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EXACT AND APPROXIMATE BAYESIAN SMOOTHING ALGORITHMS
IN PARTIALLY OBSERVED MARKOV CHAINS

Boujemaa Ait-el-Fquih and Francois Desbouvries

GET /INT / Dépt. CITlI and CNRS UMR 5157, 9 rue Charles Fourier, 91011 Evry, France

ABSTRACT tained by marginalization (such algorithms have been
Letx = {x,}nc be a hidden procesy, = {y,}nen an proposed in the discrete [3] or linear Gaussian [5] cases).
observed process amd= {r, },c SOme auxiliary process. | et us now turn to the contribution of this paper.§&we

We assume that= {t,, },ew With t,, = (X, Tn, yn-1) iIS@  first propose twelve smoothing algorithms for general con-
(Triplet) Markov Chain (TMC). TMC are more general than tinyous TMC. These algorithms are derived from Markovian
Hidden Markov Chains (HMC) and yet enable the developproperties oft only, considered as an MC both in the for-
ment of efficient restoration and parameter estimation algoyard and backward directions. They can be classified into
rithms. This paper is devoted to Bayesian smoothing algomree classes : four forward filtering backward smoothing,
rithms for TMC. We first propose twelve algorithms for gen- four backward filtering forward smoothing, and four non re-
eral TMC. In the Gaussian case, they reduce to a set of algeyrsive algorithms. We emphasize on the role played by four
rithms which includes, among other solutions, extensions Brobability density functions (pdfi(,, B, ¥ andds,,).

TMC of classical Kalman-like smoothing algorithms such as | §3 we address the particular case of Gaussian TMC.
the RTS algorithms, the Two-Filter algorithm or the BrysonThe general algorithmg2 reduce to a set of twelve specific
and Frazier algorithm. We finally propose particle filtering aigorithms (plus variations thereof) which include extensions

(PF) approximations for the general case. to TMC of classical HMC smoothers, as well as original algo-
rithms. Finally in§4 we propose PF solutions for the general
1. INTRODUCTION (non linear and/or non Gaussian) case.

HMC have been extensively studied for many years (see €.9.5  Tpc BAYESIAN SMOOTHING ALGORITHMS
[1]). In an HMC x is first assumed to be a Markov chain

(MC) (by the very meaning of the words "HMC"), and next |etx, e IR"> be the hidden procesg,, € IR™ the observa-
the stochastic interactions afandy are designed in such a tjon andr,, € IR"" the auxiliary process. Let’ = (x,.,r,)
way thatx can be efficiently restored from. On the other gnqg t, = (Xn,Tn,yn_1). We assume that = {t,}, -,
hand, Pairwise [2] (PMC) and Triplet [3] MC (TMC) have (with y_; = 0) is an MC. Letp(x¢.,) (resp. p(x*|yom)),
been introduced recently. The TMC model describes the insay7 denote the pdf (Wrt Lebesgue measure}oqf (resp_
teractions between 3 processes : the hidden praceise  of x* given y,.,); other pdfs of interest are defined simi-
observed process, and an auxiliary process= {r,},e~. Jarly. The aim of this section is to propose general fixed-
The triplett = (x,r,y) is calleda TMC if(x, r,y) isa (vec-  interval Bayesian smoothing algorithms for TMC, i.e. we
tor) MC. So a TMC can be viewed as a partially observed MCyyant to compute the smoothing pgfx,|yo.n) for all n,

in which one observes some componeng(ad one wantsto ) < n < N. In the following we indeed focus on the com-
restore (part of) the remaining ones = (r, x). The interest  pytation ofp(x;,|yo:.n); the pdfp(x,|yo.n) of interest is ob-

of TMC is twofold : tained by marginalization. The algorithms we propose can be

e As far as modeling is concerned, TMC are rather genclassified into three families :
eral models which include, in particular, some classical 1. Backward recursive algorithms. These are two-pass al-

extensions of HMC [4] [5]. For instance, Hidden semi- gorithms, in which (i)p(x*|yo.n) is computed from
Markov Chains are particular TMC witk andr dis- p(xt 1 |yo.n) via
. n N

crete; Jump-Markov state space systems are particular

TMC with x continuous and discrete; state-space sSys- p(xi|yo.n) = /p(XjHrl lyo:N)p(X5 X5 15 Yo:n Ay

tems with colored process and/or measurement noise(s) B

are particular TMC with continuous andr. . .

P g (whence the term "backward recursive algorithm”); and

e As far as restoration is concerned, in a TMC the vari- (ii) p(x;,|x5 41, yo:n) in (1) is computed in the forward

ablex* can be restored efficiently, and finalyis ob- direction;



2. Forward recursive algorithms. These are two-pass al- 2.2. Backward recursive computation of the smoothing

gorithms, in which (i)p(x}, | ;|yo:n) is computed from
p(x;]yo:n) via

Py 41lyon) = /p(X:L|YO:N)p(XZ+1|XZaYO:N)dX:w

)
and (ii) p(x;,1]x;, yo:n) in (2) is computed in the
backward direction;

pdf

The aim of this section is to compute the backward condi-
tional TMC pdfp(x;;|x;, 1, yo.nv) in (1). Sincet is an MC,
Yn+1:5 @ndx;, are independent conditionally 0R}; |, yo:n),

SO (X} |X5 1, Yo:n) = P(X5 X} 1, Vo). AS We now see,
p(x} |5 11, Yo:n) Can be computed from,,, o, Or 6,

Proposition 1 Lett be an MC. Thef,, and o, 11 (resp.dy,)
can be computed in the forward direction by (3) (resp. (6)),

3. Non-recursive algorithms. p(x;|yo.n) is computed from and nextp(x};|x% ., 1, Yo.) by

two pdfs; one of them is computed recursively in the

forward direction and the other recursively in the backP(Xn|Xn+1:Yon) o< p(X 1 |tn, ¥i)an, (7)
ward direction. p(x5,t1) if n= 0(&)
p(XZ|tn+1,Yn71)5n if n > 1
As we shall see, each one of the twelve algorithms (7)- P(X[tnt1, Yn—1)om ©)
(18) (which can all be derived from Bayes's rule, and from p(X:|yn—1) ’
the fact thatt is an MC both in the forward and in the back- X p(bnst|tn)0np(XE [yn_1). (10)

ward directions) makes use of one (or two) out of the four pdfs

def def def
(679 é p(X:”yO:n—l)y 571 § p(yn:N|tn); Tn é p(X:|yn—1:N)
d

andd,, Lef p(Yon—2[tn). These pdfs, in turn, can be com-

puted recursively (in the forward direction fay, andd,,, in
the backward direction fo8,, and~y,); so for sake of clarity
we first gather these recursionsgia 1.

2.1. Recursive algorithms fora,, 8., v, and é,,

Lett be an MC. Themy,, = p(x},|yo.n—1) anda, = p(x;|yo:n)
can be computed recursively (in the forward direction) as

5 paltaon
" S p(ynltn)andx;, B : (3)
Qnt1 = fp(xj7,+1|tnayn)andxz

ﬂn = p(y”:N|tn) andﬁn = p(YTL+1:N|t7L) y”) can be com-
puted recursively (in the backward direction) as

Bn P(Ynltn) Bn ’

{ Bn = fp(x;;+1‘3ﬂ7yn) X Bnt1 dx;kl+1 C ()

Yo = p(X;|yn-1.8) @Nd Y1 = p(x},11]yn-1.~) CaN be
computed recursively (in the backward direction) as

’AY' — P(Yn—1ltny1)Vnt1
S ey e e .
Yo = [ a1, Yn-1)Fn+1dX5 4

andd,, = p(yo:n—2|tn) and Opnt1 = p(yo:n—2|tn+1a}’n—1)
can be computed recursively (in the forward direction) as

gn = Xh[tnt1, Yn_1) X 0p dx}
{ +1 Jp(x5[tnt1, Y1) (6)

6n+1 = p(ynfl‘thrl) X 5n+1

Finally p(x*|yo.n) can be computed by (1).

2.3. Forward recursive computation of the smoothing pdf

This section is parallel t§2.2. Our aim here is to compute the
forward conditional TMC pdp(x;, , 1|x},, yo:n) in (2). Since
t is an MC,yy.,—2 andx;, , , are independent conditionally

on (X;Fu ynflzN)7 SOP(X:LJA |x;k17 yO:N) :P(X:L+1 |X:<L7 ynflzN)-
Now p(x, 1 |x}, yn—1:n) Can be computed from,, -, or

’}/TL -
Proposition 2 Lett be an MC. Thers,, (resp.~, and¥,+1)
can be computed in the backward direction by (4) (resp. (5)),
and nextp(x;, | 1|x},, Yn—1.~) DY
p(XZ+1|Xfmynf1:N) X p(X:L+1|tnaYn)ﬁn+lv (11)
o« p(Xpltnt1, Yn-1)nt1, (12)
p(X’TL-'rl |fna Y7L)'Yn,+1 7 (13)
p(xn+1 |yn)
X P(tnltnst)Bnrip(X), 11|y AL4)

Finally p(x*|yo.n) can be computed by (2).

2.4. Non recursive computation of the smoothing pdf

Let us now see thai(x}|yo.n) can be essentially computed
as a (normalized) product of, (or é,,) and,, (or v,), which
leads to four algorithms :

Proposition 3 Lett be an MC. Then the smoothing pdf can
be computed as

p(x;kL|YO:N) X ap X B, (15)
< Yn X On, (16)
i (17)

p(x5|yn—1)

X Op X Bp X p(xmynfl)v (18)



in whicha, (resp.d,,) is computed in the forward direction by 4. APPROXIMATE COMPUTATION :

(3) (resp. (6)), ang3,, (resp.~,,) is computed in the backward PARTICLE SMOOTHING SOLUTIONS

direction by (4) (resp. (5)).

In the general case, equations (3)-(18) are impossible (or dif-
ficult) to compute exactly, and PF (see e.g. [12] [13] [14])
is then one possible approximate solution. As we now see,
the smoothing pdf can be approximated by the discrete pdf

(xElyon) = 37w @ s(x;— xi7). Let us give 3 ex-

3. EXACT COMPUTATION : THE GAUSSIAN CASE

In the Gaussian case the equationg2ncan be computed (x
explicitely, which yields twelve algorithms (plus variations
thereof); when further particularized to HMC, some of these amples. Section 4.1 deals W'th the approximation of the back-

d algorithm ((1) & (7)) §4.2 with the approximation of the
algorithms coincide with classical smoothing solutions alrea ar ) ; .
proposed in the literature. More precisely : d\é(y)rward algorithm ((2) & (13)), and4.3 with an approxima-

tion of the non recursive algorithm (17).
e Equation (3) reduces to an algorithm which extends to
TMC the Kalman filter; 4.1. Backward particle smoothing :

e equation (4) reduces to an algorithm which propagatebe€t us first consider a PF approximation of (1) & (7). The

arg max £,,, and which generalizes to TMC the back- associated PF is a two-pass algorithm. In the forward pass, a
PF algorithm [15] propagates the filtering importance weights

ward algorlthm used in the two-filter smoother by Mayne © 1) in the forward direction: next the smoothing weights
[6] (see also [7, egs. (10.4.14)-(10.4.15)]); o) T AT
wy "’ are computed recursively in the backward direction.

e equation (5) reduces to filter or information forms al- P ition 4 (Backward icl hina) L N
gorithms; in particular, the filter form algorithm has an roposition 4 (Backward particle smoothing) Letp(x7[Yo:n)

HMC counterpart [7§9.8]; ~ Y, wha(x;, — x,) be computed recursively (until
n = N) by [15]; Thenp(x}lyo.n) & S5y wiVo(x;, —
e equation (6) reduces to an algorithm which propagate§c ) in WhICh{wn’(Z) _, can be computed recursively (from
arg max5 After some manipulations, one can shown — Nton =0)as
that it has a counterpart in the HMC case, introduced in @ h
the context of complementary models by Weinert (see 1. Initializationn = N :fori=1: 5, wy" = wy" ;

[8, §3.2]); 2. Foraln=N—-1:0andi=1:S5,
e equations (1) and (7) reduce to an algorithm which ex- g £.0) «(i)
tends to TMC the RTS algorithm [9]; w>® — Zw s()  wap(x n+1|x 7yn,yn 1)
n M DG '
. . . =1 W Xn+1lXn 7}’7“}’71 1)
e equations (1) and (8) reduce to an algorithm which ex- (19)
tends to TMC an algorithm introduced by Weinert [8,
p. 40]; Proof 1 The forward PF algorithm propagates the approxi-

atlonp( *lyom) & Zf L wi Ds(xx — x;7). Then from

e egs. (2) and (11) reduce to an algorithm which extend%) DX 1 youm) IS approxmated by
nln+1> n

to TMC an algorithm introduced in [10] [8, p. 35];

S * (% *
e equations (2) and (12) reduce to an algorithm which Z wh Dp( 1 %0 Yy yn1)8(x5 — x57)
extends to TMC an algorithm partially found in [7, pp. Zz Lwh Pp(x ZHIXZ(Z),yn,ynq)
401, Exs. 10.12 & 10.14];

(20)

S 5,(4) * *(5)
Letno . 0 — . From
e equation (15) reduces to an algorithm which extends to WP [Yov) A D05 W'ty (X"Jrg X”jé)) )
TMC the two-filter algorithm [6] (see also [11]); (20), (1) is approximated by(x7, [yo.n) ~ iy wn™ 6 (%, —
x; )) in whichwy ™ is given by (19). ]
e equation (17) is the counterpart of an algorithm which
_?);triﬁcisc)'fl';';MC the General two-filter algorithm [7, 4.2. Forward particle smoothing :
. _ Let us now approximate the algorithm ((2) & (13)). Simi-
e finally, one can show after some computations that (18jarly to §4.1, ((2) & (13)) reduce to a two-pass algorithm.
reduces to an algorithm which extends to TMC an a|-|n the backward pass, a backward PF a|gorithm @Eé)
gorithm [8,§3.3] introduced in the context of comple- propagates an approximation gf_;, and next the smooth-

mentary models. ing weights are computed in the forward direction :



Proposition 5 (Forward particle smoothing) Letp(x}; | |yn:n)

~ Zle wflfrl)é( X1 — n(ﬂ) be computed recursively (until
n = 0) by the algorithm of4.4. Themp(x:|yo.n) ~ 35,

wiyDs(xx — x5, in which {wy¥}5_, are computed re-
cursively (fromn = 0ton = N) as ]

1. Initializationn = 0 : fori = 1t0 S, wy® = wl®.

2. Foralln=1toNandi=1t0 S,
*(7)

b( Y PP %) oy 1 yn—2)
e lyn—1)
2019 oy 1 yn—2)

(P lyn_1)

(21)

(1]

3]

ws) = [4]

b, (1) p(x

le

(5]

4.3. Non recursive particle smoothing :

Let us finally propose a PF approximation of (17). The smooth-
ing we|ghtswn( " are computed from the forward oned ? [6]
(computed by a forward PF algorithm [15]) and the backward
oneSwn( 2 (computed by the algorithm ¢#.4) :

[7]

Proposition 6 (Non recursive particle smoothing) Attimen,
the smoothing weight@ﬂf;’(’)}.s_l can be computed as

(8]

b, (4) £.6) PO D x5 oy 1,yn—2)

, S
Wn Zg 1 Wn1

s,(1) _ P lyn—1)
YT s () S f (J)p(x*")lx ) Yn1,¥n-2) [9]
Dl W Ej:l wy, D
P(Xn [yn—1)
(22)
in whichw!'® are computed in the forward direction [15],
andw%" in the backward direction (see Proposition 7). [10]

4.4. Backward TMC PF

The algorithms 0§4.2 and 4.3 make use of a backward PF al-
gorithm (for computing an approximationqa;: p(xmyn_l;N))
which we now derive by following [15]. Let!} = [(x;("))7,

S b
yg—ﬂT and |9tp(xz+1 N+1|Yn:N) Y i o 6(x 41, N+1—

n+1
0 ~b,(i) _ P v) b(i) _
n+1l

. in which w = G
Pt LN 41): n+1 a2y [ynen)
@ .
*(1)

W: and{x,,\ . x4
tance function(x;, , ;.n1|yn:n). Let us assume thatfac-
torizes asy(x};. 41 |[yn—1:8) = ¢(X}, 1%, 1 1. 8115 Yn—1:8) X
q(X}1.n41Yn:v). Then the importance weights;”) and
() can be propagated as follows :

Proposition 7 (Backward TMC PF) For all n = N to 0
andi =1to S,

o samplex;(V ~ g(x

(11]

(12]
X

#_, are drawn from some impor-

(13]

the particles,, [14]

( Z‘X:(J—)l-N-i,-p Yn—l:N);

[15]
»(2) b,(i)
n+1

p(t(b) |tn+1)

Q(X:L(L)|X:;(i)1 N41Yn—1: N)

° computewb X W and

b,(i)

w n

,@b(')
- EEE AN

i=1 Wn

2] W. Pieczynski,
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