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Abstract. The recent development of next generation sequencing al-
lows to sequence DNA at high rate and low cost, therefore facilitating
metagenomics, the study of complex microbial communities sequenced
in their natural environment. A metagenomic dataset consists of billions
of unordered small fragments of genomes (reads), coming from hundreds
or thousands of different genomes. It is very challenging to recover in-
dividual genomes from metagenomes, because of the complexity of the
task and the large amount of data. The clustering of reads into opera-
tional taxonomic units (OTUs), known as binning, is a key step but most
of computational tools are performing read assembly as pre-processing
which is computationally intensive, requiring terabytes of RAM and has
a lot of drawbacks : it produces errors and loses a lot of information.

We use abundance signals, meaning the counts of long k-mers (subse-
quences of size k) appearing in samples. We show how we can, using
online learning methods for sparse non-negative matrix factorization, re-
cover relative abundances of genomes across multiple metagenomes and
perform assembly free binning. The combinatorial explosion of the k-mers
is solved with local sensitive hashing. The underlying k-mer abundances
are estimated with sparse coding and dictionary learning techniques.

Keywords: Non negative matrix factorization - Sparse coding - Metage-
nomics - Clustering

1 Introduction

High-throughput sequencing can extract genomic information about microbial
communities in their natural environment, enabling a relatively new field of re-
search, metagenomics. Metagenomic studies already have expanded knowledge
in various domains, like ecology or human medicine with the study of human
gut microbiota [13]. The recent development of technology has improved the se-
quencing rate and lowered the cost. Therefore, more and more data is produced.
Metagenomic datasets are particularly big and complex. It consists of billions
of unordered small genome fragments, which are strings of letters (A, C, G or
T). Those are relatively small, from 100 up to 400bp (based pair), compared
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to the size of one genome, which is about 10%bp for a bacteria. Plus, they are
done in a random way, without knowing the position in the genome nor which
genome it is. That’s why recovering individual genomes, by assembling the DNA
fragments, is a very complex and challenging task.

Many computational tools aim to solve an intermediate task called binning.
Binning means clustering the reads coming from the same species or strain to-
gether. We can distinguish two different strategies for binning. A first strategy
uses de novo assembly [14] as a pre-processing step and perform binning on con-
tigs, larger fragments of DNA (103 - 10* bp). It has advantages, it reduces the
number of objects and larger sequence improve the robustness of signals. But do-
ing de-novo assembly on metagenomic dataset is computationally intensive and
requires a lot of memory. Plus, it is a source of errors and loss of information.

A second strategy is to directly tackle raw short reads. It aims to solve a
more complex problem, due to the larger number of objects it deals with, but
avoids the drawbacks of de novo assembly. We identify our contribution against
the context of this second strategy.

2 Related work

2.1 Clustering long k-mers

In order to perform binning, many methods ([3], [15]) use the number of occur-
rences of long k-mers (substring of size k). With sufficiently long k-mers (k > 20),
we can assume that they will be species specific. Solving the binning problem,
is therefore equivalent to clustering k-mers. The Lander-Waterman model [§]
states that random sequencing will lead to Poisson distributed nucleotide posi-
tion. Abundancebin [15] uses the assumption that occurrences of long k-mer are
Poisson distributed with parameter proportional to the abundance of the species
it comes from. If we note \; this parameter, the count n(w;) of a k-mer w; is
Poisson distributed :

P(n(w;) = ¢) = Poisson(A;; ¢) (1)

Where Poisson(A;; ¢) is the probability of a Poisson random variable taking the
value c. [15] estimates the parameters \;j, by maximizing the likelihood using
EM algorithm. Reads are then partitioned into bins according to the k-mers
they contain and the estimated parameters. [3] uses long k-mers (k = 36) for
grouping reads together after a filtering step.

2.2 Handling the size of data : local sensitive hashing

A problem arises concerning the memory needed for storing the counts of all
observed k-mer. The number of possible k-mer is very large (eg. k = 30 give
430 ~ 10'® possible k-mer). The use of inverted indexes as in [15] will not be
tractable in memory for large datasets, especially for mutli-samples datasets.
[10] propose to use a Local Sensitive Hashing (LSH) technique, initially used to
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facilitate nearest-neighbour query in high dimension context [7], for the purpose
of reducing the size of stored data.

Each k-mer w; is represented in the complex vector space C* by assigning
to every letter a complex number : A := 1,C := —i,G := —1,T := i. Those
numbers can be weighted with a quality number which states about the con-
fidence of the measure. d random hyperpanes in C* are drawn, let’s say with
normal vector v; € C!. Each hyperplane separates the space into two half spaces
, therefore defining 2% subspaces called buckets. We define the following hashing
function :

hy(w,) = sign(wlv;) € {~1,1} (2)
In conclusion, each k-mer w;, initially living in a space of cardinal 4%, can be
associated to a binary code (hy(w;), hi(w;), .., ha(w;)) € {0,1}¢ of size d and be
represented in a space of cardinal 2¢. This way we can control the size of the
“dictionary” with the number of hyperplans we choose.

2.3 LSA : analogy with LSI (Latent Semantic Indexing)

Once the size of the “dictionary” is fixed to a reasonable size, we can count
and store k-mers occurring in each sample in an abundance matrix, X € Rn>2*
where n is the number of samples and 2¢ is the number of buckets. [10] carries
out an analogy with LSI (Latent Semantic Indexing [6]) a classic method for
document classification. Projecting each sample into the singular vector space
with SVD (Singular vector decomposition) : X = UXVT where U and V are
orthogonal and Y is diagonal and then performs fixed radius k-means on the
lines of V.

3 Material and methods

3.1 Sparse non negative matrix factorization

In our model, data is a sparse composition of positive components, an addi-
tion of underlying parameters that we want to recover. Non negative matrix
factorization (NMF) stands out as a natural way of proceeding. It has been pro-
posed originally by Lee and Seung [9]. In NMF, we want to approximate the
data X € Rnx2’ by the product of two non-negative matrices U € R**¥ and
V e R2'*K , usually by finding a solution to the following constrained minimiza-
tion problem :

U,V = argmin D(X||[UVT) + J(U,V) (3)

U,V>0

Where D is an error function and J a penalty term ensuring sparsity or regularity
of U and V. In our model, the values of matrix X are a sparse composition of
k-mer counts. We note S, the count of a k-mer specific to species s appearing
in bucket j and sample . Then :

K
Xij =Y Sisj (4)
s=1
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Sisj follows a Poisson distribution of parameter U;, V5, where Ui, is proportional
to the abundance of species s in sample ¢ and Vj, is a sparse coefficient. Due to
the additivity of the Poisson distribution, X;; is also Poisson distributed :

K
P(X;; = ¢) = Poisson (Z UisVis; c> (5)
s=1
As stated in the original paper [9] and developped in [2], maximizing the likeli-
hood of this model is equivalent to solving (3) when D is the Kullback-Leibler
divergence :
X,
KLX|[UVT) =3 log it — X + [UV"]; (6)
5 UV
Lee and al. proposed an iterative algorithm for solving (3) when J := 0. This
algorithm is tested in the experiments as ”L&S-KL”.

‘We can expect V to be very sparse. The sparsity of V' depends on the expected
number of k-mer sharing a same bucket. Therefore depends on the number of
buckets 2¢ compared with the number a different observed k-mers. That’s why
we need to set constraints in the optimization problem to ensure sparsity of V,

d
by penalizing either [y or I; norm of the lines of V : J(U,V) = 8 Z?:o lvilly, 7y €
{0,1}, where v; is the ith line of V. Sparsity constraints are also inevitable in
our case, where we’ll often have n < K, in order to seek the solution with the
fewest number of non zeros among the infinite number of solutions [1].

3.2 Online dictionary learning

Iterative methods, like in [9], require to keep in memory the whole dataset,
which is not suitable knowing the potentially large dimensions of the matrices.
We can, as Mairal and al. [11], use an online dictionary learning method that
aims to solve (3) when D(X||UVT) = | X —UVT||%, where |.||2 is the Froebinus
norm. It proceeds in an online fashion by alternating for each new coming input
x+ a sparse coding step (updating v;) :

vy = argmin ||z —UvH%—O—)\Hle (7)
v>0

And a dictionary update step (updating matrix U) :

t

Uttt = argminz |zi — U3 (8)
vec =

where z; denotes the ith column of X and v; the ith line of V. C is a convex set.
We'll test Mairal and al. methods with different sparse coding steps. We note
lasso-DL when sparse coding step is a lasso regression as in eq. (7). and omp-DL
when it’s Orthogonal Matching Pursuit, aiming to solve :

vy = argmin ||[v||g subject to ||z — Uvllz < € 9)
v>0
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[12] proposes an algorithm inspired by [11] but aiming to solve problem (3) when
D(.||.) == KL(.||.) and with sparsity constraints. It will be noted KL-DL in the
experiements.

3.3 Data
We consider three types of datasets.

1. Synthetic datasets that simulate k-mer counts in a sparse Poisson factor
model, cf. eq. (4).

2. Semi-synthetic datasets that simulate the sequencing of biological samples
by randomly sampling sequences of referenced genomes.

3. Real metagenomic datasets.

With the first type of datasets, we will evaluate the performance of methods
in the ideal case of the Lander-Waterman model. We have a control on the
variables of the model and we can evaluate the ability of methods to retrieve the
underlying abundances.

For the second type, real genomes are used to simulate a shotgun sequencing.
It removes some limitations of the Lander-Waterman model, typically sequencing
errors. In this case, we’ll evaluate the final binning results by quantifying the
ability of algorithms to cluster reads into bins of same species with precision and
recall metrics (P/R) [4].

The performance on the third type of dataset is more complex to evaluate
because we usually do not know the ”ground truth”. We have to use other
bioinformatic tools in order to evaluate the performance of the binning.

3.4 Experiments

Synthetic data As in [1], we first try the algorithms on synthetic signals,
given a random underlying abundance parameters A € R**%_ At each iteration,
T samples (1,22, ..,27) are independently drawn following (10).

K
2 =3 s
k=1

. ~ Binomial(p, 3)

s,(cj) ~ Poisson(A; 1)

(10)

Where z(7) denote the jth coordinate of vector x. The computed left matrix
U was compared against the known abundance parameter A. The error is the
sum of quadratic error between columns of A and the closest columns of U

. — K o AL E—U il ; -
cerror = Y, min; 1A 2Tl The tests were done with parameters p =

5x 1072, K = 140,n = 20,7 = 1000. Figure 3.4 shows the comparison of differ-
ent online learning methods. The curve “k-means” represents the online version
of k-means (sequencial kmeans [5]). “kl-means” is the same algorithm but with
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Synthetic data

—— k-means

—— kl-means

—— lasso-DL,A=0.1

—— lasso-DL, A =0.01

—— omp-DL, € =0.1

—— omp-DL, £ =0.01
KL-DL

Synthetic data

\
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KL-DL

\
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Fig. 1. Left : error as a function of iteration number. Right error : as a function of

computation time on a logarithmic scale.

euclidean distance replaced by KIL-divergence. All methods with relaxed sparse
constraints manage to better recover underlying abundances than k-means. Us-
ing OMP sparse coding step tends to slightly improve the estimation but with
higher computing cost. Lasso-DL achieve the best convergence speed both in
iteration and computation time. KL-DL is much slower than other methods but
surprisingly fails to improve the final estimation.

Semi-synthetic data We tested methods on synthetic metagenomic datasets
with short sequence length (400 bp), simulating a cohort of n = 50 samples.
Each sample contains a random subset of a given number of bacterial genomes
(Genome nb). The number of sequences varies from 200,000 (for Genome nb =
20) to 7,5 millions (for Genome nb = 700) per sample.

For the partitioning of sequences, first k-mers are clustered. Values of V' are
computed, then, as in [16], we assign k-mer i to cluster k if : k = argmax; V; ;. In
the end, sequences are partitioned to bins regarding their k-mers content like in
[10]. Data has been prepossessed with hashing (cf. seq. 2.2) with d = 27 (Table
1) and d = 30 (Table 2). The number of clusters K is the same for all methods
and is set to 1.5 x Genome nb. Parameters A and € have been set to achieve a
good compromise between the sparsity of V and the reconstruction error.

We can see that online dictionary learning methods outperform others in
overdetermined cases (K > m). Their efficiency decreases as the sparsity de-
creases (cf. Table 1) but do scale well to large dimensions (cf. Table 2). L&S-KL
and KL-DL could not have been computed on datasets with d = 30 due to too
big computing times.

Real data . The method has been applied to a real metagenomic dataset (10 bil-
lions of reads, 1135 samples) extracted from human gut microbiota. Results have
been submitted to a journal publication : https://doi.org/10.1101/599332.

10°

10°
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Table 1. Comparison of binning results on synthetic metagenomic datasets (d = 27).

Genome nb|k-means L&S-KL omp-DL lasso-DL KL-DL
P/R P/R P/R P/R P/R
20 74.1 70.8(83.6 90.0{72.6 71.1|76.9 80.1|78.2 90.7
100 57.5 56.2(65.8 66.6(80.5 77.2|80.1 77.0{79.2 80.3
200 61.1 53.0/51.7 50.7|68.1 71.1|70.0 68.3]69.2 70.0
700 46.2 43.9|44.2 45.7|49.3 47.7|149.1 47.5] - -

Table 2. Comparison of binning results on synthetic metagenomic datasets (d = 30).

Genome nb| k-means omp-DL lasso-DL
P/R P/R P/R
700 52.4 62.9]75.2 80.7]73.6 81.6

It shows success for detecting low abundance species that clasic methods can’t
identify.

4 Conclusion

We have shown that sparse non negative matrix factorization can be used for
analysing metagenomic datasets. We explored and compared different meth-
ods and validated them through experiments on synthetic and semi-synthetic
data. We have demonstrated through experiments that online dictionary learn-
ing methods coupled with sparse coding are able to recover underlying parame-
ters in a sparse Poisson factor model and in an overdetermined setting which we
think represents the specificity of our data. Finally, we showed that NMF can be
applied for clustering k-mers and perform binning of short reads without prior
assembly and in fixed memory with satisfying results.

Among the many directions further work can take, we’ll note two points.
Solving limitations due to the existence of pangenomes with soft-clustering ap-
proaches and acceleration of Kullback-Leibler divergences based dictionary learn-
ing algorithms.
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