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EXACT AND APPROXIMATE BAYESIAN SMOOTHING ALGORITHMS
IN PARTIALLY OBSERVED MARKOV CHAINS

Boujemaa Ait-el-Fquih and François Desbouvries

GET / INT / Dépt. CITI and CNRS UMR 5157, 9 rue Charles Fourier, 91011 Evry, France

ABSTRACT
Let x = {xn}n∈IN be a hidden process,y = {yn}n∈IN an
observed process andr = {rn}n∈IN some auxiliary process.
We assume thatt = {tn}n∈IN with tn = (xn, rn,yn−1) is a
(Triplet) Markov Chain (TMC). TMC are more general than
Hidden Markov Chains (HMC) and yet enable the develop-
ment of efficient restoration and parameter estimation algo-
rithms. This paper is devoted to Bayesian smoothing algo-
rithms for TMC. We first propose twelve algorithms for gen-
eral TMC. In the Gaussian case, they reduce to a set of algo-
rithms which includes, among other solutions, extensions to
TMC of classical Kalman-like smoothing algorithms such as
the RTS algorithms, the Two-Filter algorithm or the Bryson
and Frazier algorithm. We finally propose particle filtering
(PF) approximations for the general case.

1. INTRODUCTION

HMC have been extensively studied for many years (see e.g.
[1]). In an HMC x is first assumed to be a Markov chain
(MC) (by the very meaning of the words ”HMC”), and next
the stochastic interactions ofx andy are designed in such a
way thatx can be efficiently restored fromy. On the other
hand, Pairwise [2] (PMC) and Triplet [3] MC (TMC) have
been introduced recently. The TMC model describes the in-
teractions between 3 processes : the hidden processx, the
observed processy, and an auxiliary processr = {rn}n∈IN.
The triplett = (x, r,y) is called a TMC if(x, r,y) is a (vec-
tor) MC. So a TMC can be viewed as a partially observed MC,
in which one observes some component(s)y and one wants to
restore (part of) the remaining onesx∗ = (r,x). The interest
of TMC is twofold :

• As far as modeling is concerned, TMC are rather gen-
eral models which include, in particular, some classical
extensions of HMC [4] [5]. For instance, Hidden semi-
Markov Chains are particular TMC withx andr dis-
crete; Jump-Markov state space systems are particular
TMC with x continuous andr discrete; state-space sys-
tems with colored process and/or measurement noise(s)
are particular TMC with continuousx andr.

• As far as restoration is concerned, in a TMC the vari-
ablex∗ can be restored efficiently, and finallyx is ob-

tained by marginalization (such algorithms have been
proposed in the discrete [3] or linear Gaussian [5] cases).

Let us now turn to the contribution of this paper. In§2 we
first propose twelve smoothing algorithms for general con-
tinuous TMC. These algorithms are derived from Markovian
properties oft only, considered as an MC both in the for-
ward and backward directions. They can be classified into
three classes : four forward filtering backward smoothing,
four backward filtering forward smoothing, and four non re-
cursive algorithms. We emphasize on the role played by four
probability density functions (pdf) (αn, βn, γn andδn).

In §3 we address the particular case of Gaussian TMC.
The general algorithms§2 reduce to a set of twelve specific
algorithms (plus variations thereof) which include extensions
to TMC of classical HMC smoothers, as well as original algo-
rithms. Finally in§4 we propose PF solutions for the general
(non linear and/or non Gaussian) case.

2. TMC BAYESIAN SMOOTHING ALGORITHMS

Letxn ∈ IRnx be the hidden process,yn ∈ IRny the observa-
tion andrn ∈ IRnr the auxiliary process. Letx∗n = (xn,rn)
and tn = (xn,rn,yn−1). We assume thatt = {tn}n≥0

(with y−1 = 0) is an MC. Letp(x0:n) (resp. p(x∗n|y0:n)),
say, denote the pdf (w.r.t. Lebesgue measure) ofx0:n (resp.
of x∗n given y0:n); other pdfs of interest are defined simi-
larly. The aim of this section is to propose general fixed-
interval Bayesian smoothing algorithms for TMC, i.e. we
want to compute the smoothing pdfp(xn|y0:N ) for all n,
0 ≤ n ≤ N . In the following we indeed focus on the com-
putation ofp(x∗n|y0:N ); the pdfp(xn|y0:N ) of interest is ob-
tained by marginalization. The algorithms we propose can be
classified into three families :

1. Backward recursive algorithms. These are two-pass al-
gorithms, in which (i)p(x∗n|y0:N ) is computed from
p(x∗n+1|y0:N ) via

p(x∗n|y0:N ) =
∫

p(x∗n+1|y0:N )p(x∗n|x∗n+1,y0:N )dx∗n+1

(1)
(whence the term ”backward recursive algorithm”); and
(ii) p(x∗n|x∗n+1,y0:N ) in (1) is computed in the forward
direction;



2. Forward recursive algorithms. These are two-pass al-
gorithms, in which (i)p(x∗n+1|y0:N ) is computed from
p(x∗n|y0:N ) via

p(x∗n+1|y0:N ) =
∫

p(x∗n|y0:N )p(x∗n+1|x∗n,y0:N )dx∗n,

(2)
and (ii) p(x∗n+1|x∗n,y0:N ) in (2) is computed in the
backward direction;

3. Non-recursive algorithms. p(x∗n|y0:N ) is computed from
two pdfs; one of them is computed recursively in the
forward direction and the other recursively in the back-
ward direction.

As we shall see, each one of the twelve algorithms (7)-
(18) (which can all be derived from Bayes’s rule, and from
the fact thatt is an MC both in the forward and in the back-
ward directions) makes use of one (or two) out of the four pdfs

αn
def= p(x∗n|y0:n−1), βn

def= p(yn:N |tn), γn
def= p(x∗n|yn−1:N )

andδn
def= p(y0:n−2|tn). These pdfs, in turn, can be com-

puted recursively (in the forward direction forαn andδn, in
the backward direction forβn andγn); so for sake of clarity
we first gather these recursions in§2.1.

2.1. Recursive algorithms forαn, βn, γn and δn

Lett be an MC. Thenαn = p(x∗n|y0:n−1) andα̃n = p(x∗n|y0:n)
can be computed recursively (in the forward direction) as{

α̃n = p(yn|tn)αnR
p(yn|tn)αndx∗n

αn+1 =
∫

p(x∗n+1|tn,yn)α̃ndx∗n
; (3)

βn = p(yn:N |tn) and β̃n = p(yn+1:N |tn,yn) can be com-
puted recursively (in the backward direction) as{

β̃n =
∫

p(x∗n+1|tn,yn)× βn+1 dx∗n+1

βn = p(yn|tn) β̃n

; (4)

γn = p(x∗n|yn−1:N ) and γ̃n+1 = p(x∗n+1|yn−1:N ) can be
computed recursively (in the backward direction) as{

γ̃n+1 = p(yn−1|tn+1)γn+1R
p(yn−1|tn+1)γn+1dx∗n+1

γn =
∫

p(x∗n|tn+1,yn−1)γ̃n+1dx∗n+1

; (5)

and δn = p(y0:n−2|tn) and δ̃n+1 = p(y0:n−2|tn+1,yn−1)
can be computed recursively (in the forward direction) as{

δ̃n+1 =
∫

p(x∗n|tn+1,yn−1)× δn dx∗n
δn+1 = p(yn−1|tn+1)× δ̃n+1

. (6)

2.2. Backward recursive computation of the smoothing
pdf

The aim of this section is to compute the backward condi-
tional TMC pdfp(x∗n|x∗n+1,y0:N ) in (1). Sincet is an MC,
yn+1:N andx∗n are independent conditionally on(x∗n+1,y0:n),
so p(x∗n|x∗n+1,y0:N ) = p(x∗n|x∗n+1,y0:n). As we now see,
p(x∗n|x∗n+1,y0:n) can be computed from̃αn, αn or δn :

Proposition 1 Lett be an MC. Theñαn andαn+1 (resp.δn)
can be computed in the forward direction by (3) (resp. (6)),
and nextp(x∗n|x∗n+1,y0:n) by

p(x∗n|x∗n+1,y0:n) ∝ p(x∗n+1|tn,yn)α̃n, (7)

∝
{

p(x∗0, t1) if n = 0
p(x∗n|tn+1,yn−1)δn if n ≥ 1 ,(8)

∝ p(x∗n|tn+1,yn−1)αn

p(x∗n|yn−1)
, (9)

∝ p(tn+1|tn)δnp(x∗n|yn−1). (10)

Finally p(x∗n|y0:N ) can be computed by (1).

2.3. Forward recursive computation of the smoothing pdf

This section is parallel to§2.2. Our aim here is to compute the
forward conditional TMC pdfp(x∗n+1|x∗n,y0:N ) in (2). Since
t is an MC,y0:n−2 andx∗n+1 are independent conditionally
on(x∗n,yn−1:N ), sop(x∗n+1|x∗n,y0:N ) = p(x∗n+1|x∗n,yn−1:N ).
Now p(x∗n+1|x∗n,yn−1:N ) can be computed fromβn, γn or
γ̃n :

Proposition 2 Let t be an MC. Thenβn (resp.γn and γ̃n+1)
can be computed in the backward direction by (4) (resp. (5)),
and nextp(x∗n+1|x∗n,yn−1:N ) by

p(x∗n+1|x∗n,yn−1:N ) ∝ p(x∗n+1|tn,yn)βn+1, (11)

∝ p(x∗n|tn+1,yn−1)γ̃n+1, (12)

∝
p(x∗n+1|tn,yn)γn+1

p(x∗n+1|yn)
, (13)

∝ p(tn|tn+1)βn+1p(x∗n+1|yn).(14)

Finally p(x∗n|y0:N ) can be computed by (2).

2.4. Non recursive computation of the smoothing pdf

Let us now see thatp(x∗n|y0:N ) can be essentially computed
as a (normalized) product ofαn (or δn) andβn (or γn), which
leads to four algorithms :

Proposition 3 Let t be an MC. Then the smoothing pdf can
be computed as

p(x∗n|y0:N ) ∝ αn × βn, (15)

∝ γn × δn, (16)

∝ αn × γn

p(x∗n|yn−1)
, (17)

∝ δn × βn × p(x∗n|yn−1), (18)



in whichαn (resp.δn) is computed in the forward direction by
(3) (resp. (6)), andβn (resp.γn) is computed in the backward
direction by (4) (resp. (5)).

3. EXACT COMPUTATION : THE GAUSSIAN CASE

In the Gaussian case the equations in§2 can be computed
explicitely, which yields twelve algorithms (plus variations
thereof); when further particularized to HMC, some of these
algorithms coincide with classical smoothing solutions already
proposed in the literature. More precisely :

• Equation (3) reduces to an algorithm which extends to
TMC the Kalman filter;

• equation (4) reduces to an algorithm which propagates
arg max

x∗n
βn, and which generalizes to TMC the back-

ward algorithm used in the two-filter smoother by Mayne
[6] (see also [7, eqs. (10.4.14)-(10.4.15)]);

• equation (5) reduces to filter or information forms al-
gorithms; in particular, the filter form algorithm has an
HMC counterpart [7,§9.8];

• equation (6) reduces to an algorithm which propagates
arg max

x∗n
δn. After some manipulations, one can show

that it has a counterpart in the HMC case, introduced in
the context of complementary models by Weinert (see
[8, §3.2]);

• equations (1) and (7) reduce to an algorithm which ex-
tends to TMC the RTS algorithm [9];

• equations (1) and (8) reduce to an algorithm which ex-
tends to TMC an algorithm introduced by Weinert [8,
p. 40];

• eqs. (2) and (11) reduce to an algorithm which extends
to TMC an algorithm introduced in [10] [8, p. 35];

• equations (2) and (12) reduce to an algorithm which
extends to TMC an algorithm partially found in [7, pp.
401, Exs. 10.12 & 10.14];

• equation (15) reduces to an algorithm which extends to
TMC the two-filter algorithm [6] (see also [11]);

• equation (17) is the counterpart of an algorithm which
extends to TMC the General two-filter algorithm [7,
Thm. 10.4.1];

• finally, one can show after some computations that (18)
reduces to an algorithm which extends to TMC an al-
gorithm [8,§3.3] introduced in the context of comple-
mentary models.

4. APPROXIMATE COMPUTATION :
PARTICLE SMOOTHING SOLUTIONS

In the general case, equations (3)-(18) are impossible (or dif-
ficult) to compute exactly, and PF (see e.g. [12] [13] [14] )
is then one possible approximate solution. As we now see,
the smoothing pdf can be approximated by the discrete pdf
p(x∗n|y0:N ) ≈

∑S
i=1 w

s,(i)
n δ(x∗n− x∗(i)n ). Let us give 3 ex-

amples. Section 4.1 deals with the approximation of the back-
ward algorithm ((1) & (7)),§4.2 with the approximation of the
forward algorithm ((2) & (13)), and§4.3 with an approxima-
tion of the non recursive algorithm (17).

4.1. Backward particle smoothing :

Let us first consider a PF approximation of (1) & (7). The
associated PF is a two-pass algorithm. In the forward pass, a
PF algorithm [15] propagates the filtering importance weights
w

f,(i)
n in the forward direction; next the smoothing weights

w
s,(i)
n are computed recursively in the backward direction.

Proposition 4 (Backward particle smoothing) Letp(x∗n|y0:n)
≈

∑S
i=1 w

f,(i)
n δ(x∗n − x∗(i)n ) be computed recursively (until

n = N ) by [15]; Thenp(x∗n|y0:N ) ≈
∑S

i=1 w
s,(i)
n δ(x∗n −

x∗(i)n ), in which{ws,(i)
n }S

i=1 can be computed recursively (from
n = N to n = 0) as

1. Initialization n = N : for i = 1 : S, w
s,(i)
N = w

f,(i)
N ;

2. For all n = N − 1 : 0 andi = 1 : S,

ws,(i)
n =

S∑
j=1

w
s,(j)
n+1

w
f,(i)
n p(x∗(j)n+1|x

∗(i)
n ,yn,yn−1)∑S

l=1 w
f,(l)
n p(x∗(j)n+1|x

∗(l)
n ,yn,yn−1)

.

(19)

Proof 1 The forward PF algorithm propagates the approxi-
mationp(x∗n|y0:n) ≈

∑S
i=1 w

f,(i)
n δ(x∗n − x∗(i)n ). Then from

(7), p(x∗n|x∗n+1,y0:n) is approximated by

S∑
i=1

w
f,(i)
n p(x∗n+1|x

∗(i)
n ,yn,yn−1)δ(x∗n − x∗(i)n )∑S

l=1 w
f,(l)
n p(x∗n+1|x

∗(l)
n ,yn,yn−1)

. (20)

Let nowp(x∗n+1|y0:N )≈
∑S

j=1 w
s,(j)
n+1 δ(x∗n+1− x∗(j)n+1). From

(20), (1) is approximated byp(x∗n|y0:N )≈
∑S

i=1 w
s,(i)
n δ(x∗n−

x∗(i)n ) in whichw
s,(i)
n is given by (19).

4.2. Forward particle smoothing :

Let us now approximate the algorithm ((2) & (13)). Simi-
larly to §4.1, ((2) & (13)) reduce to a two-pass algorithm.
In the backward pass, a backward PF algorithm (see§4.4)
propagates an approximation ofγn+1, and next the smooth-
ing weights are computed in the forward direction :



Proposition 5 (Forward particle smoothing) Letp(x∗n+1|yn:N )
≈

∑S
i=1 w

b,(i)
n+1δ(x

∗
n+1−x∗(i)n+1) be computed recursively (until

n = 0) by the algorithm of§4.4. Thenp(x∗n|y0:N ) ≈
∑S

i=1

w
s,(i)
n δ(x∗n − x∗(i)n ), in which{ws,(i)

n }S
i=1 are computed re-

cursively (fromn = 0 to n = N ) as

1. Initialization n = 0 : for i = 1 to S, w
s,(i)
0 = w

b,(i)
0 .

2. For all n = 1 to N andi = 1 to S,

ws,(i)
n =

S∑
j=1

w
s,(j)
n−1

w
b,(i)
n

p(x∗(i)
n |x∗(j)

n−1,yn−1,yn−2)

p(x
∗(i)
n |yn−1)∑S

l=1 w
b,(l)
n

p(x
∗(l)
n |x∗(j)

n−1,yn−1,yn−2)

p(x
∗(l)
n |yn−1)

.

(21)

4.3. Non recursive particle smoothing :

Let us finally propose a PF approximation of (17). The smooth-
ing weightsws,(i)

n are computed from the forward onesw
f,(i)
n

(computed by a forward PF algorithm [15]) and the backward
oneswb,(i)

n (computed by the algorithm of§4.4) :

Proposition 6 (Non recursive particle smoothing)At timen,
the smoothing weights{ws,(i)

n }S
i=1 can be computed as

ws,(i)
n =

w
b,(i)
n

∑S
j=1 w

f,(j)
n−1

p(x∗(i)
n |x∗(j)

n−1,yn−1,yn−2)

p(x
∗(i)
n |yn−1)∑S

l=1 w
b,(l)
n

∑S
j=1 w

f,(j)
n−1

p(x
∗(l)
n |x∗(j)

n−1,yn−1,yn−2)

p(x
∗(l)
n |yn−1)

,

(22)
in which w

f,(i)
n are computed in the forward direction [15],

andw
b,(i)
n in the backward direction (see Proposition 7).

4.4. Backward TMC PF

The algorithms of§4.2 and 4.3 make use of a backward PF al-
gorithm (for computing an approximation ofγn = p(x∗n|yn−1:N ))
which we now derive by following [15]. Lett(i)

n = [(x∗(i)n )T ,

yT
n−1]

T and letp(x∗n+1:N+1|yn:N )≈
∑S

i=1 w
b,(i)
n+1 δ(x∗n+1:N+1−

x∗(i)n+1:N+1), in which w̃
b,(i)
n+1 =

p(t
(i)
n+1:N+1)

q(x
∗(i)
n+1:N+1|yn:N )

, w
b,(i)
n+1 =

ewb,(i)
n+1PS

j=1 ewb,(j)
n+1

, and{x∗(i)n+1:N+1}S
i=1 are drawn from some impor-

tance functionq(x∗n+1:N+1|yn:N ). Let us assume thatq fac-
torizes asq(x∗n:N+1|yn−1:N ) = q(x∗n|x∗n+1:N+1,yn−1:N ) ×
q(x∗n+1:N+1|yn:N ). Then the importance weightswb,(i)

n and

the particlesx∗(i)n can be propagated as follows :

Proposition 7 (Backward TMC PF) For all n = N to 0
andi = 1 to S,

• samplex∗(i)n ∼ q(x∗n|x
∗(i)
n+1:N+1,yn−1:N );

• computew̃
b,(i)
n

p(t(i)
n |t(i)

n+1)

q(x
∗(i)
n |x∗(i)

n+1:N+1,yn−1:N )
× w̃

b,(i)
n+1 and

w
b,(i)
n = ewb,(i)

nPS
i=1 ewb,(i)

n

.
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