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The high failure rate is a common serious issue among online learning institutions. In order to deal with this problem, Early Warning Systems (EWS) based on Machine Learning (ML) models are widely adopted in the literature as a solution to help teachers in their pedagogical monitoring. As the name implies, alert generation is intended to be the purpose of an EWS. However, the proposed systems don't go beyond the early prediction of at-risk of failure learners and don't suggest automatic methods to generate alerts. In this paper, we propose an algorithm that automatically generates early and accurate alerts for teachers of atrisk of failure learners. This algorithm uses both an original concept of alert rule to define the alerting method and temporal evaluation metrics to identify the reliable starting time for generating alerts. As a proof of concept, we apply this algorithm on four different EWS using real data of k-12 learners enrolled in online learning courses.

Introduction

The use of online learning has rapidly evolved over the last decade, especially with the latest COVID-19 pandemic. It ensures the continuity of the learning process and the accessibility to educational programs from anywhere and at any time. However, this learning mode is facing many challenges, and the most widespread is the high failure rates among online learners. In order to meet this issue, Early Warning Systems (EWS) based on Machine Learning (ML) models are commonly proposed in the Learning Analytics (LA) literature to assist teachers in their pedagogical monitoring. EWS are used to better support learners based on their behavior and performance [START_REF] Baneres | Analysis of the accuracy of an early warning system for learners at-risk: A case study[END_REF]. These systems are defined as a tool used by educationists to monitor learners' progress and identify those who are at-risk of either failing in a course or dropping out of a program [START_REF] Jokhan | Early warning system as a predictor for student performance in higher education blended courses[END_REF]. Therefore, EWS rely on both numeric learning traces of online learners and analytical models of ML [START_REF] Baneres | Analysis of the accuracy of an early warning system for learners at-risk: A case study[END_REF].

As the name implies, by using an EWS, teachers expect to be alerted of the possible learning risk cases. In other words, generating alerts after identifying at-risk of failure learners is the purpose of EWS [START_REF] Liz-Domínguez | Predictors and early warning systems in higher education-a systematic literature review[END_REF]. However, despite the popularity of EWS in LA, the literature doesn't propose particular methods and/or algorithms for an automatic alert generation. The existing EWS don't go beyond the risk prediction and the early identification of learners in critical learning situations. Given the importance of alerting teachers of at-risk of failure learners for a better monitoring and an effective follow-up, the main question is : how to alert teachers accurately and at the earliest of at-risk of failure learners?.

To answer this question, we propose an algorithm for an automatic, early and accurate alert generation for teachers to alert them of at-risk of failure learners. In order to achieve this goal, this algorithm uses an original concept of alert rule (R i ) where i is the number of successive predictions of a learner in a risk class [START_REF] Soussia | Toward an early risk alert in a distance learning context[END_REF]. The objective of an alert rule is to define the alerting method. Moreover, this algorithm uses time-dependent metrics, in particular earliness and the Earliness-Stability Score (ESS) introduced and defined in [START_REF] Soussia | Assess performance prediction systems: Beyond precision indicators[END_REF] [START_REF] Soussia | Time-dependent metrics to assess performance prediction systems[END_REF]. The use of these metrics makes it possible to identify the earliest starting time point t s from which the alert generation process following R i can be triggered. To choose the best value of i, each R i is evaluated using two metrics inspired from the usual ML Confusion Matrix (CM) and adapted to the alert problem : precision and the False Positive Rate (FPR) of generated alerts by R i since t s .

To validate the relevance of this algorithm, we applied it on four different EWS aiming to alert teachers of at-risk learners. These systems use real data of k-12 learners enrolled online within a French distance education center (CNED1 ).

The rest of this paper is organized as follows. Section 2 presents the related work. Section 3 formalizes the problem and introduces the prerequisites of the alert Algorithm, which is described in Section 4. In Section 5 and 6, we present respectively the case study and the experimental results. The Section 7 concludes on the results and introduces the perspectives of this work.

Related work

EWS are used in several fields : alerting about natural disasters, financial and economic slowdowns of companies and the stock market as well as alerting patients of the deterioration of their clinical signs [START_REF] Liz-Domínguez | Predictors and early warning systems in higher education-a systematic literature review[END_REF]. Therefore, the main objective of EWS has always been alerting about possible future risks to intervene effectively. In fact, an alert is a signal that indicates a possible imminent risk. LA are also using EWS to solve education problems, such as the prediction of at-risk learners. Indeed, the EWS are able to anticipate potential risks based on present information and thus are able to send alerts to the person or group of people who may be affected by these risks and/or capable of countering them [START_REF] Liz-Domínguez | Predictors and early warning systems in higher education-a systematic literature review[END_REF].

One of the most referenced EWS in the LA is the Course Signals (CS) system of Purdue University [START_REF] Arnold | Course signals at purdue: Using learning analytics to increase student success[END_REF]. To provide meaningful feedback, this EWS introduces a traffic light system that allows students to see their pass/fail level based on a color code. [START_REF] Akçapınar | Developing an early-warning system for spotting at-risk students by using ebook interaction logs[END_REF] proposes an EWS to be used in programs relying on e-books as learning materials. This system uses reading data to weekly labeling students as low or high performing. Another EWS in [START_REF] Cohen | Analysis of student activity in web-supported courses as a tool for predicting dropout[END_REF] uses student activity traces on the LMS. This system follows a monthly approach to detect significant drops in student activity; these students will then be reported as at-risk. In order to identify students at-risk of failure, course withdrawal and dropout, [START_REF] Cano | Interpretable multiview early warning system adapted to underrepresented student populations[END_REF] introduces a multiview EWS following a weekly prediction incremental approach. [START_REF] Wang | Design and implementation of early warning system based on educational big data[END_REF] proposes an academic EWS in Hangzhou Normal University to early discover and identify the existing and potential students academic learning problems. [START_REF] Bañeres | An early warning system to detect at-risk students in online higher education[END_REF] develops an EWS which purpose is to detect at-risk students in online high education. Thus, stakeholders are able to analyze information through the provided dashboards and teachers can intervene effectively. [START_REF] Bañeres | An early warning system to identify and intervene online dropout learners[END_REF] proposes an EWS to early identify course dropout learners enrolled within an online university. The objective of such a system is to enable an early and effective intervention mechanism.

To summarize, most of the existing research projects working on proposing EWS stop at the prediction phase and don't go beyond the identification of atrisk of failure or dropping out learners. Despite the importance of alerting for an effective intervention, this notion is rarely mentioned and discussed in the literature especially in the LA field. Indeed, [START_REF] Zambrano | Early prediction of student learning performance through data mining: A systematic review[END_REF] highlights the importance of extending the work on EWS to answer more questions rather than the prediction of risk. Thus, in this work, we propose an early alert generation algorithm to overcome the state of the art limitations and design an EWS for online institutions teachers. This algorithm relies on the prediction results returned by ML models to identify the list of learners of whom teachers should be alerted.

Alert prerequisites

In this section, we formally present the problem of alert generation. Then, we introduce the prerequisites needed by the alert generation algorithm.

Problem formalization

The main goal is to alert teachers of learners who are in a failing learning situation. This alert generation has to be accurate and as early as possible and targets a maximum number of at-risk of failure learners. Therefore, we rely on the prediction results returned by a classification approach. Assume that Y = {C 1 , C 2 , .., C m } is the set of predefined class labels and y risk ⊆ Y is a subset of Y that groups together the risk class labels. Let S = {S 1 , S 2 , .., S q } be the set of students in the test dataset and T = {t 1 , t 2 , .., t k } be the set of prediction times. At each t k ∈ T , each S p ∈ S is represented by a vector X p k =< f 1 , f 2 .., f z , C j > p k where f n ∈ R represents the learning features of S p and C j ∈ Y her/his class label. The main objective of this work is to alert a teacher of learners in S who are at-risk of failure. In other words, the prediction of the learner S p ∈ S in C j ∈ y risk triggers the alert generation for the teacher.

The Figure 1 illustrates a system of S = {S 1 , S 2 , S 3 }. The set of class labels is Y = {C 1 , C 2 , C 3 } with y risk = {C 2 , C 3 }. For each learner in S, {l 1 , l 2 , l 3 , l 4 , l 5 } and {p 1 , p 2 , p 3 , p 4 , p 5 } represent respectively the true class labels and the predicted classes at each of prediction times in T = {t 1 , t 2 , t 3 , t 4 , t 5 }. A box is colored red (Figure 1) when a learner S p is predicted in a risk class of y risk = {C 2 , C 3 }; this is how the teacher alert generation is launched. The Figure 1 shows that EWS are characterized by the instability of their prediction results over time. Therefore, it would be pertinent to identify a time point from which the alert generation is reliable. This time point is called the starting time point (t s ). Furthermore, in order to define the alert method, a first assumption is the following : an alert is generated as soon as a learner is predicted as at-risk (First assumption). However, this is a strong assumption as EWS are characterized by prediction oscillation over time. Indeed, relying on the results given by the example of Figure 1, we can distinguish two types of alert :

-good alert : alerting a teacher of an at-risk of failure learner -false alert : alerting a teacher of a successful learner Thus, the main objective is to generate a maximum number of good alerts starting from t s . For this reason, we need to define an alert rule (R i ). 

The starting time point t s

The alert generation is closely linked to the temporal dimension of EWS and their oscillations over time. Indeed, it is important to start generating alerts from a reliable time t s . This starting time t s is defined as both early enough to intervene effectively and ensuring the stability of correct predictions over time. For this aim, [START_REF] Soussia | Time-dependent metrics to assess performance prediction systems[END_REF] proposes to calculate the ESS score to observe the compromise between the earliness of predictions of a system and its temporal stability. The temporal stability is defined as the longest sequence of correct predictions over time, while the earliness is the first prediction time when a class label is correctly predicted [START_REF] Soussia | Assess performance prediction systems: Beyond precision indicators[END_REF]. Once computed, the ESS is used to identify this earliness time point. Therefore, our algorithm uses the results of ESS to identify the starting time t s from which the alert generation can be triggered reliably.

Alert rule R i

Since our goal is to alert teachers of at-risk learners, we intend to maximize the rate of good alerts and minimize false alerts. Although, producing a false alert is less crucial than missing out on a good alert. An example of a missing alert in Figure 1 is the following : the learner S 3 is predicted in C 1 at t 1 while she/he belongs to the risk class C 3 . In addition, applying the assumption of Section 3.1 can generate a high rate of false alerts. Thus, it is irrelevant to generate early alerts without verifying their precision. In other words, the alert generation process should consider the earliness of alerts but also their precision and the temporal stability of the whole prediction system. Therefore, it is pertinent to propose an alert generation method that respects several parameters :

early alerts : alerting teachers of at-risk learners at the earliest.

precise alerts : maximizing the rate of good alerts compared to the total number of generated alerts. system stability: stable and successively correct predictions over time.

For all these reasons, we propose to follow the succession of predictions over time and define an alert rule as follows :

Rule (R i ) : alert a teacher when a learner is predicted i times in a row in a risk class

To summarize, we apply R i on the prediction results of each learner. The value of i is defined depending on the context and the needs. In other words, to generate an alert of a learner S p , this latter must have been predicted i times in a row in a risk class starting from t s .

Evaluation of generated alerts

To assess the pertinence of the generated alerts following R i since t s , we adapt the usual ML confusion matrix to the alert evaluation as in Figure 2. The objective of this evaluation is to identify the value of i of R i that gives a maximum rate of good alerts and a minimum rate of false ones. Therefore, we propose to evaluate R i based on two metrics which are precision and FPR defined as follows: precision = good alerts rate / total number of generated alerts FPR = false alerts rate / total number of generated alerts

An alert is missing when a learner is actually at-risk but the alert rule does not detect it. Thus, the value i of R i is optimal when the precision is high and both FPR and missed alerts are minimal and tend to 0.

Alert generation algorithm

In this section, we present the alert generation algorithm 1 that proposes an automatic method to generate alerts based on the results of the earliness and the ESS given by [START_REF] Soussia | Time-dependent metrics to assess performance prediction systems[END_REF]. The Algorithm 1 takes as input the list of learners S, the subset y risk of the risk class labels, the test dataset D test , the number of prediction times given by T and the alert rule to apply given by the value of i. This algorithm returns A S alert which is the set of at-risk learners to alert the teachers of. This Algorithm starts by assigning the empty set to the variable E earliness which will contain the values of the earliness points for each class of y risk (Line 1). To identify the starting time point, the Algorithm 1 iterates over the set of risk class labels (C k ∈ y risk ) (Line 2). For each C k , the variable early C k of type list receives the earliness time points (Line 3) [START_REF] Soussia | Time-dependent metrics to assess performance prediction systems[END_REF]. At Line 4, the Algorithm assigns the empty list to the variable L C k . Then, it iterates over each earliness point of early C k (Line 5). For each earliness point j, the Algorithm proceeds to the calculation of its corresponding ESS score given by ess j k (Line 6). Then, < j k , ess j k > is added to L C k (Line 7). For each C k , the Algorithm selects the best couple < earliness C k , ess C k > ensuring the earliness of C k prediction and the stability of the system (Line 9). earliness C k is added to E earliness (Line 10). Once the E earliness is established, the Algorithm extracts the minimum earliness value and assigns it to the earliness variable (Line 12). Then, the Algorithm iterates over the learners set (Line 13). For each S p , the Algorithm initializes the prediction time t to earliness, the rule to apply r to 0 and alert to false. While t is inferior to T and the value of r is inferior to that of i, the Algorithm continues to run through the predictions (Line 17). If S p is predicted in a risk class (Line 18) then the value of r is incremented by 1 (Line 19). Else, the value of r is again reset to 0 (Line 21). Then, the value of t is incremented by 1 (Line 23). For each S p , if r is equal to i (Line 25), alert receives true (Line 26) and S p is added to the A S alert (Line 27). Else, the teacher shouldn't be alerted of S p (Line 29).

Case study

In order to validate this approach, we apply the alert generation algorithm on four different EWS based on real data of k-12 learners enrolled in online modules.

Context description

Our context is the k-12 online learners enrolled within CNED that offers multiple fully distance courses to a large number of heterogeneous and physically end if 31: end for dispersed learners. In addition, learning in CNED is quite specific as the registration remains open during the school year. Therefore, the starting activity date t 0 is different from one learner to another. Given these learning particularities, CNED reports yearly high failure rates among its learners. In order to resolve this issue, CNED intends to propose to its teachers an EWS to alert them of atrisk of failure learners. Based on the grades average and according to the French system where marks are out of 20, learners of each module are classified into 3 classes as follows :

success (C 1 ) : when the average is higher than 12 medium risk (C 2 ) : when the average is between 8 and 12 high risk (C 3 ) : when the average is lower than 8

We track the activity of learners on weekly basis in order to generate alerts at the earliest. Thus, on each week, each learner is represented by a vector composed of learning features and the prediction class. In this context, y risk = {C 2 , C 3 }.

EWS description

As a proof of concept, we apply the alert generation algorithm on four different EWS exploiting different learning traces that occur regularly over the school year and using various ML models : As the temporal stability is an important parameter to generate alerts (Section 3.3), the Figure 3 shows the temporal stability evolution, measured based on the definition given in [START_REF] Soussia | Time-dependent metrics to assess performance prediction systems[END_REF], of the four systems throughout the prediction weeks. The stability of EW S 1 increases slightly over time. It is ≈ 70% and ≈ 76% respectively at the first and at the last prediction week. The stability of EW S 2 decreases over time. It starts with ≈ 70% and is equal to ≈ 63% at the last prediction week. Both EW S 3 and EW S 4 systems start with a high stability which is respectively equal to ≈ 78% and ≈ 80%. However, these values decrease rapidly over the following weeks. The temporal stability values of EW S 3 and EW S 4 at the last prediction week are equal to ≈ 75% and ≈ 73%.

Experiments and results

In this section, we interpret the results given by the application of the alert Algorithm 1 on each of the described EWS.

Identification of the starting time point t s

The first prerequisite of the alert generation algorithm is the identification of the starting time point t s deduced by the calculation of ESS. By applying the ESS formula and all the protocol given in [START_REF] Soussia | Time-dependent metrics to assess performance prediction systems[END_REF], the Table 1 presents, for both class labels C 2 and C 3 of each system, the ESS rate and its corresponding earliness week. Based on the Algorithm 1, for each system, the selected earliness week t s Fig. 3. EW S1 VS EW S2 VS EW S3 VS EW S4 in terms of temporal stability from which the alert generation could be triggered corresponds to the minimum week value between the earliness weeks of C 2 and C 3 . Thus, based on Table 1 the selected earliness for all systems is the week 8. In other words, starting from t s = week 8, we can follow the learners' predictions to apply the alert rules. For other systems using other data and models and developed for other contexts, this starting time point t s could be different from week 8. The second part of the alert generation Algorithm 1 consists on applying alert rules on the predictions returned by an EWS. In order to identify the best R i for each of our systems (EW S 1 , EW S 2 , EW S 3 and EW S 4 ), we study the results of the evaluation metrics (precision and FPR) of the following alerts rules :

-R 1 : alert a teacher as soon as a learner is predicted as at-risk -R 2 : alert a teacher when a learner is predicted 2 times in a row as at-risk -R 3 : alert a teacher when a learner is predicted 3 times in a row as at-risk -R 4 : alert a teacher when a learner is predicted 4 times in a row as at-risk -R 5 : alert a teacher when a learner is predicted 5 times in a row as at-risk These 5 rules are applied starting from t s = week 8 as it is defined as the earliness time point of EW S 1 , EW S 2 , EW S 3 and EW S 4 . The Table 2 presents the evaluation of these rules on each of the four EWS. For each of these rules, this table shows the total number of generated alerts, the precision (%) of these alerts as well as their FPR (%).

According to the Table 2, R 1 generates always a high number of alerts. However, given the results of FPR and precision, the vast majority of these alerts are false. For example, when applying R 1 on EW S 2 predictions, 89 alerts are generated and only 35.95% of which are correct. Given the instability of EWS results (especially at early prediction times), the application of R 1 cannot ensure precise alerts and a minimum rate of false alerts.

The application of R 2 on EWS generates fewer number of alerts compared to R 1 . These alerts are more precise. This improvement is seen especially with the results of EW S 2 : 62 alerts are generated and 51.61% of which are precise; this is an improvement of 16 points compared to the precision of R 1 with this same system. R 2 gives the best results with EW S 1 : 45 alerts are generated of which 77.77% are correct.

The application of R 3 allows a significant improvement of the precision of the generated alerts. The most important amelioration is observed with both EW S 3 and EW S 4 with precision rates of 79.41% and 51.16% respectively. The R 3 rule considers more the temporal stability of the predictions which explains the significant improvement in the precision values and the decrease in the FPR rates of generated alerts.

The application of R 4 allows a very important enhancement in the results of the generated alerts compared to all previous rules. This improvement is mainly observed with EW S 3 and EW S 4 which precision rates are respectively 85.71% and 65.62%. A slight improvement of 4% and ≈ 3% is observed with EW S 1 and EW S 2 respectively. The more the rule considers the importance of temporal stability of predictions, more accurate alerts are generated by the system.

The application of R 5 slightly improves the precision of alerts compared to R 4 . For example, R 4 and R 5 with EW S 4 have the same number of generated alerts, precision and FPR. From a certain value of i of R i , the difference in precision and FPR rates is no longer remarkable with those of the rule R i-1 . In such a situation, it is a trade-off to make between the earliness of the alerts and their precision. Indeed, with a high value of i, alerts are more precise; subsequently, the rate of false alerts is low. However, it is probable to miss out on an earlier generation of good alerts with a lower value of i.

Discussion

To summarize, the conducted experimentations yielded the following results.

The high number of generated alerts does not mean their effectiveness and precision. Commonly, the successful learners outnumber the failing ones, therefore, it is irrelevant that the EWS generates a very high number of alerts. Otherwise, these alerts are mainly false. R 1 is always insufficient for a precise alert generation. Applying R 1 generates a large number of false alerts. Indeed, at early prediction times, EWS are likely to provide false predictions by identifying successful learners as belonging to risk classes and vice versa. In addition, R 1 does not consider the predictions stability which explains the high FPR rates. Starting from R 2 , the alerts are more precise and the FPR rates decrease.

The less precise generated alerts are observed with the least stable systems. For example, the temporal stability of EW S 2 and EW S 4 decreases over time (see Figure 3). All the rules applied on these two systems are characterized by low precisions. Thus, the appropriate value of i of R i to apply is different from one system to another and closely depends on its temporal stability. In addition, the value of i should ensure the compromise between the importance and effectiveness of early alerts and their precision. Moreover, some systems don't satisfy the condition of i successive predictions in a risk class when i is high. Hence, we can probably miss out on good alerts. In addition, from a certain value of i, the precision of R i is slightly higher than R i-1 . In such a case, it may be more relevant to consider the earliness of alerts rather than the succession of high number i of predictions and opt for R i-1 .

Conclusion

In this paper, we proposed an algorithm for generating early and precise alerts to enrich the use of EWS by the teachers. To this end, this algorithm uses the temporal metrics and introduces the alert rule concept. Indeed, the algorithm starts by identifying the starting time point t s from which the application of an alert rule R i can be triggered. Then, the generated alerts are evaluated based on two metrics : precision and FPR. In order to validate the relevance of this algorithm, we applied it on four different EWS using real learning traces of k-12 learners enrolled within online modules.

The conducted experiments showed that a high number of generated alerts doesn't reflect their precision. Indeed, the higher i of R i is, the more precise are the generated alerts. However, this optimal value of i is different from one system to another and closely depending on the temporal stability of each EWS. Moreover, the higher i is, the later in the year the alert is generated. Thus, it is a compromise to make between the importance of early alerts and their precision.

As perspectives, we intend to extend this work by improving this alert generation algorithm to consider the prediction oscillations characterizing an EWS. In addition, we aim to work on suggesting a trust indicator that illustrates the trust level that a teacher could have toward the EWS generated alerts.
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 1 Fig. 1. Example of an EWS

Fig. 2 .

 2 Fig. 2. The ML confusion matrix adapted the alert evaluation

  Algorithm 1 Alert algorithm -Alert(S, y risk , D test , T , i)

	Require: S, y risk , Dtest, T, i
	Ensure: AS alert
	1: E earliness ← ∅
	2: for each C k in y risk do
	3:	earlyC k ← Earliness(S, y risk , x, Dtest)
	4:	LC k ← ∅
	5:	for each j in earlyC k do
	6:	essj k ← 2 * (1-j) * stability (1-j)+stability
	7:	LC k ← put(LC k , < j k , essj k >)
	8:	end for
	9:	< earlinessC k , essC k >← best(LC k )
	10:	E earliness ← put(E earliness , earlinessC k )
	11: end for
	12: earliness ← minimum(E earliness )
	13: for each Sp in S do
	14:	t ← earliness
	15:	r ← 0
	16:	alert ← f alse
	17:	while (t ≤ T and r < i) do
	18:	if (prediction(Sp, y risk ) == true) then
	19:	r ← r + 1
	20:	else
	21:	r ← 0
	22:	end if
	23:	t ← t + 1
	24:	end while
	25:	if (r == i) then
	26:	alert ← true
	27:	AS alert ← put(Sp)
	28:	else
	29:	Sp should not be in AS alert
	30:	

1 .

 1 EW S 1 : this system uses learning traces of 647 learners enrolled in the physics-chemistry module for 37 weeks during 2017-2018 school year. EW S 1 uses the Random Forest (RF) model. 2. EW S 2 : the learning traces of this system are of 647 learners enrolled in the physics-chemistry module for 35 weeks during 2018-2019 school year. EW S 2 uses the Decision Tree (DT) model. 3. EW S 3 : the learning traces of this system are of 679 learners enrolled in the mathematics module for 35 weeks during the 2017-2018 school year. EW S 3 uses the RF model. 4. EW S 4 : this system uses the learning traces of 729 learners enrolled in the history-geography module for 35 weeks during the 2018-2019 school year. EW S 4 uses the DT model.

Table 1 .

 1 ESS of the four EWS and their corresponding earliness time point

		EW S 1		EW S 2		EW S 3		EW S 4	
		C 2	C 3 C 2	C 3	C 2	C 3	C 2	C 3
	ESS (%)	68.04 74.73 65.79 73.25 62.88 76.33 75.18 77.31
	Earliness (week)	13	8	13	8	16	8	9	8
	Selected earliness (week)	8		8		8		8	
	6.2 Application of alert rules starting from t s				

Table 2 .

 2 Application of the five alert rules on each of the four EWS

		EW S1		EW S2		EW S3			EW S4
		Generated	Precision	FPR	Generated	Precision	FPR	Generated	Precision	FPR	Alerts	Precision	FPR
		alerts	(%)	(%)	alerts	(%)	(%)	alerts	(%)	(%)	number	(%)	(%)
	R1	53	66.96 33.96	89	35.95 64.04	48	62.5	37.5	72	31.94 68.05
	R2	45	77.77 22.22	62	51.61 48.38	42	69.04 30.95 57	38.59 61.40
	R3	43	81.39 18.60	54	59.25 40.74	34	79.41 20.58 43	51.16 48.83
	R4	41	85.36 14.63	51	62.74 37.25	28	85.71 14.28 32	65.62 34.375
	R5	39	87.17 12.82	46	67.39 32.60	24	87.5	12.5	32	65.62 34.375
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