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Abstract

This paper deals with the topology of the relative trajectories in �ight formations. The purpose

is to study the di�erent types of relative trajectories, their degrees of freedom, and to give an

adapted parameterization. The paper also deals with the research of local circular motions. Even if

the exist only when the reference orbit is circular, we extrapolate initial conditions to the eccentric

reference orbit case.This alternative approach is complementary with traditional approaches in

terms of cartesian coordiantes or di�erences of orbital elements.

1 Introduction

Flight formations have become a key technology for present and future space missions. From a dy-
namical point of view, they have been studied since the �rst spatial rendezvous operations [2]. There
is a certain number of publications in the literature presenting di�erent analytical theories for tempo-
ral evolution of the relative motion [4], [5]. Di�erent authors have explored the possibility of �nding
periodic relative orbits under the e�ect of perturbations [1], [7]. We consider that, before taking into
account perturbations, there is a �eld of investigation which consists in describing all the possible
relative trajectories for the non-perturbed case. This paper tackles this task. We lay stress on circular
or near circular local trajectories because circular local trajectories have special properties which make
them specially useful for space missions (interferometry missions, LISA mission, ....).
First, we study the circular reference orbit case. Since the relative trajectory is, under some assump-
tions, an ellipse, we propose to study it using "local orbital elements" de�ned in [3]. We are explaining
that the six local orbital elements are not independent, and that the relative ellipse has only four
degrees of freedom. Second, when the reference orbit is slowly eccentric, the relative motion is no more
an ellipse. Our local orbital elements are always a well-suited parametrization because the resulting
relative motion is a kind of perturbed ellipse. For highly eccentric references orbits, we propose a
parameterization based, only, on four parameters, two for the inplane motion, and two for the out-of-
plane motion.
The paper has the following structure: second section is dedicated to the statement of the problem.
Third section deals with the topology of relative motion while section four is devoted to the search of
circular relative motions.

2 The equations of the relative motion

2.1 The statement of the problem

In the whole text, we use the well-known keplerian elements: the semi-major axis a, the eccentricity
e, the inclination i, the right ascension of ascending node Ω, the argument of perigee ω, and the mean
anomaly M . The motion, studied in an inertial reference frame denoted IJK, is described through
temporal series of keplerian elements as well as of positions −→r |IJK and velocities −→v |IJK . We use the
following notations:
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−−→
EO = (a, e, i,Ω, ω,M)T

−→x |IJK =
( −→r |IJK−→v |IJK

)
From now on, we will consider a reference orbit which will be described by its orbital elements or by

its position and velocity. This reference orbit can be the orbit of one of the satellites of the formation
or it can correspond to a �ctitious point. For simplicity, we will name it the reference satellite indicated
by the subscript r. Inertial position and velocity can also be projected into the orbital local frame
(RTN) de�ned by the given reference orbit. Relations between projections into IJK frame and RTN
frame are quite simple:

−→x |IJK =

(
R(
−−→
EOr) 0
0 R(

−−→
EOr)

)
−→x |RTN

where the matrix R(
−−→
EO) is:

R(
−−→
EO) =

 cos Ω cos u− sinΩ sinu cos i − cos Ω sinu− sinΩ cos u cos i sinΩ sin i
sinΩ cos u + cos Ω sinu cos i − sinΩ sinu + cos Ω cos u cos i − cos Ω sin i

sinu sin i cos u sin i cos i


with u = ω + f , where f is the true anomaly.
The relative motion between a satellite and the reference satellite can be described by the di�erence

of position and velocity projected in the orbital frame of the reference orbit:

∆−→x |RTN = −→x |RTN −−→x r|RTN =
(

∆−→r |RTN

∆−→v |RTN

)
(1)

or by the di�erences of orbitals elements between the two orbits:

∆
−−→
EO =

−−→
EO −

−−→
EOr (2)

We will also use the following notation:

∆−→r |RTN ≡ (∆R,∆T,∆N)T

∆−→v |RTN ≡ (∆VR,∆VT ,∆VN )T

2.2 The temporal evolution of the relative motion

In order to obtain easy analytical expressions of the relative motion, we study the linear, non-perturbed
problem. As it is proved in [3], the equations of the motion of this problem are:

∆R(t) =
rr

ar
∆a0 − ar cos fr∆e0 +

arer

ηr
sin fr∆M0 −

3
2

nrer

ηr
sin fr(t− t0)∆a0 (3)

∆T (t) = ar

(
1 +

1
η2

r

rr

ar

)
sin fr∆e0 + rr cos ir∆Ω0 + rr∆ω0 +

a2
rηr

rr
∆M0 −

3
2

arnrηr

rr
(t− t0)∆a0

∆N(t) = rr sinur∆i0 − rr sin ir cos ur∆Ω0

These equations give temporal evolution of relative position projected in the local orbital frame

as function of six parameters: ∆
−−→
EO(t0). They are equivalent to the Lawden's equations [6]. Law-

den's equations are parameterized with initial relative position and velocity while our equations are
parameterized with initial di�erences of orbital elements. Our parametrization gives more compact ex-
pressions and enables a better physical understanding of the role of each initial condition. Thereafter,
we describe resulting relative motion in three cases: (i) when the reference orbit is circular, (ii) when
the reference orbit is slightly eccentric, (iii) when the reference orbit is strongly eccentric.
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3 The topology of the relative motion

3.1 The circular reference orbit case

When the reference orbit is circular, we parameterize the two orbits with a set of non-singular elements:−−−→
ENS = (a,C, i,Ω, S, λ)T , where the elements (e, ω, M) have been replaced by the elements (C,S, λ)
de�ned by:

C = e cos ω (4)

S = e sinω (5)

λ = ω + M (6)

We also de�ne the di�erences of non-singulars elements as:

∆
−−−→
ENS =

−−−→
ENS −

−−−→
ENSr (7)

The particularization of equations (3), after the introduction of non-singular elements, gives:

∆R(t) = ∆a0 − ar (cos λ∆C0 + sinλ∆S0) (8)

∆T (t) = ar

(
2 sinλ∆C0 − 2 cos λ∆S0 + ∆λ0 − cos ir∆Ω0 −

3
2
n(t− t0)∆a0

)
∆N(t) = ar (sinλ∆i0 − sin ir cos λ∆Ω0)

This solution is equivalent to the well-known Clohessy-Wilthsire equations for the non-perturbed
motion. We note that these equations correspond with the standard parametrical equation of an ellipse
centered on the origin of the local frame except for two kind of terms:

• terms providing from a di�erence of semi-major axis : a di�erent semi-major axis gives di�erent
orbital frequencies which produce a secular growth of the di�erence in the T component. As this
e�ect destroys the formation in a short period of time, we do the hypothesis: ∆a0 = 0. This
hypothesis may not be true for docking or rendezvous operations, but it is always ful�lled in
�ight formations.

• constant term on the T axis: these terms, (∆λ0 − cos ir∆Ω0), can be removed just by a shift on
the origin of the axis. We do not take care of these terms.

Disgarding foregoing terms, equations (8) rewrite:

∆R = −ar∆C0 cos λ− ar∆S0 sin λ (9)

∆T = −2ar∆S0 cos λ + 2ar∆C0 sinλ

∆N = −ar∆Ω0 cos λ + ar∆i0 sinλ

which correspond to the elliptical motion. As it is usually done on the two-body problem, the
elliptical motion will be parameterized through a set of orbital elements called local orbital elements

(−→eol): semi-major axis (al), eccentricity (el), inclination (il), longitude of ascending node (Ωl), longitude
of perigee (ωl) and the phase (ϕl), de�ned as the di�erence of phase between the reference anomaly,
and the anomaly of the local orbit.

There are two main di�erences with respect to classical keplerian elliptical motion (i) the origin of
the axis does not correspond to a focus of the ellipse, but with the center. This leads to an ambiguity
on the de�nition of the longitude of the perigee which is solved establishing that ω ∈ [0, π] (ii) the
angular velocity is not dependent on the distance to the origin, it is constant and equal to the angular
velocity of the reference frame. That is, the period of any local orbit corresponds to the period of the
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Figure 1: de�nition of local orbital elements

reference frame.

It is possible to obtain relations between the local orbital elements and the initial conditions as it is
done in [3]. It is also possible to prove that only four local orbital elements are independents. The size
(al) and the constant phase (ϕl) can always be chosen to our convenience. The other four parameters
may be separated in two groups: the elements which give the form of the local orbit (el, ωl), and the
elements which give the orientation of the plane of the local orbit (il,Ωl). One group determines the
other. We have decided to express the local eccentricity and the local perigee as function of other
variables (il,Ωl). Tedious but simple algebraic manipulations yield:

e4
l

(2− e2
l )

2
=

[
9 + 6 tan2 il(4 cos2 Ωl − sin2 Ωl) + tan4 il(4 cos2 Ωl + sin2 Ωl)2

](
5 + tan2 il(4 cos2 Ωl + sin2 Ωl)

)2 (10)

and:

tan2 ωl −
3(cos2 Ωl − sin2 Ωl) + sin2 il(cos2 Ωl + 4 sin2 Ωl)

3 cos il cos Ωl sinΩl
tanωl − 1 = 0 (11)

3.2 The low eccentric reference orbit case

When the reference orbit is sligthly eccentric, we simplify equations (3) by means of an expansion in
powers of the eccentricity up to �rst order:

∆R

ar
= − cos λ (∆C0 + Sr∆λ0)− sinλ (∆S0 − Cr∆λ0) +O(e2) (12)

∆T

ar
= sin λ [2∆C0 + Sr (∆λ0 −∆Ω0 cos ir)] + cos λ [−2∆S0 + Cr (∆λ0 −∆Ω0 cos ir)]

+ (∆λ0 −∆Ω0 cos ir)−∆e0
er

2
(sin 2λ cos 2ωr − cos 2λ sin 2ωr) +O(e2)
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Figure 2: Eccentricity as function of the inclination and the longitude of the ascending node

Figure 3: Perigee as function of the inclination and the longitude of the ascending node
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∆N

ar
= sinλ∆i0 − cos λ sin ir∆Ω0 +

er

2
(cos ω sin ir∆Ω0 − sinωr∆i0)

+
er

2
cos 2λ (cos ωr sin ir∆Ω0 + sinωr∆i0) +

er

2
sin 2λ (sinωr sin ir∆Ω0 − cos ωr∆i0) +O(e2)

In this set of equations we identify following terms:

• constant terms: there are constant terms not only in T axis (as in the circular case) but also in
the N axis. Once again, they can be cancelled by changing the origin of the axis.

• elliptical terms: the terms in cos λ and sinλ. The coe�cients di�ers from the coe�cients of the
circular reference orbit case. The local orbital elements can be computed using the same relations

as in the circular reference orbit case but with new parameters
−→
P :

A = −ar (∆C0 + Sr∆λ0) B = −ar (∆S0 − Cr∆λ0)
C = ar (−2∆S0 + Cr (∆λ0 −∆Ω0 cos ir)) D = ar (2∆C0 + Sr (∆λ0 −∆Ω0 cos ir))
E = −ar sin ir∆Ω0 F = ar∆i0

• double orbital frequency terms: relative motion is no more an ellipse because of these terms which
do not correspond to an elliptical motion.

From a topological point of view there is a major modi�cation with respect to the circular case:
∆λ plays a new role. While in the circular case it determines only a constant, in the low eccentricity
case it plays a role on the ellipse determination and on the double orbital frequency terms. The
modi�cations with respect to circular case are of the order of the eccentricity, since the eccentricity is
low, the di�erence are not very important.

3.3 The high eccentric reference orbit case

Our departure point is equations (3). For the same precedent reasons, we impose ∆a = 0, obtaining
equations:

∆R(t) = −ar cos fr∆e0 +
arer

ηr
sin fr∆M0 (13)

∆T (t) = ar

(
1 +

1
η2

r

rr

ar

)
sin fr∆e0 + rr cos ir∆Ω0 + rr∆ω0 +

a2
rηr

rr
∆M0

∆N(t) = rr sinur∆i0 − rr sin ir cos ur∆Ω0

The in-plane and out-of-plane motions can be decoupled doing the following changing of variables:

∆ω′ = ∆ω + ∆Ω cos ir (14)

∆Ω′ = ∆Ω sin ir

After, we break down the variable u = ω + f into his components:

∆i′′ = sinωr∆i− cos ωr∆Ω′ (15)

∆Ω′′ = cos ωr∆i + sinωr∆Ω′

Finally, we obtain:
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x =
∆R

ar∆e
= − cos fr + eK1 sin fr (16)

y =
∆T

ar∆e
=

2 + e cos fr

1 + e cos fr
sin fr + K1 (1 + e cos fr) +

K2

1 + e cos fr

z =
∆N

ar∆e
=

1
1 + e cos fr

(K3 cos fr + K4 sin fr)

with the coe�cients:

K1 =
∆M

ηr
(17)

K2 = η2 (∆ω + cos ir∆Ω)
K3 = η2

r (sinωr∆i− cos ωr sin ir∆Ω)
K4 = η2

r (cos ωr∆i + sinωr sin ir∆Ω)

These equations express all the possible relative trajectories as function of four parameters. K1,K2

parameterize the in-plane motion and K3,K4 the out-of-plane motion. The out-of-plane motion is
given by the sum of a sinus and a cosinus functions divided by (1 + e cos fr). The in-plane motion is
more complicated. K1 produces a circular motion:

x = − cos fr + eK1 sin fr (18)

y −K1 = eK1 cos fr + sin fr

and K2 produces a motion only on y axis:

y −K2 =
−eK2 cos fr

1 + e cos fr

The values of these constants determine the form of the in-plane motion. In �gure (4) we plot the
form of the in-plane motion for di�erent values of K1,K2, when the reference orbit eccentricity is 0.6.
We verify that for high values of K1 the motion is circular while K2 gives linear motions on T axis.

4 Looking for local circular motions

The planes where the local motion is circular, have a very interesting property: due to the fact that
the local orbital frequency is independent of the distance to the origin, all the satellites rotate at
the same angular velocity around the center of the circle and their relatives distances do not change.
As a consequence, all initial con�gurations remain invariant all along the trajectory. These planes
represent very interesting possibilities for �ight formation where it is necessary to keep inter-relative
distances constant, as in interferometry missions or the future LISA mission. Actually, residual varia-
tions of the distance will be produced by perturbations and non-linear e�ects that have been neglected.

4.1 When the reference orbit is circular

There are two points in �gure (2) where local eccentricity is zero. Using equations (10) and (11), it is
possible to determine their local plane:

il1 = 60◦ Ωl1 = 90◦

il2 = −60◦ Ωl2 = 90◦
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with the corresponding initial conditions:

∆
−−−→
ENS1 = (0,∆C,−

√
3∆S,

√
3∆C,∆S, ∆λ)T

∆
−−−→
ENS2 = (0,∆C,

√
3∆S,−

√
3∆C,∆S, ∆λ)T

(19)

We recall that, due to equations (9), ∆C and ∆S determine the size (al) and the constant phase
of the ellipse (ϕl).

4.2 When the reference orbit is slightly eccentric

When the reference orbit is not circular, the set of equations (12) reveals that it is not possible to �nd
perfect circular local motions. But, our analysis of these equations enables to establish the necessary
conditions to provide local motions as close as possible to a circle. When changing the parameterization
(12) by using di�erential orbital elements we obtain:

∆R

ar
= − cos fr∆e + er sin fr∆M (20)

∆T

ar
= 2 sin fr∆e− er cos fr sin fr∆e +

(
∆M + ∆ω′)+ er cos fr

(
∆M −∆ω′)

∆N

ar
=

(
∆i′ cos fr + ∆Ω′ sin fr

)
− er cos fr

(
∆i′ cos fr + ∆Ω′ sin fr

)
where we have introduced the following variables:

∆ω′ = ∆ω + ∆Ω cos ir (21)

∆i′ = sin ωr∆i− cos ωr sin ir∆Ω
∆Ω′ = cos ωr∆i + sinωr sin ir∆Ω

Considering only elliptical terms, the following initial conditions enable to obtain the same circular
motion as in the circular reference orbit case (same local inclination and ascending node):

• SET 1

∆a = 0 ∆e = ∆e ∆i =
√

3 sinωr∆e

∆Ω = −
√

3
cos ωr

sin ir
∆e ∆ω =

√
3
cos ωr

tan ir
∆e ∆M = 0

• SET 2

∆a = 0 ∆e = 0 ∆i =
√

3er cos ωr∆M

∆Ω =
√

3er
sinωr

sin ir
∆M ∆ω = −

(
1 +

√
3er

sinωr

tan ir

)
∆M ∆M = ∆M

The �rst set of initial conditions is parameterized by a di�erence of eccentricity, while the second
set is parameterized by a di�erence of anomaly. Thereafter, we refer to the set 1 as "di�erence of
eccentricity" and to set 1 as "di�erence of anomaly". Resulting motion is not circular because of
double orbital frequency terms. In �gure (5) we compare the variation of the distance from the origin
for each set of initial conditions. Both sets of conditions produce double orbital frequency terms in the
N axis, but, ∆e produces also these terms in the T axis. That's why the variations are more important
in the left part of the �gure (5).
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di�erence of anomaly)

4.3 When the reference orbit is highly eccentric

It is possible to arrange equations (13) to obtain following form:

∆R

ar
= − cos f∆e +

e

η
sin f∆M (22)

∆T

ar
= 2 sin f∆e + e cos f

(
∆M

η
− η2∆ω′

1 + e cos f

)
+
(

η2∆ω′ +
∆M

η

)
− e

cos f sin f

1 + e cos f
∆e

∆N

ar
=

η2

1 + e cos f

(
∆i′ cos f + ∆Ω′′ sin f

)
This arrangement allows the comparison with the low eccentric form of the equations 20. Comparing

the two sets, we identify the transformation of elliptical terms when the eccentricity of the reference
orbit grows. We identify the following terms:

− cos f + e sin f → − cos f +
e

η
sin f

2 sin f∆e + e cos f
(
∆M −∆ω′) → 2 sin f∆e +

(
∆M

η
− η2∆ω′

)
e cos f(

∆i′ cos f + ∆Ω′′ sin f
)
→ η2

(
∆i′ cos f + ∆Ω′′ sin f

)
We impose the same previous conditions to new terms. Resulting motions are not circular because

of double orbital frequency terms and non linear terms in eccentricity, that become very important.
Anyway, these initial conditions produce a class of relative motions that is as close as possible to a
circle.

• SET 1
∆a = 0 ∆e = ∆e ∆i =

√
3

η2
sinω∆e

∆Ω = −
√

3
η2

cos ω

sin i
∆e ∆ω =

√
3

η2

cos ω

tan i
∆e ∆M = 0

• SET 2
∆a = 0 ∆e = 0 ∆i =

√
3
er

η3
cos ωr∆M

∆Ω =
√

3
er

η3

sinωr

sin ir
∆M ∆ω = − 1

η3

(
1 +

√
3er

sin ω

tan ir

)
∆M ∆M = ∆M
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In the following �gures (6) and (7) we have drawn the evolution of the circular motion when the
eccentricity of the reference orbit grows. The other parameters of the reference orbit play no role on
the form of the trajectory (for the keplerian case). Figures (6) and (7) show how, for very big reference
orbit eccentricities, motion is far from being circular.
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Figure 6: Evolution of the local circular motion produced by a di�erence of eccentricity when the

eccentricity of the reference orbit grows
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5 Conclusions

This paper explores a �eld in relative motions which is nowadays not well-known . We characterize all
the possible relative motions for all type of eccentricity of the reference orbit. We minimize the number
of relevant parameters thanks to a detailed analytical study. In the case of the circular reference orbit
case, we take the advantage of the representation in terms of local orbital elements. In the case of
very high eccentric reference orbit it is not possible to use the local orbital elements anymore, but we
separate the motion as a sum of four elementary e�ects.
Local circular motion has very interesting properties for space purposes. That's why we have identi�ed
the con�gurations that produce this motion in the circular reference orbit case. When the reference
orbit is eccentric, there are no more local circular motions, but we have found the motions that are
closest to a circle.
Future work will be centered in the introduction of perturbations and their e�ects on the relative
motion. Another interesting work is to �nd the correct parametrization of relative motion when
reference orbit is highly eccentric.
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