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Abstract. The restoration of a hidden process X from an observed process Y is
often performed in the framework of hidden Markov chains (HMC). HMC have
been recently generalized to triplet Markov chains (TMC). In the TMC model one
introduces a third random chain U and assumes that the triplet T = (X, U, Y ) is
a Markov chain (MC). TMC generalize HMC but still enable the development of
efficient Bayesian algorithms for restoring X from Y . This paper lists some recent
results concerning TMC; in particular, we recall how TMC can be used to model
hidden semi-Markov Chains or deal with non-stationary HMC.
Keywords: hidden Markov chains, hidden semi-Markov chains, pairwise Markov
chains, triplet Markov chains, Bayesian segmentation, Kalman filtering and smooth-
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1 Introduction

An important problem in statistical data restoration consists in estimat-
ing a hidden random chain X = {Xi}

n
i=1 from an observed random chain

Y = {Yi}
n
i=1. Let Xi be discrete and Yi continuous. Many Bayesian meth-

ods are available once the distribution of Z = (X, Y ) is simple enough.
In particular, HMC with independent noise (HMC-IN), in which1 p(z) =
p(x1)p(x2|x1) · · · p(xn|xn−1) p(y1|x1) · · · p(yn|xn) have been widely used and
studied (see e.g. [Ephraim and Merhav, 2002] for a recent tutorial).

The pairwise Markov chains (PMC) model has been proposed recently
[Pieczynski, 2003] [Derrode and Pieczynski, 2004]. In a PMC one assumes
that Z = (X, Y ) is an MC, i.e. that p(z) = p(z1)p(z2|z1) · · · p(zn|zn−1). Any

1 in this formula p(z) denotes the probability density function (pdf) of Z w.r.t.
κn ⊗ µn, p(xi) the pdf of Xi w.r.t. κ, and p(yi|xi) the conditional pdf (w.r.t. µ)
of Yi given Xi, where κ denotes the counting measure and µ denotes the Lebesgue
measure. Later on, other pdf or conditional pdf w.r.t. Lebesgue measure, count-
ing measure, or product measures involving the Lebesgue and/or the counting
measure(s) will also be considered; the true meaning of p(.) or of p(.|.) is easily
deduced from the context.
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HMC-IN is a PMC, but the converse is not true, because in a PMC X is no
longer necessarily an MC; however, conditionally on Y , X remains an MC,
and in turn this key computational property enables the development of anal-
ogous Bayesian restoration algorithms [Lipster and Shiryaev, 2001, corollary
1 p. 72] [Pieczynski, 2003] [Pieczynski and Desbouvries, 2003] [Desbouvries and Pieczynski, 2003b].
PMC have been further extended to TMC. In the TMC model one introduces
a third chain U = {Ui}

n
i=1 (which can be physically meaningful or not) and

assumes that the triplet T = (X, U, Y ) is an MC [Pieczynski et al., 2002]
[Pieczynski, 2002]. TMC generalize some classical models in the sense that
none of the chains X , U , Y , V = (X, U), Z = (X, Y ) or (U, Y ) needs to be
an MC.

The wider generality of PMC w.r.t. HMC and of TMC w.r.t. PMC
can also be seen through the expression of p(y|x). In an HMC-IN p(y|x) =
p(y1|x1) · · · p(yn|xn), which is very simple, and undoubtedly too simple in
some applications, including speech recognition [Wellekens, 1987] [Ostendorf et al., 1996];
in a PMC p(y|x) is an MC, which is much richer; and in a TMC p(y|x) is
the marginal distribution of the MC p(u, y|x), which is still much richer than
an MC. In such applications as image processing, these increasingly complex
models are likely to meet the growing need for a better modeling of the noise
[Pérez, 2003].

Apart from this general discussion, the contribution of the TMC model
(w.r.t. other possible extensions of the HMC-IN model) appears when de-
scribing how they encompass and extend some well known stochastic models.
This is better appreciated at the local level, as we now see from a simple ex-
ample. By definition, a TMC distribution is defined by p(t1) and by p(ti+1|ti),
which itself can be written by different expressions. In particular, the follow-
ing factorizations will prove useful in the sequel :

p(ti+1|ti) = p(xi+1|ti)p(ui+1|xi+1, ti)p(yi+1|xi+1, ui+1, ti) (1)

= p(ui+1|ti)p(xi+1|ui+1, ti)p(yi+1|xi+1, ui+1, ti). (2)

The HMC-IN model is obtained from (1) if p(xi+1|ti) reduces to p(xi+1|xi),
p(ui+1|xi+1, ti) to δxi+1

(ui+1) (with δxi+1
the Dirac mass, which simply means

that ui+1 = xi+1), and p(yi+1|xi+1, ui+1, ti) to p(yi+1|xi+1). Other (non-
trivial) examples will be given below.

The aim of this paper is to summarize some recent results (some of which
are still under review) concerning the large family of TMC. In particular, we
will see that the TMC model gathers some well known dynamical stochastic
models (and thus provides a unifying framework for these models), as well as
some new extensions of these models, and yet still enables the development
of efficient hidden chain restoration and parameter estimation algorithms.

The rest of this paper is organized as follows. We will say that X (resp.
U , Y ) is discrete (resp. continuous) if each Xi (resp. Ui, Yi) takes discrete
(resp. continuous) values, and in this paper X and U can be either discrete
or continuous (Y will be assumed to be continuous). So we have four possible
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situations, which are discussed in sections 2 to 5; as we will see, depending
on the situation U admits a physical interpretation (see e.g. §2, item (iii), or
§3, item (ii)) or not (see e.g. §2, item (i), or §3, item (i)). Finally section 6
is devoted to parameter estimation.

2 Discrete hidden chain with discrete auxiliary chain

Let X and U be discrete, with Xi ∈ Ω and Ui ∈ Λ. In this section we shall
briefly recall why some classical Bayesian methods like Maximum Posterior
Mode (MPM) can be used in TMC. Let T = (X, U, Y ) be an MC. The
conditional law of V = (X, U) given Y is then an MC, with initial pdf and
transitions given by

p(v1|y) =
p(t1)β1(v1)

∑

v1∈Ω×Λ p(t1)β1(v1)
, p(vi+1|vi, y) =

p(ti+1|ti)βi+1(vi+1)

βi(vi)
, (3)

in which βi can be computed via the classical backward recursions : βn(vn) =
1 and βi(vi) =

∑

vi+1∈Ω×Λ p(ti+1|ti)βi+1(vi+1) for 1 ≤ i ≤ n−1. Once p(v1|y)
has been computed, the a posteriori marginals are computed recursively via
p(vi+1|y) =

∑

vi∈Ω×Λ p(vi|y)p(vi+1|vi, y). Finally p(xi|y) =
∑

ui∈Λ p(vi|y),
and thus the MPM estimate, which is defined by

[x̂MPM (y) = {x̂i}
n
i=1] ⇐⇒ [for all i, 1 ≤ i ≤ n, x̂i = arg max

xi

p(xi|y)],

can be computed.
Let us now describe five particular applications of TMC in which this

MPM restoration algorithm can be used.

(i) Mixture approximation. Assume that a given PMC (X, Y ) is stationary,
i.e. that p(xi, xi+1, yi, yi+1) does not depend on i. Then the distribu-
tion of (X, Y ) is given by p(x1, x2, y1, y2) = p(x1, x2) p(y1, y2|x1, x2). If
p(y1, y2|x1, x2) is not known exactly, one can approximate it by a mixture
distribution (for instance a Gaussian one)

p(y1, y2|x1, x2) =
∑

u1,u2∈Λ×Λ

p(u1, u2)p(y1, y2|x1, x2, u1, u2),

and in this case the model we implicitely deal with is actually a stationary
TMC model, the distribution of which is defined by p(t1, t2) = p(u1, u2)
p(x1, x2) p(y1, y2|x1, x2, u1, u2).

(ii) ”Switching” or ”jumping” models”. One way to model non station-
ary hidden chains is to assume that for each i, 1 ≤ i ≤ n − 1, there
are m possible transitions p(xi+1|xi, ui) with ui ∈ Λ = {λj}

m
j=1. One

usually considers that ui is a realization of Ui, and (U1, · · · , Un) is an
MC. If we directly assume that (X, U) is an MC then we obtain a more
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general model since U does not need to be an MC any longer. This
model has been successfully applied in non stationary image segmentation
[Lanchantin and Pieczynski, 2004a]. A further generalization consists in
assuming that (X, U, Y ) is a general TMC.

(iii) Hidden semi-Markov chains (HSMC). When X is an MC, the distribution
of the sojourn duration in a given state is exponential, which is restrictive
in some situations. In HSMC this distribution can be of any form; these
models thus extend HMC, and yet still enable analogous processing, see
e.g. [Yu and Kobayashi, 2003] [Moore and Savic, 2004] [Guédon, 2005].
Let q be a pdf on IN∗ modeling the probability distribution of the state
duration, let Un ∈ IN∗ be the time during which Xn remains in the same
state, and let δxi

(.) be the Dirac mass on xi. Then the semi-MC model
can be written as

p(ui+1|ui) =

{
δui−1(ui+1) if ui > 1
q(ui+1) if ui = 1

; (4)

p(xi+1|xi, ui) =

{
δxi

(xi+1) if ui > 1
p(xi+1|xi) if ui = 1

, (5)

with p(xi+1|xi) = 0 for xi+1 = xi. Consequently HSMC happen to be
particular TMC (with auxiliary chain U), in which the three transition
pdf in the r.h.s. of factorization (2) reduce respectively to p(ui+1|ti) =
p(ui+1|ui) given by (4), p(xi+1|ui+1, ti) = p(xi+1|xi, ui) given by (5), and
p(yi+1|xi+1, ui+1, ti) = p(yi+1|xi+1). Notice that the fact that HSMC are
particular TMC enables to consider a lot of TMC models generalizing
HSMC [Pieczynski, 2004].

(iv) Non-stationary hidden chain X . Let us consider the problem of un-
supervised restoration using the classical HMC-IN Z = (X, Y ). The
assumption that X is stationary cannot always be done, and yet this as-
sumption is required when estimating the model parameters. However,
the possible non stationarity of X can also be modeled by ”mass func-
tions”, which can be seen as an extension of the probability distribution
on discrete finite sets, and then the computation of the posterior distri-
bution of X becomes a particular ”Dempster-Shafer” fusion. Now, one
can show that introducing mass functions is mathematically equivalent
to considering some TMC, which in turn enables one to use different
Bayesian algorithms. In particular, using TMC in unsupervised image
segmentation enables to improve the results obtained with classical HMC
[Lanchantin and Pieczynski, 2004b].

(v) Vector auxiliary chain. In a TMC T = (X, U, Y ) the chain U can be a
vector one. For instance, it is possible to deal with non-stationary HSMC
by introducing the pair U = (W, S), in which W models the fact that an
HSMC is a TMC, and S models the fact that the TMC (X, W, Y ), which
is seen as a PMC (V ′, Y ) with V ′ = (X, W ), is not stationary.
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3 Discrete hidden chain with continuous auxiliary

chain

Let us now give two examples of TMC models with a discrete hidden chain
and a continuous auxiliary chain; the first one, in which (U, Y ) is Gaussian
conditionally on X , enables to model complex noise distributions; while the
second one, in which (U, Y ) is not Gaussian conditionally on X , appears in
radar signal or images modeling.

(i) Consider the following model : let T = (X, U, Y ) be an MC, X be an
MC, and (U, Y ) be Gaussian conditionnally on X . Since T is an MC,
the conditional law of (U, Y ) given X is an MC as well. However the
conditional distribution of Y given X remains Gaussian but is no longer
necessarily an MC (the proof of this result is an adaptation of the proof in
[Pieczynski and Desbouvries, 2003] [Desbouvries and Pieczynski, 2003a]),
so these simple assumptions can lead to ”noise” models (i.e., p(y|x))
which are significantly more complex than those one usually deals with.
Unfortunately, computing p(xi|y) exactly is not feasible and approximate
methods are needed, as we now briefly explain. Let xi ∈ Ω. Since T is
an MC, the distribution of (X, U) conditionally on Y is also an MC,
the transitions of which can be computed by the ”backward” recursion
(with the difference that now Ui is continuous). As in section 2, let us
classically set βn(vn) = 1 and

βi(vi) =
∑

xi+1∈Ω

∫

IR

p(ti+1|ti)βi+1(vi+1)dui+1 for 1 ≤ i ≤ n − 1. (6)

Then p(vi+1|vi, y) = p(ti+1|ti)βi+1(vi+1)
βi(vi)

, so p(vi+1|vi, y) can be computed

if βi(vi) can be computed. But we see from (6) that βi(vi) is a rather
rich mixture, containing, for k classes, kn−i components.

(ii) Speckle distribution in SAR images. TMC with a discrete hidden chain
and a continuous auxiliary chain are encountered for instance in radar
signal or images, as we see from the following example. Let us con-
sider a TMC T = (X, U, Y ) such that X is an MC, and p(u, y|x) =
∏n

i=1 p(ui, yi|xi). Let also p(ui, yi|xi) = p(ui|xi)p(yi|ui, xi), in which
p(ui|xi) are Gamma distributions, and p(yi|ui, xi) are Gaussian distribu-
tions with mean µ(xi) and variance σ2(ui, xi) = uiσ

2(xi). Then the dis-
tributions p(yi|xi) are the so-called ”K-distributions”, and the chain U is
the ”speckle” process [Barnard and Weiner, 1996] [Delignon and Pieczynski, 2002]
[Brunel and Pieczynski, 2005].

4 Continuous hidden chain with discrete auxiliary

chain

In this section we assume that T is a TMC in which both X and Y are
continuous, and U is discrete with ui ∈ Λ. As in section 2, switching or
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jump-Markov models, i.e. models in which U is assumed to be an MC, and
(X, Y ) is an HMC-IN conditionally on U , are well known simple examples
of such TMC; for such models the 3 factors in the r.h.s. of (2) reduce re-
spectively to p(ui+1|ti) = p(ui+1|ui), p(xi+1|ui+1, ti) = p(xi+1|ui+1, xi), and
p(yi+1|xi+1, ui+1, ti) = p(yi+1|xi+1, ui+1).

Let us now consider the restoration problem. Although the physical mean-
ings of the TMC models we deal with in this section are very different of those
of section 3, the mathematical modeling and computational difficulties are
indeed quite similar. Let us for instance consider the filtering problem, which
consists in computing p(xi|y0:i). A recursive solution is given by

p(xi|y0:i) =

∑

ui−1∈Λ

∫
p(xi, ui, yi|xi−1, ui−1, yi−1)p(xi−1, ui−1|y0:i−1)dxi−1

p(yi|y0:i−1)

which, in general, cannot be computed in closed form.
This computational problem is already encountered in the context of

jump-Markov models. In particular, the linear Gaussian case has been stud-
ied for a long time, and as is well known the exact computation of the poste-
rior filtered or smoothed estimates leads to a computational cost which grows
exponentially with time (see e.g. [Tugnait, 1982] and the references therein).
So approximate solutions have been proposed, see e.g. [Tugnait, 1982] [Kim, 1994]
[Bar-Shalom and Li, 1995] [Doucet et al., 2001]. Reformulating the jump-
Markov model as a particular TMC does not help in solving the filtering
problem; however, it can lead to interesting generalizations, to which the
classical approximate methods designed for jump-Markov systems could be
extended. For instance, in the TMC above U is a discrete MC and thus T

can be viewed as a ”hidden” MC. Such an HMC could then be extended to
an HSMC, as specified in section 2, item (iii).

5 Continuous hidden chain with continuous auxiliary

chain

TMC with continuous processes X , U and Y are used in some applications,
including the extensions of the classical linear state-space system (7) to col-
ored process and/or measurement noise. Let

{
Xn+1 = FnXn + Gnηn

Yn = HnXn + Jnξn
, (7)

in which ηn is the process noise and ξ is the measurement noise. Fn, Gn,
Hn and Jn are known deterministic matrices, and processes η = {ηn}n∈IN

and ξ = {ξn}n∈IN are assumed to be independent, jointly independent and
independent of X0. As a consequence, (X, Y ) is an HMC-IN. The filter-
ing problem consists in computing the posterior pdf p(xn|y0:n). From (7),
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p(xi|y0:i) can be computed recursively as

p(xi+1|y0:i+1) =
p(yi+1|xi+1)

∫
p(xi+1|xi)p(xi|y0:i)dxi

∫
p(yi+1|xi+1)[

∫
p(xi+1|xi)p(xi|y0:i)dxi]dxi+1

. (8)

If furthermore X0 and (ηn, ξn) are Gaussian, then p(xn|y0:n) is also Gaus-
sian and is thus described by its mean and covariance matrix. Propagat-
ing p(xn|y0:n) amounts to propagating these parameters, and (8) reduces
to the celebrated Kalman filter [Kalman, 1960] see also [Ho and Lee, 1964]
[Anderson and Moore, 1979] [Kailath et al., 2000].

It happens that some classical extensions of model (7) are particular TMC.
Consider for instance model (7), but in which we now assume that

[
ηn+1

ξn+1

]

=

[
Aη,η

n 0
0 Aξ,ξ

n

]

︸ ︷︷ ︸

An

[
ηn

ξn

]

︸ ︷︷ ︸

un

+

[
εη
n

εξ
n

]

,

︸ ︷︷ ︸

εn

(9)

where εη = {εη
n}n∈IN (resp. εξ = {εξ

n}n∈IN is zero-mean, independent and in-
dependent of η0 (resp. of ξ0), and εη and εξ are independent. Each one of the
two processes η = {ηn}n∈IN and ξ = {ξn}n∈IN is thus an MC, and η is inde-
pendent of ξ. Such a model has been introduced by Sorenson [Sorenson, 1966]
(see also [Chui and Chen, 1999, ch. 5]). It is no longer an HMC (X is not
an MC), but the whole model Tn = (Xn, Un, Yn−1) can be rewritten as





Xn+1

Un+1

Yn





︸ ︷︷ ︸

Tn+1

=





Fn Gn 0
0 An 0

Hn Jn 0





︸ ︷︷ ︸

Fn





Xn

Un

Yn−1



 +





0
εn

0





︸ ︷︷ ︸

Wn

(10)

(with Gn = [Gn, 0] and Jn = [0, Jn]), and so T = {Tn} is a TMC.
Model (10) is indeed a particular case of a linear TMC, defined by Tn+1 =

FnTn+Wn, with Tn = (Xn, Un, Yn−1), and Wn independent and independent
of T0. p(xn|y0:n) is obtained by marginalizing p(vn|y0:n) which, in the Gaus-
sian case, can be computed efficiently by a Kalman-like filtering algorithm
[Desbouvries and Pieczynski, 2003a] [Ait-el-Fquih and Desbouvries, 2005b]. Kalman-
like smoothing algorithms, extending to linear Gaussian TMC the two-filter
and RTS smoothers, have also been derived [Ait-el-Fquih and Desbouvries, 2005a].

6 Parameter estimation

Let us finally mention that the model parameters can be estimated from the
observed data Y , either by using the well-known ”Expectation-Maximization”
(EM) method [McLachlan and Krishnan, 1997] or the ”Iterative conditional
estimation” (ICE) method (some relationships between ICE and EM can be
found in [Delmas, 1997]).
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As an illustrative example, let us see how the model parameters can be es-
timated by ICE, which we first briefly recall. Parameter estimation according
to the ICE principle can be performed once

(i) an estimator θ̂(X, Y ) of the parameters θ from the complete data (X, Y )
is available; and

(ii) one can sample X according to p(x|y).

Then ICE is described by the recursion θq+1 = E(θ̂(X, Y )|Y = y, θq), starting
with some initial value θ0. If for some components θj of θ this expectation
cannot be computed, one samples x1, · · · , xl according to p(x|y, θq) and sets

θ
q+1
j = 1

l

∑l
i=1 θ̂j(x

i, y).
Let us turn to parameter estimation in PMC and TMC. Let us first re-

mark that the problem is identical in both cases, since a TMC T = (X, U, Y )
can be seen as a PMC (V, Y ) with V = (X, U). Let us as an illustrative exam-
ple consider the case of a stationary PMC Z = (X, Y ) = (X1, Y1, · · ·Xn, Yn)
in which p(zi, zi+1) does not depend on i. So the distribution of Z is given
by p(z1, z2) = p(x1, x2)p(y1, y2|x1, x2). Assume that Xi ∈ Ω = {ω1, ω2}
and that p(y1, y2|x1, x2) are Gaussian. Then the model parameter con-
sists of θ = (α, β), where α gathers the four parameters α = {αi,j =
p(x1 = ωi, x2 = ωj)}

2
i,j=1, and β = {βi}

20
i=1 the twenty parameters of the

four Gaussian densities {p(y1, y2|x1, x2)}x1,x2∈Ω×Ω on IR2.

Let us now apply ICE to this model. Let θ̂(X, Y ) = (α̂(X), β̂(X, Y )).

α̂(X) can be chosen as the classical frequency estimator, and β̂(X, Y ) as the
classical empirical means and variance-covariance matrices. Then α

q+1
i =

E(α̂i(X)|Y = y, θq) can be computed, but β
q+1
i = E(β̂i(X, Y )|Y = y, θq)

cannot. In practice, the interest of PMC over HMC-IN in unsupervised seg-
mentation using the ICE principle has been proven by different experiments
[Derrode and Pieczynski, 2004]. On the other hand, using copulas enables to
extend ICE to the case where the exact nature of the noise distribution is not
known (it can take different possible forms) [Brunel and Pieczynski, 2003].
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l’Académie des Sciences - Mathématiques, 335:275–278, 2002. in French.

[Pieczynski, 2003]W. Pieczynski. Pairwise Markov chains. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 25(5):634–39, May 2003.
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