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The restoration of a hidden process X from an observed process Y is often performed in the framework of hidden Markov chains (HMC). HMC have been recently generalized to triplet Markov chains (TMC). In the TMC model one introduces a third random chain U and assumes that the triplet T = (X, U, Y ) is a Markov chain (MC). TMC generalize HMC but still enable the development of efficient Bayesian algorithms for restoring X from Y . This paper lists some recent results concerning TMC; in particular, we recall how TMC can be used to model hidden semi-Markov Chains or deal with non-stationary HMC.

Introduction

An important problem in statistical data restoration consists in estimating a hidden random chain X = {X i } n i=1 from an observed random chain Y = {Y i } n i=1 . Let X i be discrete and Y i continuous. Many Bayesian methods are available once the distribution of Z = (X, Y ) is simple enough. In particular, HMC with independent noise (HMC-IN), in which1 p(z) = p(x 1 )p(x 2 |x 1 ) • • • p(x n |x n-1 ) p(y 1 |x 1 ) • • • p(y n |x n ) have been widely used and studied (see e.g. [Ephraim and Merhav, 2002] for a recent tutorial).

The pairwise Markov chains (PMC) model has been proposed recently [Pieczynski, 2003] [Derrode and Pieczynski, 2004]. In a PMC one assumes that Z = (X, Y ) is an MC, i.e. that p(z) = p(z 1 )p(z 2 |z 1 ) • • • p(z n |z n-1 ). Any HMC-IN is a PMC, but the converse is not true, because in a PMC X is no longer necessarily an MC; however, conditionally on Y , X remains an MC, and in turn this key computational property enables the development of analogous Bayesian restoration algorithms [Lipster and Shiryaev, 2001, corollary 1 p. 72] [Pieczynski, 2003] [START_REF] Pieczynski | [END_REF] [Desbouvries and Pieczynski, 2003b]. PMC have been further extended to TMC. In the TMC model one introduces a third chain U = {U i } n i=1 (which can be physically meaningful or not) and assumes that the triplet T = (X, U, Y ) is an MC [START_REF] Pieczynski | Triplet Markov chains in hidden signal restoration[END_REF]] [Pieczynski, 2002]. TMC generalize some classical models in the sense that none of the chains X, U , Y , V = (X, U ), Z = (X, Y ) or (U, Y ) needs to be an MC.

The wider generality of PMC w.r.t. HMC and of TMC w.r.t. PMC can also be seen through the expression of p(y|x). In an HMC-IN p(y|x) = p(y 1 |x 1 ) • • • p(y n |x n ), which is very simple, and undoubtedly too simple in some applications, including speech recognition [Wellekens, 1987] [Ostendorf et al., 1996]; in a PMC p(y|x) is an MC, which is much richer; and in a TMC p(y|x) is the marginal distribution of the MC p(u, y|x), which is still much richer than an MC. In such applications as image processing, these increasingly complex models are likely to meet the growing need for a better modeling of the noise [Pérez, 2003].

Apart from this general discussion, the contribution of the TMC model (w.r.t. other possible extensions of the HMC-IN model) appears when describing how they encompass and extend some well known stochastic models. This is better appreciated at the local level, as we now see from a simple example. By definition, a TMC distribution is defined by p(t 1 ) and by p(t i+1 |t i ), which itself can be written by different expressions. In particular, the following factorizations will prove useful in the sequel :

p(t i+1 |t i ) = p(x i+1 |t i )p(u i+1 |x i+1 , t i )p(y i+1 |x i+1 , u i+1 , t i ) (1) = p(u i+1 |t i )p(x i+1 |u i+1 , t i )p(y i+1 |x i+1 , u i+1 , t i ).
(2)

The HMC-IN model is obtained from (1) if p(x i+1 |t i ) reduces to p(x i+1 |x i ), p(u i+1 |x i+1 , t i ) to δ xi+1 (u i+1 ) (with δ xi+1 the Dirac mass, which simply means that u i+1 = x i+1 ), and p(y i+1 |x i+1 , u i+1 , t i ) to p(y i+1 |x i+1 ). Other (nontrivial) examples will be given below. The aim of this paper is to summarize some recent results (some of which are still under review) concerning the large family of TMC. In particular, we will see that the TMC model gathers some well known dynamical stochastic models (and thus provides a unifying framework for these models), as well as some new extensions of these models, and yet still enables the development of efficient hidden chain restoration and parameter estimation algorithms.

The rest of this paper is organized as follows. We will say that X (resp. U , Y ) is discrete (resp. continuous) if each X i (resp. U i , Y i ) takes discrete (resp. continuous) values, and in this paper X and U can be either discrete or continuous (Y will be assumed to be continuous). So we have four possible situations, which are discussed in sections 2 to 5; as we will see, depending on the situation U admits a physical interpretation (see e.g. §2, item (iii), or §3, item (ii)) or not (see e.g. §2, item (i), or §3, item (i)). Finally section 6 is devoted to parameter estimation.

2 Discrete hidden chain with discrete auxiliary chain Let X and U be discrete, with X i ∈ Ω and U i ∈ Λ. In this section we shall briefly recall why some classical Bayesian methods like Maximum Posterior Mode (MPM) can be used in TMC. Let T = (X, U, Y ) be an MC. The conditional law of V = (X, U ) given Y is then an MC, with initial pdf and transitions given by

p(v 1 |y) = p(t 1 )β 1 (v 1 ) v1∈Ω×Λ p(t 1 )β 1 (v 1 ) , p(v i+1 |v i , y) = p(t i+1 |t i )β i+1 (v i+1 ) β i (v i ) , (3) 
in which β i can be computed via the classical backward recursions :

β n (v n ) = 1 and β i (v i ) = vi+1∈Ω×Λ p(t i+1 |t i )β i+1 (v i+1 ) for 1 ≤ i ≤ n-1. Once p(v 1 |y)
has been computed, the a posteriori marginals are computed recursively via

p(v i+1 |y) = vi∈Ω×Λ p(v i |y)p(v i+1 |v i , y). Finally p(x i |y) = ui∈Λ p(v i |y),
and thus the MPM estimate, which is defined by

[x M P M (y) = {x i } n i=1 ] ⇐⇒ [for all i, 1 ≤ i ≤ n, xi = arg max xi p(x i |y)],
can be computed.

Let us now describe five particular applications of TMC in which this MPM restoration algorithm can be used.

(i) Mixture approximation. Assume that a given PMC (X, Y ) is stationary, i.e. that p(x i , x i+1 , y i , y i+1 ) does not depend on i. Then the distribution of (X, Y ) is given by p

(x 1 , x 2 , y 1 , y 2 ) = p(x 1 , x 2 ) p(y 1 , y 2 |x 1 , x 2 ). If p(y 1 , y 2 |x 1 , x 2
) is not known exactly, one can approximate it by a mixture distribution (for instance a Gaussian one)

p(y 1 , y 2 |x 1 , x 2 ) = u1,u2∈Λ×Λ p(u 1 , u 2 )p(y 1 , y 2 |x 1 , x 2 , u 1 , u 2 ),
and in this case the model we implicitely deal with is actually a stationary TMC model, the distribution of which is defined by

p(t 1 , t 2 ) = p(u 1 , u 2 ) p(x 1 , x 2 ) p(y 1 , y 2 |x 1 , x 2 , u 1 , u 2
). (ii) "Switching" or "jumping" models". One way to model non stationary hidden chains is to assume that for each i,

1 ≤ i ≤ n -1, there are m possible transitions p(x i+1 |x i , u i ) with u i ∈ Λ = {λ j } m j=1 . One usually considers that u i is a realization of U i , and (U 1 , • • • , U n ) is an MC.
If we directly assume that (X, U ) is an MC then we obtain a more general model since U does not need to be an MC any longer. This model has been successfully applied in non stationary image segmentation [Lanchantin and Pieczynski, 2004a]. A further generalization consists in assuming that (X, U, Y ) is a general TMC. (iii) Hidden semi-Markov chains (HSMC). When X is an MC, the distribution of the sojourn duration in a given state is exponential, which is restrictive in some situations. In HSMC this distribution can be of any form; these models thus extend HMC, and yet still enable analogous processing, see e.g. [START_REF] Yu | [END_REF]] [ Moore andSavic, 2004] [Guédon, 2005].

Let q be a pdf on IN * modeling the probability distribution of the state duration, let U n ∈ IN * be the time during which X n remains in the same state, and let δ xi (.) be the Dirac mass on x i . Then the semi-MC model can be written as

p(u i+1 |u i ) = δ ui-1 (u i+1 ) if u i > 1 q(u i+1 ) if u i = 1 ; (4) p(x i+1 |x i , u i ) = δ xi (x i+1 ) if u i > 1 p(x i+1 |x i ) if u i = 1 , (5) 
with p(x i+1 |x i ) = 0 for x i+1 = x i . Consequently HSMC happen to be particular TMC (with auxiliary chain U ), in which the three transition pdf in the r.h.s. of factorization (2) reduce respectively to p(u

i+1 |t i ) = p(u i+1 |u i ) given by (4), p(x i+1 |u i+1 , t i ) = p(x i+1 |x i , u i )
given by ( 5), and p(y i+1 |x i+1 , u i+1 , t i ) = p(y i+1 |x i+1 ). Notice that the fact that HSMC are particular TMC enables to consider a lot of TMC models generalizing HSMC [Pieczynski, 2004]. (iv) Non-stationary hidden chain X. Let us consider the problem of unsupervised restoration using the classical HMC-IN Z = (X, Y ). The assumption that X is stationary cannot always be done, and yet this assumption is required when estimating the model parameters. However, the possible non stationarity of X can also be modeled by "mass functions", which can be seen as an extension of the probability distribution on discrete finite sets, and then the computation of the posterior distribution of X becomes a particular "Dempster-Shafer" fusion. Now, one can show that introducing mass functions is mathematically equivalent to considering some TMC, which in turn enables one to use different Bayesian algorithms. In particular, using TMC in unsupervised image segmentation enables to improve the results obtained with classical HMC [Lanchantin and Pieczynski, 2004b]. (v) Vector auxiliary chain. In a TMC T = (X, U, Y ) the chain U can be a vector one. For instance, it is possible to deal with non-stationary HSMC by introducing the pair U = (W, S), in which W models the fact that an HSMC is a TMC, and S models the fact that the TMC (X, W, Y ), which is seen as a PMC (V , Y ) with V = (X, W ), is not stationary.

Discrete hidden chain with continuous auxiliary chain

Let us now give two examples of TMC models with a discrete hidden chain and a continuous auxiliary chain; the first one, in which (U, Y ) is Gaussian conditionally on X, enables to model complex noise distributions; while the second one, in which (U, Y ) is not Gaussian conditionally on X, appears in radar signal or images modeling.

(i) Consider the following model : let T = (X, U, Y ) be an MC, X be an MC, and (U, Y ) be Gaussian conditionnally on X. Since T is an MC, the conditional law of (U, Y ) given X is an MC as well. However the conditional distribution of Y given X remains Gaussian but is no longer necessarily an MC (the proof of this result is an adaptation of the proof in [Pieczynski and[START_REF] Pieczynski | [END_REF]Pieczynski, 2003a]), so these simple assumptions can lead to "noise" models (i.e., p(y|x)) which are significantly more complex than those one usually deals with. Unfortunately, computing p(x i |y) exactly is not feasible and approximate methods are needed, as we now briefly explain. Let x i ∈ Ω. Since T is an MC, the distribution of (X, U ) conditionally on Y is also an MC, the transitions of which can be computed by the "backward" recursion (with the difference that now U i is continuous). As in section 2, let us classically set β n (v n ) = 1 and

β i (v i ) = xi+1∈Ω IR p(t i+1 |t i )β i+1 (v i+1 )du i+1 for 1 ≤ i ≤ n -1. (6) Then p(v i+1 |v i , y) = p(ti+1|ti)βi+1(vi+1) βi(vi)
, so p(v i+1 |v i , y) can be computed if β i (v i ) can be computed. But we see from (6) that β i (v i ) is a rather rich mixture, containing, for k classes, k n-i components.

(ii) Speckle distribution in SAR images. TMC with a discrete hidden chain and a continuous auxiliary chain are encountered for instance in radar signal or images, as we see from the following example. Let us consider a TMC T = (X, U, Y ) such that X is an MC, and p(u, y|x) = n i=1 p(u i , y i |x i ). Let also p(u i , y i |x i ) = p(u i |x i )p(y i |u i , x i ), in which p(u i |x i ) are Gamma distributions, and p(y i |u i , x i ) are Gaussian distributions with mean µ(x i ) and variance σ 2 (u i , x i ) = u i σ 2 (x i ). Then the distributions p(y i |x i ) are the so-called "K-distributions", and the chain U is the "speckle" process [START_REF] Barnard | [END_REF]] [Delignon and Pieczynski, 2002] [Brunel and Pieczynski, 2005].

Continuous hidden chain with discrete auxiliary chain

In this section we assume that T is a TMC in which both X and Y are continuous, and U is discrete with u i ∈ Λ. As in section 2, switching or jump-Markov models, i.e. models in which U is assumed to be an MC, and (X, Y ) is an HMC-IN conditionally on U , are well known simple examples of such TMC; for such models the 3 factors in the r.h.s. of (2) reduce respectively to p(u

i+1 |t i ) = p(u i+1 |u i ), p(x i+1 |u i+1 , t i ) = p(x i+1 |u i+1 , x i ), and p(y i+1 |x i+1 , u i+1 , t i ) = p(y i+1 |x i+1 , u i+1 ).
Let us now consider the restoration problem. Although the physical meanings of the TMC models we deal with in this section are very different of those of section 3, the mathematical modeling and computational difficulties are indeed quite similar. Let us for instance consider the filtering problem, which consists in computing p(x i |y 0:i ). A recursive solution is given by

p(x i |y 0:i ) = ui-1∈Λ p(x i , u i , y i |x i-1 , u i-1 , y i-1 )p(x i-1 , u i-1 |y 0:i-1 )dx i-1 p(y i |y 0:i-1 )
which, in general, cannot be computed in closed form. This computational problem is already encountered in the context of jump-Markov models. In particular, the linear Gaussian case has been studied for a long time, and as is well known the exact computation of the posterior filtered or smoothed estimates leads to a computational cost which grows exponentially with time (see e.g. [Tugnait, 1982] and the references therein). So approximate solutions have been proposed, see e.g. [Tugnait, 1982] [Kim, 1994] [Bar-Shalom and Li, 1995] [Doucet et al., 2001]. Reformulating the jump-Markov model as a particular TMC does not help in solving the filtering problem; however, it can lead to interesting generalizations, to which the classical approximate methods designed for jump-Markov systems could be extended. For instance, in the TMC above U is a discrete MC and thus T can be viewed as a "hidden" MC. Such an HMC could then be extended to an HSMC, as specified in section 2, item (iii).

Continuous hidden chain with continuous auxiliary chain

TMC with continuous processes X, U and Y are used in some applications, including the extensions of the classical linear state-space system (7) to colored process and/or measurement noise. Let

X n+1 = F n X n + G n η n Y n = H n X n + J n ξ n , (7) 
in which η n is the process noise and ξ is the measurement noise. F n , G n , H n and J n are known deterministic matrices, and processes η = {η n } n∈IN and ξ = {ξ n } n∈IN are assumed to be independent, jointly independent and independent of X 0 . As a consequence, (X, Y ) is an HMC-IN. The filtering problem consists in computing the posterior pdf p(x n |y 0:n ). From (7), p(x i |y 0:i ) can be computed recursively as

p(x i+1 |y 0:i+1 ) = p(y i+1 |x i+1 ) p(x i+1 |x i )p(x i |y 0:i )dx i p(y i+1 |x i+1 )[ p(x i+1 |x i )p(x i |y 0:i )dx i ]dx i+1 . (8) 
If furthermore X 0 and (η n , ξ n ) are Gaussian, then p(x n |y 0:n ) is also Gaussian and is thus described by its mean and covariance matrix. Propagating p(x n |y 0:n ) amounts to propagating these parameters, and (8) reduces to the celebrated Kalman filter [Kalman, 1960] see also [START_REF] Ho | [END_REF]] [Anderson and Moore, 1979] [Kailath et al., 2000]. It happens that some classical extensions of model ( 7) are particular TMC. Consider for instance model ( 7), but in which we now assume that

η n+1 ξ n+1 = A η,η n 0 0 A ξ,ξ n An η n ξ n un + η n ξ n , n (9) 
where η = { η n } n∈IN (resp. ξ = { ξ n } n∈IN is zero-mean, independent and independent of η 0 (resp. of ξ 0 ), and η and ξ are independent. Each one of the two processes η = {η n } n∈IN and ξ = {ξ n } n∈IN is thus an MC, and η is independent of ξ. Such a model has been introduced by Sorenson [Sorenson, 1966] (see also [Chui and Chen, 1999, ch. 5]). It is no longer an HMC (X is not an MC), but the whole model T n = (X n , U n , Y n-1 ) can be rewritten as

  X n+1 U n+1 Y n   Tn+1 =   F n G n 0 0 A n 0 H n J n 0   Fn   X n U n Y n-1   +   0 n 0   Wn (10) 
(with G n = [G n , 0] and J n = [0, J n ]), and so T = {T n } is a TMC.

Model ( 10) is indeed a particular case of a linear TMC, defined by T n+1 = F n T n +W n , with T n = (X n , U n , Y n-1 ), and W n independent and independent of T 0 . p(x n |y 0:n ) is obtained by marginalizing p(v n |y 0:n ) which, in the Gaussian case, can be computed efficiently by a Kalman-like filtering algorithm [START_REF] Pieczynski | [END_REF]Pieczynski, 2003a] [Ait-el-Fquih andDesbouvries, 2005b]. Kalmanlike smoothing algorithms, extending to linear Gaussian TMC the two-filter and RTS smoothers, have also been derived [Ait-el-Fquih and Desbouvries, 2005a].

Parameter estimation

Let us finally mention that the model parameters can be estimated from the observed data Y , either by using the well-known "Expectation-Maximization" (EM) method [START_REF] Mclachlan | [END_REF] or the "Iterative conditional estimation" (ICE) method (some relationships between ICE and EM can be found in [Delmas, 1997]).

As an illustrative example, let us see how the model parameters can be estimated by ICE, which we first briefly recall. Parameter estimation according to the ICE principle can be performed once (i) an estimator θ(X, Y ) of the parameters θ from the complete data (X, Y ) is available; and (ii) one can sample X according to p(x|y).

Then ICE is described by the recursion θ q+1 = E( θ(X, Y )|Y = y, θ q ), starting with some initial value θ 0 . If for some components θ j of θ this expectation cannot be computed, one samples x 1 , • • • , x l according to p(x|y, θ q ) and sets θ q+1 j = 1 l l i=1 θj (x i , y). Let us turn to parameter estimation in PMC and TMC. Let us first remark that the problem is identical in both cases, since a TMC T = (X, U, Y ) can be seen as a PMC (V, Y ) with V = (X, U ). Let us as an illustrative example consider the case of a stationary PMC Z = (X, Y ) = (X 1 , Y 1 , • • • X n , Y n ) in which p(z i , z i+1 ) does not depend on i. So the distribution of Z is given by p(z 1 , z 2 ) = p(x 1 , x 2 )p(y 1 , y 2 |x 1 , x 2 ). Assume that X i ∈ Ω = {ω 1 , ω 2 } and that p(y 1 , y 2 |x 1 , x 2 ) are Gaussian. Then the model parameter consists of θ = (α, β), where α gathers the four parameters α = {α i,j = p(x 1 = ω i , x 2 = ω j )} 2 i,j=1 , and β = {β i } 20 i=1 the twenty parameters of the four Gaussian densities {p(y 1 , y 2 |x 1 , x 2 )} x1,x2∈Ω×Ω on IR 2 .

Let us now apply ICE to this model. Let θ(X, Y ) = (α(X), β(X, Y )). α(X) can be chosen as the classical frequency estimator, and β(X, Y ) as the classical empirical means and variance-covariance matrices. Then α q+1 i = E(α i (X)|Y = y, θ q ) can be computed, but β q+1 i = E( βi (X, Y )|Y = y, θ q ) cannot. In practice, the interest of PMC over HMC-IN in unsupervised segmentation using the ICE principle has been proven by different experiments [Derrode and Pieczynski, 2004]. On the other hand, using copulas enables to extend ICE to the case where the exact nature of the noise distribution is not known (it can take different possible forms) [Brunel and Pieczynski, 2003].

in this formula p(z) denotes the probability density function (pdf) of Z w.r.t. κ n ⊗ µ n , p(xi) the pdf of Xi w.r.t. κ, and p(yi|xi) the conditional pdf (w.r.t. µ) of Yi given Xi, where κ denotes the counting measure and µ denotes the Lebesgue measure. Later on, other pdf or conditional pdf w.r.t. Lebesgue measure, counting measure, or product measures involving the Lebesgue and/or the counting measure(s) will also be considered; the true meaning of p(.) or of p(.|.) is easily deduced from the context.