FOR GAUSSIAN PMT

The formulas of section 3, which hold irrespective of the law of z, may prove difficult to compute in the general case.

In the Gaussian case however, the computations can be carried out exactly and yield a Kalman-like smoothing algorithm, as we are going to see in this section2 . Our assumptions are as follows. We assume that

x s y s zs = F 1 s F 2 s H 1 s H 2 s Fs x s - y s - + G 11 s G 12 s G 21 s G 22 s Gs u s v s ws , (9) 
in which W = {w s } s∈S\S1 are random vectors which are zero-mean, independent and independent of z r . Let us set

E(w s w T s ) = Q s , Q s = Q 11 s Q 12 s Q 21 s Q 22 s = G s Q s G T s .
(10) We also assume that W is Gaussian and that p(z r ) ∼ N (z r , Q r ). So z is a Gaussian process, and all conditionnal p.d.f. related to z are also Gaussian. As a consequence, the general recursions ( 5), ( 6) and ( 7) of section 3 reduce to recursions propagating the parameters (means and covariance matrices) of these Gaussian p.d.f., as we now see.

We first begin with the following proposition, which gathers the results obtained by injecting the Gaussian assumption into Proposition 2 (the proof is omitted) : Proposition 3 Let us assume that z is a dyadic PMT and that model [START_REF] Basseville | Modeling and estimation of multiresolution stochastic processes[END_REF] holds. Suppose that p(z r ) ∼ N (z r , Q r ) and that p(w s ) ∼ N (0, Q s ).

Then for all s -∈ S \ S n+1 , and for i = 1, 2, we have :

β(x s -) ∼ N ( M s1 M s2 M s - z s -, C 2,2 s1 0 0 C 2,2 s2 C s - ), (11) p 
(x si |x s -, y) ∼ N (A si|s -x s -+ b si|s -, P si|s -), ( 12 
)
in which M s -, C s -, A si|s -, b si|s -and P si|s -can be computed sequentially through the following recursions : Initialization : for s -∈ S n and for i = 1, 2,

M si = [H 1 si H 2 si ], (13) 
C 2,2 si = Q 2,2 si , (14) 
A si|s -= F 1 si -Q 1,2 si ( Q 2,2 si ) -1 H 1 si , (15) 
b si|s -= F 2 si y s -+ Q 1,2 si ( Q 2,2 si ) -1 (y si -H 2 si y s -), (16) 
P si|s -= Q 1,1 si -Q 1,2 si ( Q 2,2 si ) -1 Q 2,1 si . (17) 
For s -∈ S m with 1 ≤ m ≤ n -1, and for i = 1, 2,

M si = [0 I]F si M si F si , (18) 
C 2,2 si =    Q 2,2 si [ Q 2,1 si Q 2,2 si ]M T si M si Q 1,2 si Q 2,2 si C si + M si Q si M T si   , (19) C 1,2 si = Q 1,2 si , [ Q 1,1 si Q 1,2 si ]M T si , (20) 
A si|s -= F 1 si -C 1,2 si ( C 2,2 si ) -1   H 1 si M si F 1 si H 1 si   , ( 21 
) b si|s -= F 2 si y s - (22) 
+ C 1,2 si ( C 2,2 si ) -1 ( y si y ++ si -   H 2 si M si F 2 si H 2 si   y s -), P si|s -= Q 1,1 si -C 1,2 si ( C 2,2 si ) -1 ( C 1,2 si ) T . ( 23 
)
We now turn to the computation of p(x si |y) (the proof is omitted) : Proposition 4 Let p(x si |y) ∼ N (m si , P si ).

(24)

Then m si and P si can be computed sequentially via the following recursions :

C 1,2 0 = Q 1,2 r , [ Q 1,1 r Q 1,2 r ]M T r , (25) 
C 2,2 0 =    Q 2,2 r [ Q 2,1 r Q 2,2 r ]M T r M r Q 1,2 r Q 2,2 r C r + M r Q r M T r    , (26) 
m r = x r + C 1,2 0 ( C 2,2 0 ) -1 ( y r y ++ r -y r M r z r ),( 27)

P r = Q 1,1 r -C 1,2 0 ( C 2,2 0 ) -1 ( C 1,2 0 ) T , (28) 
m si = A si|s -m s -+ b si|s -, (29) 
P si = P si|s -+ A si|s -P s -A T si|s -.

(30)

  t. Lebesgue measure, and for any set of indices Σ, let p(x s |{y σ } σ∈Σ ) denote the conditional p.d.f. of x s given {y σ } σ∈Σ . Other p.d.f. or conditional p.d.f. of interest are defined similarly. The restoration algorithms developped in [9] [10] [11] [15] assume that the stochastic interactions between x and y are modeled by a classical HMT-IN model. In an HMT-IN model, x is a Markov Tree (MT), and conditionally on x, the variables y s are independent and satisfy p(y s |x) = p(y s |x s ) :

i.e. a directed acyclic graph in which, between any two nodes s and t, there is at most one path in the underlying undirected graph.

Our algorithm could of course alternately be obtained as a recursive linear minimum mean square error restoration procedure; we chose to adopt the Gaussian point of view because the proofs are obtained in a simpler and more direct way.