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Introduction

Deformable image registration is a well-known concept and it is a challenging image processing task that has applications in various fields like astronomy [START_REF] Beroiz | Astroalign: A Python module for astronomical image registration[END_REF], optics [START_REF] Quang | Dynamic, Real-time, fiducial-free surgical navigation with integrated multimodal optical imaging[END_REF], remote sensing [START_REF] Goshtasby | 2-D and 3-D Image Registration: For Medical, Remote Sensing, and Industrial Applications[END_REF], in which researchers generate a global picture from different partial views as in security [START_REF] Akula | Image based registration and authentication system[END_REF] and compare current images with a data base and to tracking of objects as in robotics [START_REF] Liu | Image registration in medical robotics and intelligent systems: fundamentals and applications[END_REF]. In addition, image registration is an important inverse problem in the domain of medical imaging which is summarized in Refs. [START_REF] Hill | Medical image registration[END_REF][START_REF] Lester | A survey of hierarchical non-linear medical image registration[END_REF][START_REF] Maintz | A survey of medical image registration[END_REF], where radiation therapy, computational anatomy, intervention and treatment planning, computer-aided diagnosis, fusion of different modalities, monitoring of diseases, or motion correction.

Indeed, usually a geometric deformation can occur during the steps of recording, reconstruction and transmission of images of the same object. Therefore, the images need to be geometrically aligned for better interpretation, especially in clinical diagnosis using medical images. The task of image registration is the process of transforming a moving image to be in anatomical correspondence with the fixed one. It consists in determining a geometrical transformation that aligns points in a given image of an object with corresponding points of that objectin another image. The two images could be different because they were taken with the same imaging device but at different times (mono-modality images) or were acquired using different devices like scanner, positron emission tomography (PET), magnetic resonance imaging (MRI), computer tomography (CT), etc (multimodality images). In traditional image registration methods, the deformation is obtained by solving an optimization problem over a space of deformations based on similarity measure. This optimization problem is considered as a minimization of an energy which is composed of two parts

min u∈W {λ 1 D [G 1 (T (φ(x)), G 2 (R(x))] + λ 2 J(u)} , (1) 
where the deformation field is defined via the displacement field, with φ(x) = x+u(x), W is a properly chosen functional space, G 1 and G 2 are two functions which depend on the two imaging modalities, R represents the fixed image which is called the reference image, and T represents the moving image which is called the template image, both images are represented by scalar-valued functions R, T : Ω ⊂ R d -→ R, where d denotes the spatial dimension of the images.

The first part of ( 1) is a fidelity term that measures similarities between G 1 (T (φ(x))) and G 2 (R(x)), and aims to minimize the misalignment between both images R and T so that they become very similar according to some pre-defined metric. The second part of (1) is a regularisation term which controls the smoothness of u and reflects our expectations by penalising unlikely transformations.

In the last few years, when mentioning deformable registration model of challenging images, we would automatically recommend deep learning based approaches such as U-Nets [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] and Fully Convolutional Networks (FCNs) [START_REF] Long | Fully convolutional networks for semantic segmentation[END_REF]. On the other hand, deep learning approaches have been proposed in recent years by exploring data-driven approaches and the incorporation of deep learning to learn these spatial transformations without some success [START_REF] Balakrishnan | Vox-elMorph: a learning framework for deformable medical image registration[END_REF][START_REF] Qiu | Learning diffeomorphic and modality-invariant registration using B-splines[END_REF]. Generally, there are two main types of deep learning image registration. The first one is called supervised learning approach [START_REF] Cao | Deep learning based inter-modality image registration supervised by intra-modality similarity[END_REF][START_REF] Hu | Label-driven weakly-supervised learning for multimodal deformable image registration[END_REF][START_REF] Hu | Weakly-supervised convolutional neural networks for multimodal image registration[END_REF] and the second one is called unsupervised learning approach [START_REF] Hoopes | Hypermorph: Amortized hyperparameter learning for image registration[END_REF][START_REF] Balakrishnan | An unsupervised learning model for deformable medical image registration[END_REF][START_REF] Theljani | An unsupervised deep learning method for diffeomorphic mono-and multi-modal image registration[END_REF]. In the supervised case, the process requires training data which represents a ground-truth deformation field φ which may not be available at all. In order to overcome the lack of sufficient training data, recent works focus on training networks in an unsupervised case, i.e., larger set of data without ground-truth deformations. In order to obtain the deformation field, most of these works proposed the self-trained and driven of the deformations by image similarity metrics computed on the input data. Indeed, to train a convolutional neural network (CNN, or ConvNet), we minimize a loss function that has the following form

φ * = arg min φ [L(φ)] = arg min φ {λ 1 D [G 1 (T (φ(x)), G 2 (R(x))] + λ 2 J(φ)}. (2)
Most of the used CNN-based methods consider the intensity-based similarity metrics such as the normalized cross correlation(CC) or the mean squared error (MSE) as a fidelity measure [START_REF] Balakrishnan | Vox-elMorph: a learning framework for deformable medical image registration[END_REF][START_REF] Avants | Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain[END_REF]. Since these two terms make the registration between the pixels, then it is clear that such a measure only makes sense for mono-modal images, i.e., identity or linear relationship between the pixels. However, in the case of multimodality images, the reference and the moving images were acquired from different devices. Hence they most likely have different contrasts and the relationship between the intensities of two images is often much more complex. For that, the two previous terms are normally not suitable for the challenging problem of multimodal image registration. To overcome these limitations, the authors proposed the use of information-theoretic measures such as mutual information (MI) (see e.g., [START_REF] Maes | Multimodality image registration by maximization of mutual information[END_REF][START_REF] Pluim | Mutual-information-based registration of medical images: a survey[END_REF][START_REF] Theljani | An augmented Lagrangian method for solving a new variational model based on gradients similarity measures and high order regularization for multimodality registration[END_REF]).

The term 'unsupervised' means that a suitable registration model is required. In this work, we aim at developing such a model. We propose to combine closely related tasks, i.e., using image segmentation to learn geometrical information for unsupervised deformable registration. The benefit of this proposal is independent of the types of images to be registered (i.e., mono-model or multi-model images). This idea could lead us from the multimodal registration problem to a mono-modal one. Indeed, we propose an efficient unsupervised deep learning-based image registration approach that benefits from geometric information (edges and thin structures) extracted from the images using the Blake-Zisserman's energy, i.e., the image edges, during the training. This energy is well suited for detecting discontinuities at different scales, i.e., of first-and second-order. Indeed, we propose a new loss function defined by the Blake-Zisserman's function that can be used to achieve good detection quality of geometric information based on deep learning without labeled data. Then, we use this geometric information in order to define a second loss function for the image registration process. Furthermore, we introduce a novel deep neural network architecture that enables multilevel image registration, leveraging the power of deep learning to achieve more accurate and efficient image alignment across multiple scales.

Believing in the elegance of the deformable registration model using neural networks, we aim to improve the unsupervised model for this case. Our main contributions can be summarized as follows:

• We have developed a CNN neural network that uses the Blake-Zisserman's energy as a loss function to predict the geometric information of a given image. • We have built a CNN neural network that registers images by using the geometric information provided by the first neural network, allowing for the prediction of the geometric transformation and a registered image. • To improve the accuracy and convergence of the model, we have integrated a multilevel technique in the second CNN network, enabling registration at different levels of image resolution. This technique enhances the quality of the registered image obtained and accelerates the training process. This paper is organized as follows: in Section 2, we briefly discuss the benefits of the proposed loss functions and we introduce our new unsupervised deep learning-based image registration approach that benefits from geometric information (edges and thin structures) which is extracted from the images using a loss function defined by the Blake-Zisserman's energy, i.e., the image edges, during the training. Section 3 presents the data that were used to guide the unsupervised segmentation and registration process. In addition, this section displays numerical experiments. Finally, brief conclusions are drawn in Section 4.

Deep learning model

In this section, we propose a new unsupervised learning registration model for multimodality images. This approach is based on geometric information which is furnished by a loss function defined by Blake-Zisserman's energy. We extend the idea from the work of Lajili et al. [START_REF] Lajili | Edge sketches for multi-modal image registration based on Blake-Zisserman type energy[END_REF]. Indeed, the authors address the problem of multimodality image registration. Since the registration map cannot be guided by intensity matching, this type of registration is a challenging imaging problem. For that, the similarity term that measures the mis-matching between two images plays an important role. In [START_REF] Lajili | Edge sketches for multi-modal image registration based on Blake-Zisserman type energy[END_REF], a new similarity term based on Blake-Zisserman's energy is proposed. This energy gives the geometric information, more specifically the edges and thin structures, to guide the registration process. The numerical method is based on the Gauss-Newton method and a multilevel technique to speed up the optimisation process. Experimental results seem to suggest that our method outperforms other registration approaches. In addition, a major difficulty in numerical optimization for image registration is the non-convexity of the model. Constructing a numerical optimization algorithm that avoids being trapped in a local minimum is very important for solving a non-convex model. In this work, we introduce a novel unsupervised deep neural network architecture that enables multilevel image registration which avoids the trapping into local minima and achieves more accurate and efficient image registration.

Moreover, the choice of the regularization parameter in the energy (1) has a key role to obtain a diffeomorphic registration. To the best of our knowledge, there is no theoretical result that can be used to choose the best values of these regularization parameters. We think that it very much depends on the given images. For this reason, in various works, the authors make several tests with different values of this parameter and then choose the one that gives the best result. However, when we train a network by minimizing the loss function which takes the form (2), the choice of the parameter λ is easier. Subsequently, the network learning process can adapt with this value and can estimate a dense deformation field to establish image-to-image correspondence.

Related work

The aim of this paper is to develop an efficient unsupervised deep learningbased image registration method that can automatically establish the geometrical correspondences between two datasets. The proposed approach uses a Convolutional Neural Network (CNN) to detect geometric features and perform multilevel registration between the geometric information of the two images. In the sequel, we suggest to use unsupervised deep learning-based image registration approach. To align the template image with the reference one, the proposed method involves the following steps. First, the CNN is trained on a large set of images to learn the feature representations that can effectively detect the geometric information. Second, the learned CNN is used to extract the corresponding geometric information from both images i.e., the template and the reference images. Then, a multilevel registration strategy is employed to align the geometric information of the two images.

Step one: Edge detection process

Often the geometric information (edges, gradient, Hessian) of the same object in different images is the same. Therefore, this information is useful for guiding the image registration process. In order to extract this information, there are various methods, e.g., the topological gradient method [START_REF] Amstutz | Topological sensitivity analysis for elliptic differential operators of order 2m[END_REF][START_REF] Lajili | Edge detection from X-ray tomographic data for geometric image registration[END_REF] that calculates the central differences between adjacent pixels, and the Mumford-Shah model [START_REF] Droske | A Mumford-Shah level-set approach for geometric image registration[END_REF] that consists of minimizing the following energy:

F M S (g, Γ) = λ 2 Ω (f -g) 2 dx + Ω\Γ |∇g| 2 dx + νH 1 (Γ), (3) 
where f : Ω ⊂ R 2 -→ R is the observed image that has to be segmented and that can be noisy, g : Ω -→ R is a piecewise smooth approximation of f to be determined and H 1 (Γ) the Hausdorff measure that represents length of the edge set Γ.

In optimization problems of this kind, one of the major challenges is to develop efficient algorithms to compute a minima for this energy due to the non-regularity of the edge term and the non-convexity of the functional. Various algorithms have been proposed in the literature and a successful results have been obtained. We can cite the examples of algorithms that are based on the level-set method [START_REF] Tsai | Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification[END_REF][START_REF] Vese | A multiphase level set framework for image segmentation using the Mumford and Shah model[END_REF]. In [START_REF] Pock | An algorithm for minimizing the Mumford-Shah functional[END_REF], the authors proposed a convex relaxation approach which allows the computation of high quality solutions of the piecewise-smooth Mumford-Shah segmentation problem and presented a convergent primal-dual algorithm to compute the solution of the convex representation of the Mumford-Shah functional. Moreover, Chambolle investigated a non-local approximation of the Mumford-Shah functional in [START_REF] Chambolle | Finite-differences discretizations of the Mumford-Shah functional[END_REF].

However, since the functional (3) is described by first-order derivatives, it cannot detect some features of the data, such as creases (gradient discontinuities) or 'discontinuity of second order', i.e., discontinuity of the Laplacian/Hessian (see e.g., [START_REF] Lajili | Edge sketches for multi-modal image registration based on Blake-Zisserman type energy[END_REF][START_REF] Lajili | Edge detection from X-ray tomographic data for geometric image registration[END_REF][START_REF] Theljani | A discrete approximation of Blake and Zisserman energy in image denoising with optimal choice of regularization parameters[END_REF]). However, this information may be valuable in clinical diagnosis using medical images which can be useful indicative information for doctors. Moreover, the weakness of the gradient detection is that it is very sensitive to noise and blur that are always present in the images. To overcome these limitations, Blake and Zisserman have proposed in [START_REF] Blake | Visual Reconstruction[END_REF] to minimize an energy that uses first-and second-order discontinuities which takes the following form:

F BZ (g, Γ, Γ ∇ ) = λ 2 Ω (f -g) 2 dx+ Ω\(Γ∪Γ ∇ ) |∇ 2 g| 2 dx+ν 1 H 1 (Γ)+ν 2 H 1 (Γ ∇ \Γ), (4 
) where g; ∇g ∈ BV (Ω). In order to compute the minima, Ambrosio et al. (2001) proposed the energy below by adapting the techniques of Γ-convergence. This energy is defined in the Sobolev space H 2 (Ω) × H 1 (Ω) by [START_REF] Ambrosio | Variational approximation of a second order free discontinuity problem in computer vision[END_REF][START_REF] Zanetti | The Blake-Zisserman model for digital surface models segmentation[END_REF]:

BZ ε (T s , Z T ) = λ 2 Ω (T s -T ) 2 dx + α Ω Z 2 T |∇ 2 T s | 2 dx + ξ Ω (Z 2 T + σ)|∇T s | 2 dx + β Ω ε|∇Z T | 2 + (Z T -1) 2 4ϵ dx. ( 5 
)
By incorporating high-order derivatives terms, these high-order features could be easily detected by the variable Z T . For example, in the works [START_REF] Lajili | Edge sketches for multi-modal image registration based on Blake-Zisserman type energy[END_REF][START_REF] Theljani | A discrete approximation of Blake and Zisserman energy in image denoising with optimal choice of regularization parameters[END_REF][START_REF] Burrows | On a variational and convex model of the blake-zisserman type for segmentation of low-contrast and piecewise smooth images[END_REF], the authors display the benefit of using the B-Z energy for the denoising and the registration of images. In conclusion, results-driven in the latter works highlight the importance of the high-order terms in detecting and preserving thin structures.

In recent years, deep learning approaches have shown significant improvements in this area, especially with the use of convolutional neural networks (CNNs). In the present work, we propose a CNN architecture for geometric information detection that uses a loss function based on the Black Zisserman energy to enhance the detection accuracy. Subsequently, the objective is to minimize the expected loss:

Z * T = arg min Z T [L 1 (Z T )] = arg min Z T [BZ ε (T s , Z T )] (6) 
To better explain the CNN architecture, the neural network is a multilayer convolutional network with layers of convolution, batch normalization, parametric rectified linear unit (PReLU), pooling, and upsampling.

The network begins with a 2D convolutional layer with learned filters defined by a parameter. This layer uses a convolution window of size 3 × 3 and a "same" padding, meaning that the output of the layer will have the same size as the input. The output of this layer is then normalized by batch (BatchNormalization) and activated by a PReLU. A pooling layer (MaxPooling2D) with a window of 2 × 2 is then applied to the output of the first convolutional layer to reduce the size of the representation. This process of convolution, normalization, and activation is repeated several times with deeper learned filters and smaller spatial resolution, until the size of the representation is small enough to allow for accurate edge detection.

The output of the last convolutional layer is then resized using an upsampling layer (UpSampling2D) to produce a geometric information map of the same size as the original input. This information map is then merged with the output of the first convolutional layer using a concatenation operation.

The network also includes a parallel branch that processes the original image with several layers of convolution and batch normalization to extract useful features for geometric information detection. This branch also produces a feature map that is merged with the edges map using a concatenation operation.

Step two: image registration process

In this sequel, we discuss our choice for the loss function L 2 for the multimodality image registration.

Let R, T : Ω ⊆ R 2 -→ R be two given observed images, where the first is considered as the reference image and the second is considered as the template image. In order to align the template image with the reference one, we propose the following steps:

First, we detect the edges and thin structures for both images R and T by minimizing the expected loss L 1 . Then, we use this geometric information in order to define a fidelity measure in the image registration process, i.e., we use the image edges, during the training for unsupervised learning image registration.

Choice of the geometrical measure D(Z T (φ), Z R ): In this work, we use an optimal measure of the similarity which is known as the normalized cross correlation (CC) and which must be maximized when there is a linear relation between the intensities of two images, e.g., the case of mono-modal images. The CC is defined as follows:

CC(X, Y ) = Cov(X, Y ) Var(X)Var(Y ) , (7) 
where Cov(X, Y ) is the covariance between X and Y , Var(X) and Var(Y ) are the variance of X and Y , respectively. Based on this choice, in order to minimize a similarity measure, we use the following geometrical measure

D(Z T (φ), Z R ) = 1 -CC(Z T (φ), Z R ), (8) 
where Z T (respectively Z R ) is the set of edges and thin structures that are detected from image T (respectively R) by minimizing the expected loss L 1 .

Choice of the regularizer J(•): In this work, we choose a robust regularizer that allows a smoothness outside the discontinuities of the displacement field u (we use first-and second-order derivatives, i.e., gradient and Hessian) and consists in a smoothing constraints on the determinant. Accurately, this regularization term is given by:

J(φ) = ∥∇φ∥ 2 2 + ∥∇ 2 φ∥ 2 2 + 1 2 ∥ψ [ det(I 2 + ∇φ)] ∥ 2 2 , (9) 
where I 2 is the 2 × 2 identity matrix, φ is a 2D vector field and ψ(x) = (x-1) 4 x 2 . To explain the choice of this regularizer: the first regularization term is called "L 2 gradient regularization". This regularization is often used in the context of optimizing vector fields for image segmentation or deformation regularization. The goal of this regularization is to promote smooth and continuous vector fields, by penalizing abrupt variations and discontinuities. By adding this regularization term to the cost function, the model is encouraged to produce a vector field whose gradient magnitude is small, which avoids sharp jumps and discontinuities [START_REF] Fischer | Fast diffusion registration[END_REF]. The second regularization term is called "curvature regularization" or "L 2 Hessian norm regularization" [START_REF] Zhang | A novel high-order functional based image registration model with inequality constraint[END_REF]. In this expression, φ is a 2D vector field and ∇ 2 φ is the Hessian matrix of this vector field, which describes the curvature of the surface defined by the vector field. The goal of this regularization is to promote vector fields that have minimal curvature, by penalizing regions where the curvature is large. By adding this regularization term to the cost function, the model is encouraged to produce a vector field that has a smooth surface, with moderate curvature. By using this regularization, the model can performs better by avoiding the production of results that have regions with extreme curvature or singularities. This can improve the performance of the model by reducing overfitting. The third term in ( 9) is a form of regularization called "determinant regularization". This regularization is often used in the context of optimizing vector fields for image segmentation or deformation regularization. The regularization term is based on ∇φ = (∂

j φ i ) 2 i,j=1
in various works. The determinant of the matrix (I 2 + ∇φ) is computed and then transformed by the function ψ(x), which applies a stronger penalty for values of x near 1. The goal of this regularization is to promote smooth and continuous vector fields, by penalizing abrupt variations and discontinuities. Therefore, the volume is related to the determinant of the deformation. Subsequently, the addition of this term guarantees a sufficient growth of the penalty for small and large deformations respectively and ensures that the map is locally invertible [START_REF] Burger | A hyperelastic regularization energy for image registration[END_REF][START_REF] Droske | A variational approach to nonrigid morphological image registration[END_REF].

Using the regularizer J(u) defined in [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF], the model can better performs by avoiding producing results that are too "twisted" or "chaotic". This can improve the performance of the model by reducing overfitting.

Based on these two choices, we propose to train a convolutional neural network (CNN) by minimizing the following loss function

φ * = arg min φ {L 2 (φ)} = arg min φ {λ 1 [1 -CC(Z T (φ), Z R )] ( 10 
)
+λ 2 ∥∇φ∥ 2 2 + ∥∇ 2 φ∥ 2 2 + 1 2 ∥ψ [ det(∇(I 2 + φ))] ∥ 2 2 .
Deep neural network architecture that enables multilevel image registration:

We propose a multilevel approach for image registration, which involves three levels of processing. The first and second levels are performed at resolutions of 1/4 and 1/2, respectively, while the third level operates at full resolution. Multilevel image registration offers several advantages over singlelevel registration methods. By processing images at different resolutions, the multilevel approach can handle large deformations in the image while maintaining high accuracy. This is because, at low resolutions, the network can detect more global features and large-scale deformations, while at high resolutions, it can detect fine details and small-scale deformations. Additionally, multilevel image registration can reduce the computational complexity of the registration process, as lower resolution images require less processing time and memory. Furthermore, the use of multiple levels can also help to avoid getting stuck in local optima during the registration process, as it provides multiple starting points for optimization. Overall, the multilevel approach can produce more robust and accurate image registration results in a more efficient manner than single-level methods.

In this work, we use a neural network to perform image registration between two images of size 128 × 128 using the multilevel technique with three levels. The network takes two images of size 128 × 128 as input and uses multiple convolution layers, maxpooling, upsampling, and concatenation to produce three registered images and three displacement maps of sizes 32 × 32, 64 × 64, and 128 × 128.

Specifically, the network starts with convolution layers to extract features from the two input images. Then, it uses a technique called maxpooling to reduce the size of the images while preserving important features. After that, the network uses a combination of convolution and upsampling layers to increase the size of the images and scale them to the next size.

The registration process is performed in three different levels using images of different sizes at each level.

• At the first level, the network uses images of size 32 × 32 resized using a pooling layer (MaxPooling2D) and produces a registered image and a displacement map of size 32 × 32.

• At the second level, it takes the registered image produced at the first level as a moving image and resizes it using an upsampling layer (Up-Sampling2D) to be of size 64 × 64, producing another registered image and displacement map of size 64 × 64. • Finally, at the third level, it uses the registered image produced at the second level by applying an upsampling layer (Up-Sampling2D) to make it of size 128 × 128, producing a registered image and displacement map of size 128 × 128. In conclusion, the neural network that we used employs multiple image processing techniques, such as convolution, maxpooling, upsampling, and concatenation, to produce registered images and displacement maps. This enables accurate and robust image registration results. Indeed, we propose to train a convolutional neural network (CNN) that performs image registration between two images of 128×128 using the multilevel technique with three levels. This will be achieved by minimizing the following loss function:

L 2 = L 32 (φ 32 ) + L 64 (φ 64 ) + L 128 (φ 128 ) (11) 
where for s = 32, 64, 128:

L s (φ s ) =λ s 1 [1 -CC(Z Ts (φ s ), Z Rs )] (12) 
+ λ s 2 ∥∇φ s ∥ 2 2 + ∥∇ 2 φ s ∥ 2 2 + 1 2 ∥ψ [det(∇(I 2 + φ s ))] ∥ 2 2 ,
such as Z Ts (respectively Z Rs ) is the set of edges and thin structures of size s × s and φ i s represents the deformation field of size s × s.

Learning to detect geometric information and registration

In this section, we present our approach for unsupervised image registration using two trained convolutional neural networks. We begin by defining our input data set as X = {X i } N i=1 , which consists of N pairs of images, where each pair X i = [T i , R i ] consists of a template image T i and a reference image R i . Our goal is to obtain two outputs: the first one is the geometric information Z = Z T or Z = Z R and the second one is the deformations field φ s , s ∈ {32, 64, 128}, and registered images with different sizes.

To achieve this, we use two convolutional neural networks CNN 1 and CNN 2 , which are trained to perform two different tasks. The first network CNN 1 takes each pair X i as input and outputs Z i = [Z T i , Z R i ], which contains the geometric information of each image. The second network CNN 2 takes Z = {Z i } N i=1 as input and outputs the deformation field φ i s and registered images for each image pair.

We train CNN 1 by minimizing the loss function L 1 defined in [START_REF] Hill | Medical image registration[END_REF]. The purpose of this loss function is to ensure that the network produces accurate geometric information for each image. To train CNN 2 , we minimize the loss function L 2 defined in [START_REF] Balakrishnan | Vox-elMorph: a learning framework for deformable medical image registration[END_REF]. This loss function encourages the network to produce accurate deformation field that can align the template image with the reference one at each level. Fig. 1 shows the generic architecture of our neural network approach for unsupervised image registration.

Data and numerical results

The objective of this section is to demonstrate the effectiveness of the two proposed loss functions in guiding the Deep Unsupervised Learning Segmentation and Image Registration process which will be denoted by DULSIR below. To this end, we evaluate the performance of the two loss functions on a dataset of 75 pairs of 2D MRI-CT multimodal images. The dataset consists of 75 different pairs of 2D MRI-CT images when the volumetric images are cropped to the size of 128 × 128.

A computational algorithm

For training the neural networks CNN 1 and CNN 2 , the Adam optimization algorithm [START_REF] Adomian | A new approach to nonlinear partial differential equations[END_REF] is used. Adam is a commonly employed algorithm that dynamically adjusts the weights of neural networks based on gradients computed from training data. The parameters: 

λ 32 1 = λ 64 1 = λ 128 1 = 0.5, λ 32 2 = 0.02,

Results and discussion

In the sequel, we present some examples to evaluate the efficiency of the proposed DULSIR model. To assess the performance of DULSIR model, we selected different reference images and employed the network to predict the registered images. The results clearly demonstrate the effectiveness and accuracy of our model. We also compare it to the proposed method presented in [START_REF] Lajili | Edge sketches for multi-modal image registration based on Blake-Zisserman type energy[END_REF] (which will be denoted by ESM below) that uses a method for image registration based on Blake-Zisserman type energy without learning, also known as traditional or classical methods. To evaluate the quality of the registration results of both models, we use the following error measures:

i) The relative mutual information error:

M I err = D M I (T φ128 , R) D M I (T (u), R) ,
where,

D M I (T (u), R) = - R 2 p T,R (t, r) log p T,R (t, r) p T (t)p R (r) dtdr, (13) 
where p T,R is the joint probability of the gray values which can be derived from the joint histogram and p T , p R are the probability distributions of the gray values in T and R, respectively. ii) The relative normalized gradient field error:

N GF err = D N GF (T φ128 , R) D N GF (T (u), R) ,
where

D N GF (T (u), R) = Ω   1 - ∇T (u) • ∇R |∇T (u)| 2 |∇R| 2 2   dx. (14) 
A good result is indicated by a small N GF err and a large M I err . The values of the above errors are summarized in Table 1. In addition to the above two measures, to evaluate the quality visually, we use the curves of evaluation metrics ( 6) and [START_REF] Balakrishnan | Vox-elMorph: a learning framework for deformable medical image registration[END_REF], that illustrate their values during the training iterations for the detection and registration model, and the fused image before and after registration. In Fig. 2, the curves of evaluation metrics [START_REF] Hill | Medical image registration[END_REF] and [START_REF] Balakrishnan | Vox-elMorph: a learning framework for deformable medical image registration[END_REF] are presented, illustrating their values during the training iterations for the detection and registration model. It can be observed that both ( 6) and ( 11) curves consistently converge towards zero. This indicates the excellent performance of the proposed model. In Figs. 3 and4, we present a collection of medical image registration examples in which we test the detection of geometric information and the registration of a MRI image to a CT. In each case, we have a reference image and a template image of size 128 × 128 and depicting the same object. For each example, we display the fused image before registration, the geometric deformation for the R and T (denoted by Z R and Z T , respectively) that are obtained by the first convolutional neural network, and the fused Z R and Z T before registration. The second convolutional neural network takes Z T ; Z R as input and produces the registered image Z Tφ and the transformed grids φ which states the smoothness of the transformations at different three levels (see (g), (h), (i), (o), (p), and (q) in Figs. 3 and4 ). To evaluate the quality of geometric image registration visually, we show the fused image between the geometric information after registration. Clearly the image Z T is well aligned with the image Z R . After that, we interpolate the obtained deformations in the template image that gives the registered images at different three levels displayed in (k), (l) and (m). Finally, we display the fused R and T after registration and we can easily see that the image T is well aligned with the image R. By checking the errors in Table 1, we could show that our proposed model performs well, where in the example in Fig. 3, the N GF err and the M I err are equal to 1.22 and 1.31, respectively. In addition, we have N GF err = 1.05 and the M I err = 1.3 in the second example displays in Fig. 4.

In Figs. 5 and6, we compare the DULSIR model with the traditional multimodal image registration model which is denoted by the ESM model. For each model, we display the reference and the template images, the fusion image before registration, the registered image for each model. We quantify the quality of registration by fusion R and T φ (i.e., after registration) and by giving the relative normalized gradient field error and the relative mutual information error between R and T φ, which are given in Table 1. We can see that both models perform well for both examples and give satisfactory results.

In the example of Fig. 5, N GF err = 1.2 and M I err = 1.38 for new proposed DULSIR model. On the other hand, the N GF err is equal to 1.27 and the M I err is equal to 1.37 for the other model. The errors show that our proposed model performs slightly better than the ESM model. In Fig. 6, by checking the errors in Table 1, we could show that the relative mutual information error M I err = 1.27 for both models, but the relative normalized gradient field error is equal to 1.07 for our proposed DULSIR model and N GF err = 1.15 for the other model. The errors show that the proposed model gives a better result compared to the other model.

Conclusion

The non-parametric image registration for multimodality images is a challenging image processing task. In this work, we have proposed an approach to address and solve this problem using neural networks in the unsupervised case. We have developed and presented two unsupervised deep learning Fig. 2 The two loss functions: the curves of the evaluation metrics ( 6) and [START_REF] Balakrishnan | Vox-elMorph: a learning framework for deformable medical image registration[END_REF]. Clearly, the curves of the two proposed model converge to zero in both networks.

approaches for detecting the geometric information and multilevel image registration. Experimental tests have confirmed that our proposed architecture for detecting geometric information and multilevel multimodality image registration perform well. In future work, we will consider generalizations of the model to three dimensional images. 

Fig. 1 2 .

 12 Fig. 1 Architecture of the proposed segmentation and registration model: Given two observed images R and T . First, in order to obtain the geometric information, the network CNN 1 is trained by minimizing the loss function L 1 . Then, the network CNN 2 is trained by minimizing the loss L 2 that produces the deformations φs and registered images at different levels. λ 64 2 = 0.04 and λ 128 2 = 0.01 are employed to regulate the relative relevance of regularization during network optimization.

Fig. 3

 3 Fig. 3 Example of prediction result for a pair of MRI-CT images by DULSIR learning model.

Fig. 4

 4 Fig. 4 Example of prediction result for a pair of MRI-CT images by minimizing L 1 and L 2 .

  (a) R: Reference image (b) T : Template image (c) Fused R and T before registration (d) Tφ: Registered image with PROPO (e) Fused R and Tφ after registration (f) Tφ: Registered image with Matlab (g) Fused R and Tφ after registration

Fig. 5

 5 Fig. 5 Example of visualization of the results after registering a pair of MRI-CT images. (d) represents the registered image obtained by minimizing L 1 and L 2 . (f) represents the registered image using ESM model.

  (a) R: Reference image (b) T : Template image (c) Fused R and T before registration (d) Tφ: Registered image with PROPO (e) Fused R and Tφ after registration (f) Tφ: Registered image with Matlab (g) Fused R and Tφ after registration

Fig. 6

 6 Fig. 6 Example of visualization of the results after registering a pair of two pair MRI-CT images. (d) and (f) represent the registered image obtained by minimizing L 1 and L 2 . (f) represents the registered image using ESM model.

Table 1

 1 Comparisons between two models.

		Errors	DULSIR learning model Traditional ESM model
	Figure 3	N GFerr	1.22	-
		M Ierr	1.31	-
	Figure 4	N GFerr	1.05	-
		M Ierr	1.30	-
	Figure 5	N GFerr	1.2	1.27
		M Ierr	1.38	1.37
	Figure 6	N GFerr	1.07	1.15
		M Ierr	1.27	1.27
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