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Let X = {X n } n∈IN be a hidden process and Y = {Y n } n∈IN be an observed process. We assume that (X,Y ) is a (pairwise) Markov Chain (PMC). PMC are more general than Hidden Markov Chains (HMC) and yet enable the development of efficient parameter estimation and Bayesian restoration algorithms. In this paper we propose a fast (i.e., O(N)) algorithm for computing the entropy of {X n } N n=0 given an observation sequence {y n } N n=0 .

INTRODUCTION

Let (X,Y ) = {X n ,Y n } n∈IN be a joint process in which X is unobserved and Y is observed. We assume that X and Y are both discrete with X n ∈ {1, • • • , K} and Y n ∈ {1, • • • , M} for all n ∈ IN. Let X i: j = {X n } i≤n≤ j , Y i: j = {Y n } i≤n≤ j , x i: j = {x n } i≤n≤ j and y i: j = {y n } i≤n≤ j (upper case letters denote random variables (r.v.) and lower case letters their realizations). Let also p(x i: j |y i: j ), say, denote the conditional probability that X i: j = x i: j given Y i: j = y i: j . In some applications it is relevant to compute the entropy of X 0:N = {X n } N n=0 given an observation y 0:N = {y n } N n=0 , i.e. we want to compute

H(X 0:N |y 0:N ) = -∑ x 0:N p(x 0:N |y 0:N ) log p(x 0:N |y 0:N ). (1) 
The brute force computation of (1) requires O(K N ) elementary operations. However, a fast (i.e., O(K 2 N)) algorithm for computing (1) has been proposed recently [1] in the framework of Hidden Markov Chains (HMC) (see e. g. the recent tutorials [2] [3]), i.e. of processes (X,Y ) satisfying

p(x n+1 |x 0:n ) = p(x n+1 |x n ) ;
(2)

p(y 0:N |x 0:N ) = N ∏ n=0 p(y n |x 0:N ) ; (3) p(y n |x 0:N ) = p(y n |x n ) for all n, 0 ≤ n ≤ N . (4) 
Now, HMC have been generalized recently to Pairwise Markov Chains (PMC) [START_REF] Pieczynski | [END_REF], i.e. to joint processes (X,Y ) which satisfy p(x n , y n |x 0:n-1 , y 0:n-1 ) = p(x n , y n |x n-1 , y n-1 ).
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As we see from the definition, a PMC can be seen as a (vector) Markov chain in which one component is observed and the other one is hidden. Now, ( 2)-( 4) imply ( 5), so any HMC is a PMC. The converse is not true, as can be seen at the local level, since in a PMC the transition probability reads

p(x n , y n |x n-1 , y n-1 ) = p(x n |x n-1 , y n-1 )p(y n |x n , x n-1 , y n-1 ); (6) 
so an HMC is indeed a PMC in which p(x n |x n-1 , y n-1 ) reduces to p(x n |x n-1 ) and p(y n |x n , x n-1 , y n-1 ) reduces to p(y n |x n ). In other words, making use of PMC enables to model rather complex physical situations, since at time n, conditionnally on the previous state x n-1 , the probability of the current state x n may still depend on the previous observation y n-1 ; and conditionnally on x n , the probability of observation y n may still depend on the previous state x n-1 and on the previous observation y n-1 . It happens that it is possible to extend from HMC to PMC [START_REF] Pieczynski | [END_REF] the existing efficient Bayesian restoration or parameter estimation algorithms. As we shall see in this paper, it is also possible in the context of PMC to compute H(X 0:N |y 0:N ) efficiently. More precisely, our aim here is to extend to PMC the algorithm of [1]; the algorithm we obtain remains O(K 2 N).

EFFICIENT ENTROPY COMPUTATION IN PMC

From now on we assume that (X,Y ) is a PMC, i.e. that (5) holds. Let us first recall [START_REF] Cover | Elements of Information Theory[END_REF] the following basic properties of entropy :

h(U,V /w) = h(U/w) + h(V /U, w), (7) 
h(V /U, w) = ∑ u h(V /u, w)p(u|w). ( 8 
)
Let us now address the computation of H(X 0:N |y 0:N ). Let 0 ≤ n ≤ N. From ( 7), [START_REF] Rabiner | Proceedings of the IEEE[END_REF] we get

H(X 0:n |y 0:n ) = H(X n |y 0:n ) + H(X 0:n-1 |X n , y 0:n ) = H(X n |y 0:n ) + ∑ x n H(X 0:n-1 |x n , y 0:n )p(x n |y 0:n ). (9) 
On the other hand, from (5) we get

p(x 0:n-2 |x n-1 , x n , y 0:n ) = p(x 0:n-2 |x n-1 , y 0:n-1 ), (10) 
so H(X 0:n-1 |x n , y 0:n ) in ( 9) can be computed recursively by

H(X 0:n-1 |x n , y 0:n ) = H(X n-1 |x n , y 0:n ) + H(X 0:n-2 |X n-1 , x n , y 0:n ) = H(X n-1 |x n , y 0:n ) + ∑ x n-1 H(X 0:n-2 |x n-1 , x n , y 0:n )p(x n-1 |x n , y 0:n ) (10) = H(X n-1 |x n , y 0:n ) + ∑ x n-1 H(X 0:n-2 |x n-1 , y 0:n-1 )p(x n-1 |x n , y 0:n ). (11) 
It remains to compute p(x n |y 0:n ) and p(x n-1 |x n , y 0:n ) efficiently. This can be performed by an algorithm which extends to PMC [START_REF] Pieczynski | [END_REF] the (forward pass of) the Forward-Backward algorithm [6] [7] [8] [START_REF] Bahl | [END_REF], and which we now recall

p(x n-1 , x n |y 0:n ) = p(x n-1 , x n , y 0:n ) ∑ x n-1 ,x n p(x n-1 , x n , y 0:n ) (5) =
p(x n , y n |x n-1 , y n-1 )p(x n-1 |y 0:n-1 )p(y 0:n-1 ) ∑ x n-1 ,x n p(x n , y n |x n-1 , y n-1 )p(x n-1 |y 0:n-1 )p(y 0:n-1 ) = p(x n , y n |x n-1 , y n-1 )p(x n-1 |y 0:n-1 )

∑ x n-1 ,x n p(x n , y n |x n-1 , y n-1 )p(x n-1 |y 0:n-1 ) , ( 12 
) p(x n |y 0:n ) = ∑ x n-1 p(x n-1 , x n |y 0:n ), (13) 
p(x n-1 |x n , y 0:n ) = p(x n-1 , x n |y 0:n ) p(x n |y 0:n ) . ( 14 
)
Let us summarize the discussion. We got the following algorithm :

Fast algorithm for computing H(X 0:N |y 0:N ).

• At time n -1 :

-assume that we have {H(X

0:n-2 |x n-1 , y 0:n-1 )} K x n-1 =1 , {p(x n-1 |y 0:n-1 )} K x n-1 =1 . • Iteration n -1 → n :
-compute {p(x n |y 0:n )} K x n =1 and {p(x n-1 |x n , y 0:n )} K x n-1 ,x n =1 via (12), ( 13) and ( 14); -compute {H(X n-1 |x n , y 0:n ) = -∑ x n-1 p(x n-1 |x n , y 0:n ) log p(x n-1 |x n , y 0:n )} K

x n =1 ; -compute {H(X 0:n-1 |x n , y 0:n )} K

x n =1 via (11); -compute H(X n |y 0:n ) = -∑ x n p(x n |y 0:n ) log p(x n |y 0:n ); -compute H(X 0:n |y 0:n ) via [START_REF] Bahl | [END_REF].

Note that the algorithm is O(K 2 N), as was the original algorithm of[1]. Finally, we assumed that Y n is a discrete r.v., but the extension to continuous emission probability densities is straightforward.