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Introduction

Flight formations have become a key technology for present and future space missions. From a dynamical point of view, they have been studied since the rst spatial rendezvous operations [START_REF] Clohessy | Terminal Guidance System for Satellite Rendezvous[END_REF]. There is a certain number of publications in the literature presenting dierent analytical theories for temporal evolution of the relative motion [START_REF] Garrison | Relative motion in highly elliptical orbits (AAS 95-194)[END_REF], [START_REF] Gim | Satellite relative motion using dierential equinoctial elements[END_REF]. Dierent authors have explored the possibility of nding periodic relative orbits under the eect of perturbations [START_REF] Biggs | A search for invariant relative satellite motion[END_REF], [START_REF] Sabatini | Periodic relative motion of formation ying satellites[END_REF]. We consider that, before taking into account perturbations, there is a eld of investigation which consists in describing all the possible relative trajectories for the non-perturbed case. This paper tackles this task. We lay stress on circular or near circular local trajectories because circular local trajectories have special properties which make them specially useful for space missions (interferometry missions, LISA mission, ....). First, we study the circular reference orbit case. Since the relative trajectory is, under some assumptions, an ellipse, we propose to study it using "local orbital elements" dened in [START_REF] Baig | An alternative representation of the relative motion: the local orbital elements[END_REF]. We are explaining that the six local orbital elements are not independent, and that the relative ellipse has only four degrees of freedom. Second, when the reference orbit is slowly eccentric, the relative motion is no more an ellipse. Our local orbital elements are always a well-suited parametrization because the resulting relative motion is a kind of perturbed ellipse. For highly eccentric references orbits, we propose a parameterization based, only, on four parameters, two for the inplane motion, and two for the out-ofplane motion. The paper has the following structure: second section is dedicated to the statement of the problem. Third section deals with the topology of relative motion while section four is devoted to the search of circular relative motions. [START_REF] Clohessy | Terminal Guidance System for Satellite Rendezvous[END_REF] The equations of the relative motion

2.1

The statement of the problem

In the whole text, we use the well-known keplerian elements: the semi-major axis a, the eccentricity e, the inclination i, the right ascension of ascending node Ω, the argument of perigee ω, and the mean anomaly M . The motion, studied in an inertial reference frame denoted IJK, is described through temporal series of keplerian elements as well as of positions -→ r | IJK and velocities -→ v | IJK . We use the following notations:

--→ EO = (a, e, i, Ω, ω, M ) T -→ x | IJK = -→ r | IJK -→ v | IJK
From now on, we will consider a reference orbit which will be described by its orbital elements or by its position and velocity. This reference orbit can be the orbit of one of the satellites of the formation or it can correspond to a ctitious point. For simplicity, we will name it the reference satellite indicated by the subscript r . Inertial position and velocity can also be projected into the orbital local frame (RT N ) dened by the given reference orbit. Relations between projections into IJK frame and RTN frame are quite simple:

-→ x | IJK = R( --→ EO r ) 0 0 R( --→ EO r ) -→ x | RT N
where the matrix R(

--→ EO) is: R( --→ EO) =   cos Ω cos u -sin Ω sin u cos i -cos Ω sin u -sin Ω cos u cos i sin Ω sin i sin Ω cos u + cos Ω sin u cos i -sin Ω sin u + cos Ω cos u cos i -cos Ω sin i sin u sin i cos u sin i cos i   with u = ω + f
, where f is the true anomaly.

The relative motion between a satellite and the reference satellite can be described by the dierence of position and velocity projected in the orbital frame of the reference orbit:

∆ -→ x | RT N = -→ x | RT N --→ x r | RT N = ∆ -→ r | RT N ∆ -→ v | RT N (1) 
or by the dierences of orbitals elements between the two orbits:

∆ --→ EO = --→ EO - --→ EO r
(2) We will also use the following notation:

∆ -→ r | RT N ≡ (∆R, ∆T, ∆N ) T ∆ -→ v | RT N ≡ (∆V R , ∆V T , ∆V N ) T 2.2
The temporal evolution of the relative motion

In order to obtain easy analytical expressions of the relative motion, we study the linear, non-perturbed problem. As it is proved in [START_REF] Baig | An alternative representation of the relative motion: the local orbital elements[END_REF], the equations of the motion of this problem are:

∆R(t) = r r a r ∆a 0 -a r cos f r ∆e 0 + a r e r η r sin f r ∆M 0 - 3 2 n r e r η r sin f r (t -t 0 )∆a 0 (3) 
∆T (t) = a r 1 + 1 η 2 r r r a r sin f r ∆e 0 + r r cos i r ∆Ω 0 + r r ∆ω 0 + a 2 r η r r r ∆M 0 - 3 2 a r n r η r r r (t -t 0 )∆a 0 ∆N (t) = r r sin u r ∆i 0 -r r sin i r cos u r ∆Ω 0
These equations give temporal evolution of relative position projected in the local orbital frame as function of six parameters: ∆ --→ EO(t 0 ). They are equivalent to the Lawden's equations [START_REF] Lawden | Optimal trajectories for space navigation[END_REF]. Lawden's equations are parameterized with initial relative position and velocity while our equations are parameterized with initial dierences of orbital elements. Our parametrization gives more compact expressions and enables a better physical understanding of the role of each initial condition. Thereafter, we describe resulting relative motion in three cases: (i) when the reference orbit is circular, (ii) when the reference orbit is slightly eccentric, (iii) when the reference orbit is strongly eccentric. [START_REF] Baig | An alternative representation of the relative motion: the local orbital elements[END_REF] The topology of the relative motion

3.1

The circular reference orbit case

When the reference orbit is circular, we parameterize the two orbits with a set of non-singular elements:

---→ EN S = (a, C, i, Ω, S, λ) T , where the elements (e, ω, M ) have been replaced by the elements (C, S, λ) dened by:

C = e cos ω (4) 
S = e sin ω

(5)

λ = ω + M (6) 
We also dene the dierences of non-singulars elements as:

∆ ---→ EN S = ---→ EN S - ---→ EN S r (7) 
The particularization of equations ( 3), after the introduction of non-singular elements, gives:

∆R(t) = ∆a 0 -a r (cos λ∆C 0 + sin λ∆S 0 ) (8) 
∆T (t) = a r 2 sin λ∆C 0 -2 cos λ∆S 0 + ∆λ 0 -cos i r ∆Ω 0 - 3 2 n(t -t 0 )∆a 0 ∆N (t) = a r (sin λ∆i 0 -sin i r cos λ∆Ω 0 )
This solution is equivalent to the well-known Clohessy-Wilthsire equations for the non-perturbed motion. We note that these equations correspond with the standard parametrical equation of an ellipse centered on the origin of the local frame except for two kind of terms:

• terms providing from a dierence of semi-major axis : a dierent semi-major axis gives dierent orbital frequencies which produce a secular growth of the dierence in the T component. As this eect destroys the formation in a short period of time, we do the hypothesis: ∆a 0 = 0. This hypothesis may not be true for docking or rendezvous operations, but it is always fullled in ight formations.

• constant term on the T axis: these terms, (∆λ 0 -cos i r ∆Ω 0 ), can be removed just by a shift on the origin of the axis. We do not take care of these terms.

Disgarding foregoing terms, equations (8) rewrite:

∆R = -a r ∆C 0 cos λ -a r ∆S 0 sin λ (9) ∆T = -2a r ∆S 0 cos λ + 2a r ∆C 0 sin λ ∆N = -a r ∆Ω 0 cos λ + a r ∆i 0 sin λ
which correspond to the elliptical motion. As it is usually done on the two-body problem, the elliptical motion will be parameterized through a set of orbital elements called local orbital elements ( - → eo l ): semi-major axis (a l ), eccentricity (e l ), inclination (i l ), longitude of ascending node (Ω l ), longitude of perigee (ω l ) and the phase (ϕ l ), dened as the dierence of phase between the reference anomaly, and the anomaly of the local orbit.

There are two main dierences with respect to classical keplerian elliptical motion (i) the origin of the axis does not correspond to a focus of the ellipse, but with the center. This leads to an ambiguity on the denition of the longitude of the perigee which is solved establishing that ω ∈ [0, π] (ii) the angular velocity is not dependent on the distance to the origin, it is constant and equal to the angular velocity of the reference frame. That is, the period of any local orbit corresponds to the period of the It is possible to obtain relations between the local orbital elements and the initial conditions as it is done in [START_REF] Baig | An alternative representation of the relative motion: the local orbital elements[END_REF]. It is also possible to prove that only four local orbital elements are independents. The size (a l ) and the constant phase (ϕ l ) can always be chosen to our convenience. The other four parameters may be separated in two groups: the elements which give the form of the local orbit (e l , ω l ), and the elements which give the orientation of the plane of the local orbit (i l , Ω l ). One group determines the other. We have decided to express the local eccentricity and the local perigee as function of other variables (i l , Ω l ). Tedious but simple algebraic manipulations yield:

e 4 l (2 -e 2 l ) 2 = 9 + 6 tan 2 i l (4 cos 2 Ω l -sin 2 Ω l ) + tan 4 i l (4 cos 2 Ω l + sin 2 Ω l ) 2 5 + tan 2 i l (4 cos 2 Ω l + sin 2 Ω l ) 2 (10) 
and:

tan 2 ω l - 3(cos 2 Ω l -sin 2 Ω l ) + sin 2 i l (cos 2 Ω l + 4 sin 2 Ω l ) 3 cos i l cos Ω l sin Ω l tan ω l -1 = 0 (11) 3.2
The low eccentric reference orbit case

When the reference orbit is sligthly eccentric, we simplify equations ( 3) by means of an expansion in powers of the eccentricity up to rst order: In this set of equations we identify following terms:

∆R a r = -cos λ (∆C 0 + S r ∆λ 0 ) -sin λ (∆S 0 -C r ∆λ 0 ) + O(e 2 ) ( 12 
) ∆T a r = sin λ [2∆C 0 + S r (∆λ 0 -∆Ω 0 cos i r )] + cos λ [-2∆S 0 + C r (∆λ 0 -∆Ω 0 cos i r )] + (∆λ 0 -∆Ω 0 cos i r ) -∆e 0 e r 2 (sin 2λ cos 2ω r -cos 2λ sin 2ω r ) + O(e 2 )
• constant terms: there are constant terms not only in T axis (as in the circular case) but also in the N axis. Once again, they can be cancelled by changing the origin of the axis.

• elliptical terms: the terms in cos λ and sin λ. The coecients diers from the coecients of the circular reference orbit case. The local orbital elements can be computed using the same relations as in the circular reference orbit case but with new parameters

-→ P : A = -a r (∆C 0 + S r ∆λ 0 ) B = -a r (∆S 0 -C r ∆λ 0 ) C = a r (-2∆S 0 + C r (∆λ 0 -∆Ω 0 cos i r )) D = a r (2∆C 0 + S r (∆λ 0 -∆Ω 0 cos i r )) E = -a r sin i r ∆Ω 0 F = a r ∆i 0
• double orbital frequency terms: relative motion is no more an ellipse because of these terms which do not correspond to an elliptical motion.

From a topological point of view there is a major modication with respect to the circular case: ∆λ plays a new role. While in the circular case it determines only a constant, in the low eccentricity case it plays a role on the ellipse determination and on the double orbital frequency terms. The modications with respect to circular case are of the order of the eccentricity, since the eccentricity is low, the dierence are not very important.

3.3

The high eccentric reference orbit case Our departure point is equations (3). For the same precedent reasons, we impose ∆a = 0, obtaining equations:

∆R(t) = -a r cos f r ∆e 0 + a r e r η r sin f r ∆M 0 (13) ∆T (t) = a r 1 + 1 η 2 r r r a r sin f r ∆e 0 + r r cos i r ∆Ω 0 + r r ∆ω 0 + a 2 r η r r r ∆M 0 ∆N (t) = r r sin u r ∆i 0 -r r sin i r cos u r ∆Ω 0
The in-plane and out-of-plane motions can be decoupled doing the following changing of variables:

∆ω = ∆ω + ∆Ω cos i r (14) ∆Ω = ∆Ω sin i r
After, we break down the variable u = ω + f into his components:

∆i = sin ω r ∆i -cos ω r ∆Ω (15) 
∆Ω = cos ω r ∆i + sin ω r ∆Ω Finally, we obtain:

x = ∆R a r ∆e = -cos f r + eK 1 sin f r (16) y = ∆T a r ∆e = 2 + e cos f r 1 + e cos f r sin f r + K 1 (1 + e cos f r ) + K 2 1 + e cos f r z = ∆N a r ∆e = 1 1 + e cos f r (K 3 cos f r + K 4 sin f r )
with the coecients:

K 1 = ∆M η r (17) 
K 2 = η 2 (∆ω + cos i r ∆Ω) K 3 = η 2 r (sin ω r ∆i -cos ω r sin i r ∆Ω) K 4 = η 2
r (cos ω r ∆i + sin ω r sin i r ∆Ω)

These equations express all the possible relative trajectories as function of four parameters. K 1 , K 2 parameterize the in-plane motion and K 3 , K 4 the out-of-plane motion. The out-of-plane motion is given by the sum of a sinus and a cosinus functions divided by (1 + e cos f r ). The in-plane motion is more complicated. K 1 produces a circular motion:

x = -cos f r + eK 1 sin f r (18) y -K 1 = eK 1 cos f r + sin f r
and K2 produces a motion only on y axis:

y -K 2 = -eK 2 cos f r 1 + e cos f r
The values of these constants determine the form of the in-plane motion. In gure (4) we plot the form of the in-plane motion for dierent values of K 1 , K 2 , when the reference orbit eccentricity is 0.6. We verify that for high values of K 1 the motion is circular while K 2 gives linear motions on T axis.

Looking for local circular motions

The planes where the local motion is circular, have a very interesting property: due to the fact that the local orbital frequency is independent of the distance to the origin, all the satellites rotate at the same angular velocity around the center of the circle and their relatives distances do not change. As a consequence, all initial congurations remain invariant all along the trajectory. These planes represent very interesting possibilities for ight formation where it is necessary to keep inter-relative distances constant, as in interferometry missions or the future LISA mission. Actually, residual variations of the distance will be produced by perturbations and non-linear eects that have been neglected.

When the reference orbit is circular

There are two points in gure (2) where local eccentricity is zero. Using equations (10) and (11), it is possible to determine their local plane: with the corresponding initial conditions:

i l1 = 60 • Ω l1 = 90 • i l2 = -60 • Ω l2 = 90 •
∆ ---→ EN S 1 = (0, ∆C, - √ 3∆S, √ 3∆C, ∆S, ∆λ) T ∆ ---→ EN S 2 = (0, ∆C, √ 3∆S, - √ 3∆C, ∆S, ∆λ) T (19) 
We recall that, due to equations (9), ∆C and ∆S determine the size (a l ) and the constant phase of the ellipse (ϕ l ).

4.2

When the reference orbit is slightly eccentric

When the reference orbit is not circular, the set of equations ( 12) reveals that it is not possible to nd perfect circular local motions. But, our analysis of these equations enables to establish the necessary conditions to provide local motions as close as possible to a circle. When changing the parameterization (12) by using dierential orbital elements we obtain:

∆R a r = -cos f r ∆e + e r sin f r ∆M (20) 
∆T a r = 2 sin f r ∆e -e r cos f r sin f r ∆e + ∆M + ∆ω + e r cos f r ∆M -∆ω ∆N a r = ∆i cos f r + ∆Ω sin f r -e r cos f r ∆i cos f r + ∆Ω sin f r where we have introduced the following variables:

∆ω = ∆ω + ∆Ω cos i r (21) 
∆i = sin ω r ∆i -cos ω r sin i r ∆Ω ∆Ω = cos ω r ∆i + sin ω r sin i r ∆Ω

Considering only elliptical terms, the following initial conditions enable to obtain the same circular motion as in the circular reference orbit (same local inclination and ascending node):

• SET 1 ∆a = 0 ∆e = ∆e ∆i = √ 3 sin ω r ∆e ∆Ω = - √ 3 cos ω r sin i r ∆e ∆ω = √ 3 cos ω r tan i r ∆e ∆M = 0 • SET 2 ∆a = 0 ∆e = 0 ∆i = √ 3e r cos ω r ∆M ∆Ω = √ 3e r sin ω r sin i r ∆M ∆ω = -1 + √ 3e r sin ω r tan i r ∆M ∆M = ∆M
The rst set of initial conditions is parameterized by a dierence of eccentricity, while the second set is parameterized by a dierence of anomaly. Thereafter, we refer to the set 1 as "dierence of eccentricity" and to set 1 as "dierence of anomaly". Resulting motion is not circular because of double orbital frequency terms. In gure [START_REF] Gim | Satellite relative motion using dierential equinoctial elements[END_REF] we compare the variation of the distance from the origin for each set of initial conditions. Both sets of conditions produce double orbital frequency terms in the N axis, but, ∆e produces also these terms in the T axis. That's why the variations are more important in the left part of the gure [START_REF] Gim | Satellite relative motion using dierential equinoctial elements[END_REF]. It is possible to arrange equations (13) to obtain following form:

∆R a r = -cos f ∆e + e η sin f ∆M (22) ∆T a r = 2 sin f ∆e + e cos f ∆M η - η 2 ∆ω 1 + e cos f + η 2 ∆ω + ∆M η -e cos f sin f 1 + e cos f ∆e ∆N a r = η 2 1 + e cos f ∆i cos f + ∆Ω sin f
This arrangement allows the comparison with the low eccentric form of the equations 20. Comparing the two sets, we identify the transformation of elliptical terms when the eccentricity of the reference orbit grows. We identify the following terms:

-cos f + e sin f → -cos f + e η sin f 2 sin f ∆e + e cos f ∆M -∆ω → 2 sin f ∆e + ∆M η -η 2 ∆ω e cos f ∆i cos f + ∆Ω sin f → η 2 ∆i cos f + ∆Ω sin f
We impose the same previous conditions to new terms. Resulting motions are not circular because of double orbital frequency terms and non linear terms in eccentricity, that become very important. Anyway, these initial conditions produce a class of relative motions that is as close as possible to a circle.

• SET 1

∆a = 0 ∆e = ∆e ∆i = √ 3 η 2 sin ω∆e ∆Ω = - √ 3 η 2 cos ω sin i ∆e ∆ω = √ 3 η 2 cos ω tan i ∆e ∆M = 0 • SET 2 ∆a = 0 ∆e = 0 ∆i = √ 3 e r η 3 cos ω r ∆M ∆Ω = √ 3 e r η 3 sin ω r sin i r ∆M ∆ω = - 1 η 3 1 + √ 3e r sin ω tan i r ∆M ∆M = ∆M
In the following gures ( 6) and [START_REF] Sabatini | Periodic relative motion of formation ying satellites[END_REF] we have drawn the evolution of the circular motion when the eccentricity of the reference orbit grows. The other parameters of the reference orbit play no role on the form of the trajectory (for the keplerian case). Figures [START_REF] Lawden | Optimal trajectories for space navigation[END_REF] This paper explores a eld in relative motions which is nowadays not well-known . We characterize all the possible relative motions for all type of eccentricity of the reference orbit. We minimize the number of relevant parameters thanks to a detailed analytical study. In the case of the circular reference orbit case, we take the advantage of the representation in terms of local orbital elements. In the case of very high eccentric reference orbit it is not possible to use the local orbital elements anymore, but we separate the motion as a sum of four elementary eects.

Local circular motion has very interesting properties for space purposes. That's why we have identied the congurations that produce this motion in the circular reference orbit case. When the reference orbit is eccentric, there are no more local circular motions, but we have found the motions that are closest to a circle. Future work will be centered in the introduction of perturbations and their eects on the relative motion. Another interesting work is to nd the correct parametrization of relative motion when reference orbit is highly eccentric.
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