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Abstract  

Introduction: Neonatal arterial ischemic stroke (NAIS) is a common model to study the impact 

of a unilateral early brain insult on developmental brain plasticity and the appearance of long-

term outcomes. Motor difficulties that may arise are typically related to poor function of the 

affected (contra-lesioned) hand, but surprisingly also of the ipsilesional hand. Although many 
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longitudinal studies after NAIS have shown that predicting the occurrence of gross motor 

difficulties is easier, accurately predicting hand motor function (for both hands) from 

morphometric MRI remains complicated. The hypothesis of an association between the 

structural organization of the basal ganglia (BG) and thalamus with hand motor function seems 

intuitive given their key role in sensorimotor function. Neuroimaging studies have frequently 

investigated these structures to evaluate the correlation between their volumes and motor 

function following early brain injury. However, the results have been controversial. We 

hypothesize the involvement of other structural parameters. 

Method: The study involves 35 children (mean age 7.3 years, SD 0.4) with middle cerebral 

artery NAIS who underwent a structural T1-weighted 3D MRI and clinical examination to 

assess manual dexterity using the Box and Blocks Test (BBT). Graphs are used to represent 

high-level structural information of the BG and thalami (volumes, elongations, distances) 

measured from the MRI. A graph neural network (GNN) is proposed to predict children’s hand 

motor function through a graph regression. To reduce the impact of external factors on motor 

function (such as behavior and cognition), we calculate a BBT score ratio for each child and 

hand. 

Results: The results indicate a significant correlation between the score ratios predicted by our 

method and the actual score ratios of both hands (p < 0.05), together with a relatively high 

accuracy of prediction (mean L1 distance < 0.03). The structural information seems to have a 

different influence on each hand’s motor function. The affected hand’s motor function is more 

correlated with the volume, while the ‘unaffected’ hand function is more correlated with the 

elongation of the structures. Experiments emphasize the importance of considering the whole 

macrostructural organization of the basal ganglia and thalami networks, rather than the volume 

alone, to predict hand motor function.   

Conclusion: There is a significant correlation between the structural characteristics of the basal 

ganglia/thalami and motor function in both hands. These results support the use of MRI 

macrostructural features of the basal ganglia and thalamus as an early biomarker for predicting 

motor function in both hands after early brain injury. 

 

Keywords: perinatal stroke; cerebral palsy; motor cortex; basal ganglia; structural 

organization; graph neural network 
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1. Introduction  

With a birth prevalence of 37-67/100,000 (mostly term-born), perinatal stroke appears as a 

general term encompassing “heterogeneous conditions with a focal cerebral arterial or venous 

occlusion, occurring between 20 weeks of fetal life through 28th postnatal day” (Raju, Nelson, 

Ferriero, & Lynch, 2007). Among the six main perinatal stroke syndromes, which differ 

according to various factors (causality, mechanism, time of onset, and mode of presentation of 

the brain insult), Neonatal Arterial Ischemic Stroke (NAIS) is the most prevalent type, with an 

estimated incidence of 1 in 3000 term births. NAIS is defined as a symptomatic cerebral arterial 

ischemic insult occurring within the first 4 weeks of life (Fluss, Dinomais, & Chabrier, 2019). 

NAIS is one of the most extensively studied perinatal strokes and serves as a paradigm for 

other entities. The lesion and its timing are well defined in cases of NAIS, making it a unique 

model for studying the impact of a unilateral early brain insult on developmental brain 

plasticity (Kirton, 2013) related to the appearance of long-term outcomes. The rate of unilateral 

cerebral palsy (CP) (Chabrier, et al., 2019) among term infants with NAIS is close to 30%.  

Hence, NAIS is a leading cause of unilateral CP predominantly affecting the left hemisphere 

(Craig, Carlson, & Kirton, 2019). The middle cerebral artery (MCA) is the most frequently 

affected vascular territory. Direct damage to the basal ganglia and/or thalamus typically does 

not occur in NAIS in the MCA territory, even if in cases of proximal M1 occlusion, damage to 

the basal ganglia can occur. Additionally, long-term direct or indirect structural alterations of 

these structures have been described in both hemispheres following NAIS (Craig, Carlson, & 

Kirton, 2019) (Hassett, Carlson, Babwani, & Kirton, 2022).  

Though all children with unilateral CP after NAIS can walk, their motor difficulties are mostly 

related to the poor function of the affected (contra-lesioned) hand. Surprisingly, the ipsilesional 

hand (theoretically referred to as the ‘unaffected’ hand) also often exhibits abnormal function 

in these children (Kuczynski, Kirton, Semrau, & Dukelow, 2018). The neuroscientific rational 

(neural substratum) for this phenomenon is not yet clear.  

If neonatal and long-term brain imaging can be used to predict the presence or absence of CP 

(and a broad range of motor outcomes) (Dinomais, et al., 2015) (Dinomais, et al., 2016), 

determining the severity of hand functional impairment is much more challenging. The 

occurrence of CP is related to lesion characteristics (location and extent of the infarct), as well 

as the involvement of the cortico-spinal tract at any level, much more than the size of the infarct 

(Dinomais, et al., 2015) (Dinomais, et al., 2016). Follow-up studies after NAIS have shown 
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that predicting the occurrence of CP and gross motor difficulties is relatively straightforward. 

Accurately predicting hand motor function in both the affected and ‘unaffected’ hands from 

morphometric MRI remains a complex task. Indeed, many studies have provided conflicting 

or sparse results (Dinomais, et al., 2016) (Craig, Carlson, & Kirton, 2019) (Hassett, Carlson, 

Babwani, & Kirton, 2022) (Ilves, et al., 2022). 

Analyzing the hypothesis for an association between the volumes of the basal ganglia (BG) 

and thalamus with hand motor functions seems intuitive considering the key role of the basal 

ganglia and thalamus in sensorimotor function (Arsalidou, Duerden, & Taylor, 2013). In 

addition, the important postnatal growth (Gilmore, et al., 2012) (Raznahan, et al., 2014) 

(Makropoulos, et al., 2016) and developmental susceptibility of these deep gray matter 

structures to brain insults make them perfect candidates for explaining hand motor function 

after NAIS.  

Until recently, these structures have often been explored in detail per-se in neuroimaging 

studies to assess their relationship with motor function following early brain injury, with 

controversial results. Ilves et al. (Ilves, et al., 2022) demonstrated that children after ischemic 

perinatal stroke have a smaller ipsilesional thalamus and putamen, which correlates with 

affected hand function. Craig et al. (Craig, Carlson, & Kirton, 2019) did not find this 

association for the thalamus. Interestingly, Hasset et al. (Hassett, Carlson, Babwani, & Kirton, 

2022) also found an association between the volume of the ipsilesional putamen and affected 

hand function, without analyzing the volume of the thalamus, yet closely linked to basal ganglia 

in brain motor function. 

Even more controversial results exist regarding the link between basal ganglia volume changes 

and ‘unaffected’ hand function (Craig, Carlson, & Kirton, 2019) (Ilves, et al., 2022). Currently, 

there is no distinct correlation between clinical motor outcomes and thalamic and/or basal 

ganglia volumes, in either affected or ‘unaffected’ hands (ipsi- or contra-lesioned hemisphere).  

These studies focus solely on the relationship between the volume of these brain structures and 

motor functions. It is widely accepted that there is a positive correlation between brain structure 

volume and function (e.g., with intelligence (Pietschnig, Penke, Wicherts, Zeiler, & Voracek, 

2015)). However, many neuroimaging studies have reported discordant relationships between 

brain volumes and brain functions, with both increased and/or decreased volumes of brain 

structures associated with better outcomes (Peterson, et al., 2000) (Hollander, et al., 2005). 

This suggests that interpretation of the relationship between regional brain volumes and brain 
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functions is difficult. Considering the complex anatomies of the basal ganglia and thalamus, as 

well as their complex inter-relationship with the cortex (cortico-basal ganglia-thalamo-cortical 

network), analyzing the association between motor function and only volumes of the BG and/or 

thalamus appears as an overly simplistic approach. This may the reason why studies did not 

find a consistent relationship between thalamic/BG volumes and long-term hand motor 

function following NAIS.  

Thus, to figure out the relationship between long-term hand motor function and the 

characteristics of BG/thalami, we hypothesize the involvement of other structural parameters 

besides volume (see infra), which can characterize stroke-related atrophy.  

A recent study showed that deformation of brain structure is a more sensitive measure of 

function than volume, and that basal ganglia distortion may be a neurophenotype for risk of 

developmental disorders (Sandman, et al., 2014). More specifically, they showed that the 

expansion and contraction of the putamen is more predictive of intellectual quotient than its 

volume itself. In this sense, we propose to assess the relationship between children’s clinical 

motor outcome and the structural organization of the thalamus and basal ganglia, using other 

values that characterize the deformation of structures. We consider the elongation of the basal 

ganglia and thalamus to determine if an expansion or contraction of these structures affects 

children’s hand motor function. We assume that the structural loss of brain structures after 

NAIS due to Wallerian degeneration, specifically the thalamus (as previously demonstrated 

(Dinomais, et al., 2016), will potentially be accompanied by a deformation (contraction) that 

can be characterized with the elongation parameter. To quantify deformation of the basal 

ganglia of different nature than contraction, we also considered the distance between the 

centroids of these structures. Indeed, the displacement of structure’s centroid is expected when 

it is deformed due to volume loss of other brain structures. By calculating the distance between 

centroids, we aim to indirectly capture the effect of atrophy in hemispheres that modify the 

structural relationship between BG/thalami. Specifically, we can assume that the inter-

hemispheric distance between centroids will be modified if the injured hemisphere has 

atrophied. 

Graphs are commonly used to represent this kind of high-level structural information. Each 

node in the graph describes a region of the brain (volume and elongation of a brain structure in 

our case) and edges carry structural information between these regions (distances in our case). 

Graph representation makes it possible to highlight the inter-hemispheric structural 
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relationships and variations by connecting structures with edges. Recently, many graph neural 

network (GNN) architectures have been developed to perform different tasks like graph 

classification, graph regression, or node classification (Bacciu, Errica, Micheli, & Podda, 

2020).  Predicting hand motor function (assessed by Box and Block tests) can be considered a 

graph regression problem, attempting to predict hand motor function from a graph representing 

the structural organization of the basal ganglia and the thalamus. GNN-based strategies are 

becoming increasingly popular in the medical field. Thus, recently, GNNs were utilized for 

graph regression to predict IQ scores from graphs that represent brain connectivity (Hanik, 

Demirtaş, Gharsallaoui, & Rekik, 2022). In previous work, we introduced a GNN-based 

classification model for predicting cerebral palsy in children with NAIS (Coupeau, Fasquel, 

Démas, Hertz-Pannier, & Dinomais, 2023).  Here, we aim to enhance by incorporating shape 

information (elongation of the structures) to predict hand motor function. 

Based on the combined elements described above, including the important growth of BG and 

thalamus after birth, their key role in the motor system, as well as the impact of other 

morphological and structural parameters than volumes on clinical function, we hypothesize 

that children, at 7 years of age, after NAIS in the MCA territory, would have changes in the 

structural graph representation of the BG and thalamus related to the function of both hands 

(affected and ‘unaffected’ hands).  

The objective of this study is to predict gross motor function evaluated by the Box and Blocks 

Test (Jongbloed-Pereboom, Nijhuis-van der Sanden, & Steenbergen, 2013) for both hands 

using a neural network that operates on graphs representing the macrostructural organization 

of the basal ganglia and thalamus. The aim is to assess the potential use of macrostructural 

characteristics, including elongation and distances (not limited to volume), of the basal ganglia 

and thalamus in MRI as an early biomarker for predicting motor function in both hands after 

early brain lesion. 

2. Materials and methods  

2.1. Participants 

All patients participated in the French AVCnn cohort study (Clinical trial NCT02511249), 

which follows 100 term-born children with NAIS (Chabrier, et al., 2010) (Husson, et al., 2010). 

The diagnosis was based on the 2007 definition of NAIS: 1) acute neurological symptoms 



7 

 

within the first 28 days of life and 2) accompanied by correlated cerebral imaging findings, i.e., 

an ischemic lesion in an arterial territory (Raju, Nelson, Ferriero, & Lynch, 2007). All children 

were enrolled in 37 French hospitals from November 2003 to October 2006. A cross-sectional 

clinical and imaging analysis was conducted when the children reached the age of 7 (Dinomais, 

et al., 2015) (Dinomais, et al., 2016).  

As part of the clinical follow-up, an experienced clinician, either a pediatric neurologist or a 

pediatric rehabilitation specialist, examined all children during the 7-year assessment. This 

examination included a developmental evaluation and a magnetic resonance imaging (MRI) 

investigation. 73 children were available for follow-up examinations and 52 for MRI. To ensure 

a homogeneous distribution of lesion characteristics, only the 37 children with a unilateral 

lesion in the middle cerebral artery territory, were selected as subjects for this study (Dinomais, 

et al., 2015). Two scans were excluded due to severe motion artifacts, which prevented the 

basal ganglia segmentation, leaving 35 participants as the study population. 

For the computation of edge properties (related to distances) during graph construction 

(described later), we included in the study 31 control children aged 7 years who were available 

for an MRI scan. Control children were recruited on the basis that they should be between 7 

and 8 years old, born at term, without chronic pathology, developmental disorders, or delays, 

and not taking any medication or experiencing neurological pathology. These same child 

controls have already been included in previous papers (Al Harrach, et al., 2019) (Al Harrach, 

et al., 2021).  

Head circumference was measured using a tape measure and handedness of children was 

assessed according to the Edinburgh inventory (Oldfield, 1971). General characteristics of the 

participants are presented in Table 1.  

 

2.2. Ethics 

All patients and their parents gave written informed consent. Approvals from the local ethics 

committees were obtained by the Ethical Committee of the Saint-Étienne University Hospital 

(biomedical research 1008026) in June 2010. 
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Table 1. General profile of the participants 

 Controls 

 

NAIS 

 

  Left injured Right injured 

Number n=31 n=20 n=15 

 Mean (std) or n (%) Mean (std) or n (%) Mean (std) or n (%) 

Age (years) 7.71 (±0.54) 7.32 (±0.45) 7.28 (±0.20) 

Gender 
Males: 16 (51,61%) 

Females: 15 (48,39%) 

Males: 11 (55%) 

Females: 9 (45%) 

Males: 10 (66.67%) 

Females: 5 (33,33%) 

Right-handed 28 (90,32%) 5 (25%) 14 (93,33%) 

Lesion size (mL) - 59.06 (±82.05) 38.16 (±46.95) 

Total Intracranial 

Volume 
1,398.01 (±109.10) 1,278.16 (±173.57) 1,277.66 (±98.30) 

Head circumference 

(cm) 
52.50 (±1.16) 51.60 (±1.64) 51.10 (±1.43) 

BBT score (affected / 

“unaffected” hand) 
- 

27.9 (±10.91) /  

31.3 (±7.6) 

28.2 (±6.66) /  

31.9 (±5.40) 

 

Abbreviations: BBT= Box and Blocks Test. 

 

2.3. Data availability  

The data that support the findings of this study are available from the corresponding author, 

upon reasonable request, according to the French legislation. 

 

2.4. MR Image acquisition 

All structural MRI T1-weighted 3D images were acquired with a 3.0 Tesla scanner 

(MAGNETOM TrioTim system, Siemens, Erlangen, Germany, 12 channel head coil) at 

Neurospin, CEA-Saclay, France (Dinomais, et al., 2015). Anatomical imaging using a T1-

weighted magnetization-prepared rapid acquisition gradient-echo sequence [176 slices, 

repetition time (TR) 2300ms, echo time (TE) 4.18ms, field of view (FOV) 256, flip angle = 9°, 

voxel size 1mm×1mm×1mm] was acquired to obtain high-resolution T1 weighted image of the 

whole brain. Additionally, a 3D FLAIR sequence [160 slices, TR 5000ms, TE 395ms, FOV 

230 mm, voxel size 0.9mm×0.9mm×1mm] was acquired on the same scanner. The co-

registered 3D FLAIR images were used as a visual aid for the precise manual segmentation of 

the basal ganglia, as described in the next section.  
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2.5. Basal ganglia segmentation 

Major nuclei within the basal ganglia complex include the putamen, the caudate nucleus 

(collectively termed the striatum), and the pallidum. To extract these structures along with the 

thalamus on the co-registered 3D T1 MRI, we combined a manual segmentation and an atlas-

based segmentation using the Hammersmith atlas (Hammers, et al., 2003). Statistical 

Parametric Mapping version 12 (SPM12) software (Welcome Department of Imaging 

Neuroscience, University College, London, UK) was used to obtain the tissue probability map 

(TPM) of each control subject (T1 MRI) in the native space. We constructed a group template 

of the control 7-year-old children from their TPM using the DARTEL tool. We segmented the 

basal ganglia and the thalamus in the MNI space using the Hammersmith atlas. The T1-

weighted volume of each subject (control and NAIS) was registered into the DARTEL template 

of 7-year-old children using the CAT12 tool.  We thus obtained the deformation fields from 

each subject’s native space into the Dartel template space, necessary to obtain the segmentation 

of basal ganglia and thalamus in the native space of each child. Then, the MRI segmentation 

was manually corrected slice by slice with ITKSnap (Yushkevich, Gao, & Gerig, 2016), using 

the co-registered FLAIR sequence to precisely segment the BG. Each segmentation was 

visually checked and validated through consensus with a specialist (MD). 

2.6. Motor assessment 

The Box & Blocks Test (BBT) (Jongbloed-Pereboom, Nijhuis-van der Sanden, & Steenbergen, 

2013) was considered to evaluate manual dexterity. This test is commonly used in clinical trials 

and experimental research to measure hand dexterity. The BBT consists of a box with two 

compartments separated in the middle. At the beginning, 100 small blocks are in one of the 

compartments, on the same side of the tested hand. Children move as many cubes as they can 

from one compartment to the other. The hand function score is calculated based on the number 

of cubes moved into the second compartment within one minute. The higher the score, the 

better the hand function. Both the ipsi-lesional hand (i.e., the ‘unaffected’ hand) and the contra-

lesional hand (i.e., the ‘affected’ hand) were evaluated. BBT scores for both hands are reported 

in Table 1. We calculated a BBT score ratio (described later) for each child and each hand to 

reduce the impact of other factors external to motor function (behavior, cognition, etc.) that can 

lead to variations in the BBT score. We hypothesize that these factors affect both hands equally. 

Thus, by calculating this ratio, we aim to reduce the impact of these confounding parameters 
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and test hand motricity more precisely. Note that the control participants did not undergo any 

hand motor function tests. 

2.7. Graph construction 

From the basal ganglia segmented in the MRI scans of children, we constructed the 

corresponding graphs. We defined a graph 𝐺 = (𝑉, 𝐸, 𝑋, 𝐿) where V is the set of nodes (each 

node  𝑣 ∈ 𝑉 corresponds to a basal ganglia or thalamic structure) and E is the set of edges. To 

study inter-hemispheric structural relationships between supposedly symmetrical structures, 

we coupled the structures pairwise (i.e., left caudate with right caudate, etc.).  The inter and 

intra-hemispheric structures are not connected by an edge to avoid interfering with the GNN 

by providing misleading information (e.g., comparing the volume of the right thalamus to that 

of the right caudate). The topology of the constructed graphs is illustrated in Figure 1. 

 

Figure 1. Illustration of the proposed method for predicting BBT score ratio (y) based on a regression 

graph neural network. (A): From the segmented MRI, a graph is constructed so that each node of the 

graph represents a brain structure. Nodes carry information related to the volume and elongation of 

the structure (vector X), while edges carry a ratio (scalar L) of the Euclidean distance (𝑑) between the 

two connected structures in the studied child and of the mean Euclidean distance between these same 

two structures in a population of controls (stored in a matrix 𝐷𝑟𝑒𝑓). (B): The graphs generated from 

the MRI of the training dataset are used to train the graph neural network (GNN) for predicting the 

BBT score ratio of new children based on their MRI. (C): The GNN architecture comprises of two 

convolution layers (CONV) followed by a hyperbolic tangent activation function (Tanh) and a global 

pooling layer based on the maximum value of the graph nodes at the output of the convolution. 
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X is a node attribute assignment function 𝑋: 𝑉 → 𝑅2 regarding the volume (normalized to the 

total brain volume) and the elongation (normalized to the head circumference) of the 

corresponding structure. We extract each region of the segmented MRI using the Python 

(version 3.7) library scikit-image. We recovered the area of each structure and the major axis 

of the ellipse with the same normalized second central moments as the structure using the 

regionprops function of scikit-image library. The structure’s volume was calculated by 

multiplying its area with the image resolution (1x1x1𝑚𝑚3 for our dataset). Elongation was 

determined by measuring the length of the major axis of the extracted ellipse that encompasses 

the brain structure. 

 L is an edge attribute assignment function 𝐿: 𝐸 → 𝑅 relative to the distance between the 

centroids of the connected structures. More concretely, edges carry a distance-to-average ratio 

in healthy controls: 

𝐿(𝑖, 𝑗) = 1 + |1 −
𝑑𝑖,𝑗

𝐷𝑟𝑒𝑓
𝑖,𝑗 | (1) 

where 𝑑𝑖,𝑗 indicates the Euclidean distance between the centroid of structures 𝑖 and 𝑗 in the 3D 

space and  𝐷𝑟𝑒𝑓
𝑖,𝑗

 represents the average Euclidean distance between the centroid of the structures 

𝑖 and 𝑗 for control children. 𝐷𝑟𝑒𝑓
𝑖,𝑗

 is previously constructed, from the MRI of the 31 control 

children, as the average Euclidean distance between the centroids of each segmented structure. 

Thus, in Figure 1, the red box in 𝐷𝑟𝑒𝑓 indicates the control average Euclidean distance between 

the centroids 𝐵1 and 𝐵2 of the right and left thalamus in 3D space. To measure the distance 

between brain structures carried by 𝑑𝑖,𝑗 and 𝐷𝑟𝑒𝑓
𝑖,𝑗

, we considered the Python library scikit-

image. We recovered the 3D coordinates of the centroid of each segmented region (i.e. 

structure) of the MRI using the regionprops function of this library. We computed, using 

Python, the distance between the centroids of the connected regions along the 3 axes and 

multiplied it by the image resolution. From this distance along the 3 axes (in mm), we 

calculated the Euclidean distance. The edge attributes are computed to ensure they are greater 

than one (eq.1), avoiding too small values (close to zero) which would cancel out the node 

attributes during the convolution operation of the graph neural network (detailed below). 

Each graph is associated with a Box and Blocks Test score ratio 𝑦, to be predicted. For each 

child, we studied the prediction of the score for the affected hand 𝐿𝐻 and the score for the 
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‘unaffected’ hand 𝐶𝐿𝐻 obtained in the BBT. Therefore, two score ratios are considered for the 

prediction task: 

 𝑦1 =
𝐿𝐻

𝐿𝐻+𝐶𝐿𝐻
   (2)  

𝑦2 =
𝐶𝐿𝐻

𝐿𝐻+𝐶𝐿𝐻
   (3) 

2.8. Graph neural network 

As illustrated in Figure 1-C, the proposed architecture of the graph neural network consists of 

two graph convolution layers. The first convolution layer has an output channel dimension 𝑐 

of 5, while the second has an output channel dimension 𝑐 of 1.  A Tanh activation is applied 

after the convolution layers, and the resulting output is globally max-pooled to obtain a final 

positive score ratio. The neighborhood information is aggregated within the convolution 

operations. The ECConv graph convolution operator (Simonovsky & Komodakis, 2017) is 

considered, as in a prior work (Coupeau, Fasquel, Démas, Hertz-Pannier, & Dinomais, 2023), 

due to its ability to handle both node and edge attributes. Let 𝑋𝑙(𝑖) be the attribute of node 𝑖 at 

layer 𝑙 ∈ [1,2] and 𝐿(𝑗, 𝑖) the attribute of the edge connecting structures 𝑖 and 𝑗. The message 

passing at layer 𝑙 can be defined as: 

𝑋𝑙+1(𝑖) = σ(𝑊𝑙+1𝑋𝑙(𝑖) + ∑ 𝐹𝑙+1(𝐿(𝑗, 𝑖))𝑋𝑙(𝑗)𝑗∈𝑁(𝑖) )  (4) 

where σ denotes the Tanh function, 𝑊𝑙+1 ∈ R𝑐×1 is a matrix of trainable weights and Fl+1: R →

Rc×1 is a differentiable function (a multi-layer perceptron). 𝑁(𝑖) represents all nodes 𝑗 that are 

neighboring 𝑖 (i.e., connected to 𝑖). The global max pool operator then returns a graph-level 

output by taking the channel-wise maximum across the node dimension, so that its output (the 

predicted score ratio) is computed by: 𝑦 = max
i∈V

X2 (i). 

The network was implemented in a Python environment using the PyTorch Geometric library 

(Fey & Lenssen, 2019). The model was trained with Adam (Adaptive Moment Estimation) 

over 250 epochs with a learning rate 𝑙𝑟 = 0.001. A mean-squared error (MSE) loss function 

was considered. Two GNNs were trained, one for predicting score 𝑦1 and the other for 

predicting 𝑦2 (both introduced previously). In both cases, a leave-one-out cross-validation 

strategy is implemented to test our method on all the children while managing the small size 

of the available dataset.  Thus, in all cases, the model was trained on 34 graphs and tested on 

the remaining graph. 
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2.9. Evaluation 

We evaluated the variation in structural characteristics (volumes, elongations, and distances) 

between the control group and the NAIS group to highlight the differences revealed by our 

method’s graphs. This was a preliminary step to validate the relevance of the selected attributes. 

Then, to assess the performance of the method, we measured the L1 distance or Manhattan 

distance, defined as the absolute difference between the predicted and actual score ratios. L1 

distance emphasizes cases where the score prediction deviates significantly from the actual 

result. To analyze the prediction accuracy, we considered the mean, median, and maximum L1 

distances. 

We used Spearman’s rank correlation coefficient (Caruso & Cliff, 1997) to measure the linear 

correlation between the predicted and actual score ratios since the sample did not follow a 

normal distribution according to a Shapiro-Wilk test. The Spearman correlation coefficient is 

defined as: 

𝜌 = 1 −
6 ∑ 𝑑𝑖

2𝑛
𝑖=1

𝑛(𝑛2−1)
 with       𝑑𝑖 = (𝑥𝑖 − 𝑦𝑖) (5) 

where 𝑛 is the number of matched pairs of ranking, i.e. of measures (35 in our case), and 𝑑𝑖 is 

the rank difference of the "i-th" element. Significance was determined at p < 0.05. 

To evaluate the influence of each structural information (volume, elongation, and distances) on 

the prediction, we measured these metrics for various graph configurations (removing some or 

all of the structural relationships). 

3. Results  

Table 2 compares the structural characteristics (volumes, elongations, and distances) between 

control and NAIS participants. Note that the normalized volume has been multiplied by a factor 

of 1000 to avoid handling too small values (close to zero) during the graph convolution (eq.1).  

Regarding volumes, we observe a decrease in the volume of structures in the lesioned 

hemisphere of NAIS participants, which confirms the results of previous studies (Hassett, 

Carlson, Babwani, & Kirton, 2022) (Ilves, et al., 2022). Additionally, there appears to be a 

slight increase in volumes in the contra-lesional hemisphere, as already reported in studies of 

the contra-lesional thalamus after perinatal stroke (Craig, Carlson, & Kirton, 2019). 
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Table 2. Comparison of the structural characteristics between the control group and the NAIS group 

(separated by left and right injury) by brain structure. The volumes listed are the brain structure volume 

multiplied by a factor of 1000 and normalized by TIV. The elongations indicated correspond to the 

brain structure elongation normalized by head circumference. Last part of the table displays the 

distances (in mm) between the centroids of supposedly symmetrical structures. The distance ratio L(i,j) 

corresponds to the edge attributes. Bold values indicate characteristics that exhibit significant 

variability compared to the control group, particularly in terms of standard deviation. 

 Controls 

 

NAIS 

 

 

  Left injured Right injured  

Number n=31 n=20 n=15  

Structural 

characteristics 
Mean (std)  Mean (std)  Mean (std) p-value† 

Volumes (x103)     

Left thalamus 5.35 (±0.28) 4.61 (±0.98) 5.64 (±0.37) < 0.001 

Right thalamus 5.27 (±0.28)    5.43 (±0.68) 4.96 (±0.55) 0.025 

Left caudate 3.13 (±0.26) 2.65 (±0.99) 3.37 (±0.34) 0.009 

Right caudate 2.95 (±0.23)   3.01 (±0.29) 2.88 (±0.61) 0.497 

Left putamen 3.70 (±0.21) 3.00 (±1.21) 4.02 (±0.35) < 0.001 

Right putamen 3.60 (±0.20) 3.90 (±0.51) 3.42 (±0.71) 0.019 

Left pallidum 0.72 (±0.05) 0.64 (±0.17) 0.78 (±0.07) 0.008 

Right pallidum 0.71 (±0.05) 0.76 (±0.07) 0.69 (±0.11) 0.014 

Elongations     

Left thalamus 0.75 (±0.02) 0.70 (±0.06) 0.76 (±0.02) < 0.001 

Right thalamus 0.75 (±0.02) 0.75 (±0.03) 0.72 (±0.04) 0.112 

Left caudate 0.91 (±0.04) 0.85 (±0.15) 0.93 (±0.04) 0.064 

Right caudate 0.91 (±0.04) 0.91 (±0.03) 0.92 (±0.05) 0.959 

Left putamen 0.81 (±0.03) 0.74 (±0.14) 0.82 (±0.03) 0.004 

Right putamen 0.80 (±0.03) 0.80 (±0.03) 0.79 (±0.04) 0.745 

Left pallidum 0.42 (±0.01) 0.40 (±0.03) 0.42 (±0.01) 0.018 

Right pallidum 0.43 (±0.01) 0.43 (±0.01) 0.41 (±0.02) 0.091 

Distances (mm) / 

Edge attribute L 
    

Thalamus 

20.75 (±1.20) / 

1.04 (±0.04) 

 

21.54 (±2.25) / 

1.08 (±0.08) 

 

21.21 (±1.66) / 

1.07 (±0.05) 

 

0.138 

Caudates 

23.25 (±1.53) / 

1.05 (±0.04) 

 

24.92 (±2.59) / 

1.09 (±0.09) 

 

24.51 (±2.52) / 

1.09 (±0.08) 

 

0.123 

Putamen 

44.52 (±1.83) / 

1.03 (±0.02) 

 

44.83 (±3.37) / 

1.05 (±0.05) 

 

45.25 (±2.15) / 

1.04 (±0.02) 

 

0.195 

Pallidum 
31.64 (±1.61) / 

1.04 (±0.03) 

32.65 (±2.36) / 

1.06 (±0.06) 

32.62 (±1.89) / 

1.05 (±0.04) 
0.148 

†P-values are obtained by one-way Kruskal Wallis non-parametric ANOVA. 

 

The lesioned hemisphere also shows a reduction in structures elongation compared to controls 

(with an average reduction between 0.02 and 0.07 for children with left injury). Elongations in 

the contra-lesioned hemisphere appear similar to the elongations of control participants (except 
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for the left caudate). Both structural characteristics (volume and elongation) were found to be 

correlated, according to Spearman's rho correlation coefficient (𝜌 = 0.476, 𝑝 = 1.25𝑒−4 

averaged over all brain structures). Logically, structural atrophy translates into structural 

contraction. However, elongation can provide additional information to our model by 

emphasizing variations between connected nodes. 

The information regarding the distance between structures shows an increase in distances to 

centroids in NAIS participants compared to controls. This results in higher average ratios 

(particularly for the distance between the thalamus and the caudate) carried by the edges of the 

graph. In our GNN model, we expect that the higher distance ratio in NAIS participants will 

accentuate the difference between the characteristics of the node corresponding to the structure 

in the lesioned hemisphere (with lower volume and elongation) and its neighbor corresponding 

to its supposed symmetric in the contra-lesioned hemisphere (with higher volumes and 

elongations). Distances were not found to be correlated with volumes or elongations 

differences between hemispheres, according to Spearman’s rho coefficient (p > 0.05). We can 

therefore assume that distances will provide additional information regarding basal 

ganglia/thalami deformation. 

 

3.1. Basal ganglia structure and clinical motor function 

of the affected hand (𝒚𝟏 prediction) 

Figure 2 represents the predicted score ratio (𝑦1) of the affected hand using our model according 

to the actual score ratio. The GNN-based approach shows a positive correlation with the actual 

score ratio (𝜌 = 0.769, p = 6.62e−8). The model accurately predicts the score ratio of the 

affected hand compared to the ‘unaffected’ hand with a mean L1 distance of 0.027 (Table 3). 

 

The score ratio of the affected hand, predicted from graphs that integrate only volume 

information, exhibits a significant positive correlation with the actual score ratio of the affected 

hand (ρ = 0.537, p = 8.81e−4). Additionally, the maximum L1 distance of the prediction is 

reduced to 0.095 according to Table 3. Combining volumes information with distances only or 
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elongations only reduces the correlation coefficient, but is still significant (ρ = 0.476, p = 

3.88e−3 for volumes and distances, ρ = 0.373, p = 2.72e−2 for volumes and elongations). It  

 

 

Figure 2. Predicted score ratio correlation with actual score ratio of the affected hand. 

 

also decreases the accuracy of the prediction (mean L1 = 0.033 and 0.037, respectively).  

The consideration of distances alone does not accurately predict the score ratio (mean L1= 

0.047), which is close to the prediction obtained without considering any structural information 

(no attributes).  

The best performances are achieved when all three structural information attributes are 

combined (all attributes). 

 

Table 3. BBT Prediction for the affected hand 

 Mean L1 
Median L1 Max L1 Spearman coefficient 𝝆 

(p-value) 

No attributes 0.046 0.037 0.221 -0.560 (4.62e−4) 

Distances 0.047 0.035 0.222 -0.654 (2.04e−5) 

Elongations 0.040 0.031 0.112 0.276 (1.10e−1) 

Volumes 0.031 0.027 0.095 0.537 (8.81e−4) 

Volumes + Distances 0.033 0.028 0.117 0.476 (3.88e−3) 

Elongations + Distances 0.036 0.030 0.108 0.288 (9.34e−2) 

Volumes + Elongations 0.037 0.033 0.103 0.373 (2.72e−2) 

All attributes 0.027 0.024 0.121 0.769 (6.62𝐞−𝟖) 
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3.2.  Basal ganglia structure and clinical motor function of the 

‘unaffected’ hand (𝒚𝟐 prediction) 

 

 

Figure 3. Predicted score ratio correlation with actual score ratio of the unaffected hand. 

 

Figure 3 depicts the predicted score ratio of the ‘unaffected’ hand (𝑦2) compared to the actual 

score ratio. The GNN-based method's prediction of the score ratio of the ‘unaffected’ hand has 

a positive correlation with the actual score ratio (ρ = 0.583, p = 2.39e−4). The model accurately 

predicts the score ratio of the ‘unaffected’ hand compared to the affected hand with a mean L1 

distance of 0.028 (Table 4). This accuracy is consistent with that achieved for the affected hand.  

 

Table 4. BBT Prediction for the unaffected hand 

 Mean L1 
Median L1 Max L1 Spearman coefficient 𝝆 

(p-value) 

No attributes 0.046 0.035 0.223 -0.718 (1.20e−6) 

Distances 0.039 0.028 0.155 0.428 (1.04e−2) 

Elongations 0.030 0.025 0.086 0.563 (4.23e−4) 

Volumes 0.044 0.036 0.210 0.295 (8.51e−2) 

Volumes + Distances 0.041 0.039 0.191 0.529 (1.09e−3) 

Elongations + Distances 0.033 0.028 0.104 0.337 (4.74e−2) 

Volumes + Elongations 0.031 0.022 0.115 0.493 (2.63e−3) 

All attributes 0.028 0.023 0.089 0.583 (2.39𝐞−𝟒) 
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The score ratio of the ‘unaffected’ hand, predicted from graphs that integrate only elongation 

information, also shows a positive correlation (Figure 4) with the actual score ratio of the 

‘unaffected’ hand (ρ = 0.563, p = 4.23e−4) and decreases the maximum L1 distance of the 

prediction to 0.086, as shown in Table 4.  

 

 

Figure 4. Predicted score ratio correlation with actual score ratio of the unaffected hand considering 

elongations only. 

 

The correlation with the actual score ratio of the ‘unaffected’ hand considering the volumes or 

the distances alone is almost not significant (p = 8.51e−2 and p = 1.04e−2 respectively) and do 

not significantly enhance the L1 distance when compared to the model without any structural 

information (Table 4). Combining both information (volumes and distances) in the graph 

structure, does not significantly improve the L1 distance. However, combining this set of 

information with elongation improves the accuracy of the model’s prediction (in terms of L1 

distance). Thus, the best median L1 distance is achieved by combining volume and elongation 

(median L1 = 0.022), and the best mean L1 distance is obtained when considering all three 

structural information (mean L1 = 0.028). Note that the high negative correlation between the 

score prediction without any attribute and the actual score ratio (ρ = -0.718, p = 1.20e−6)  

reflects a very slight variation of the predicted scores. The model always predicts a score ratio 

of around 0.530, which is the average score ratio of the training data. The prediction is 

imprecise, as confirmed by the results of the L1 distance. 
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4. Discussion  

In this work, our aim is to predict the motor function (evaluated through a BBT score) of both 

hands of children following early brain lesion. To achieve this, we utilize a graph neural 

network (GNN) to analyze the structural organization of the basal ganglia and thalamus 

(volumes, elongations, and distances), modeled as a graph, and solve a graph regression 

problem. The results indicate a significant correlation between the predicted score ratios and 

the actual score ratios for both hands (ρ = 0.769 for the affected hand and ρ = 0.583 for the 

‘unaffected’ hand), together with a high accuracy in its predictions (mean L1 distance < 0.03). 

One important finding of this study is the importance of considering the whole macrostructural 

organization of the basal ganglia and thalami networks, rather than just their volume, to predict 

hand motor function. This study is the first, to our knowledge, to demonstrate a robust 

association between the structural characteristics of the basal ganglia and thalamus and the 

motor function of the ‘unaffected’ hand. 

The results of the prediction raise questions about certain aspects when considering the diverse 

configurations of the graphs, with different amounts of structural information. We found a 

strong association between the volume information of the basal ganglia and thalamus and the 

affected hand motor function, as assessed by the BBT score ratio. This result confirms previous 

research (Dinomais, et al., 2016) (Ilves, et al., 2022) showing that volume loss of the basal 

ganglia and thalamus is associated with poor hand function after neonatal stroke. Our previous 

work has also demonstrated that the volume of the mediodorsal thalamus, among other 

structures, is associated with the BBT score of the contra-lesioned (or affected) hand. The 

decrease in volume of the basal ganglia and thalamus after NAIS may be due to neuronal loss 

(resulting from Wallerian degeneration following NAIS in MCA territory) or reduced dendritic 

arborization. Indeed, the volume of deep grey matter structures increases by approximately 

105% by the end of the first year after birth (Gilmore, et al., 2012). Typical development of the 

thalamus and BG involves an increase in volume during early childhood, with peak growth 

occurring between late childhood and mid-adolescence (Narvacan, Treit, Camicioli, Martin, & 

Beaulieu, 2017). However, lesion at an early stage (here, at birth) can have a negative impact 

on the growth of these structures. Thus, the reduction in volume of ipsilesional structures is 

primarily due to decreased neuronal density resulting from the earlier explained neuronal loss. 

These distant (regarding the direct lesion) atrophies, known as diaschisis are well described 

after perinatal stroke (Kirton, et al., 2016) (Craig, Carlson, & Kirton, 2019). 
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In addition to volume, we have found a correlation between the motor function of the affected 

hand and the structural characteristics of the BG and thalamus including their shape 

(represented by their elongation) and the distances between supposedly symmetrical structures. 

This emphasizes the importance of the macrostructural characteristics of these deep brain 

structures in motor function. This shows that hand motor functions following neonatal stroke 

are influenced not only by the loss of volume in the basal ganglia and thalamus due to atrophy, 

but also by the deformation of these brain structures. Volume is not always a sensitive enough 

metric to accurately quantify a morphological change such as contraction.  

Even if distances alone are not sufficient to predict both hand functions, combining them with 

other structural information (volume and elongation) improves the score ratio prediction. 

Moreover, graphs that include all attributes (including distances) perform better than those that 

only include volume and elongation information (Table 3 and Table 4). We can assume that 

considering distances as a ratio to the average distances 𝐷 in control children is insufficient for 

distinguishing children. Since these distance ratios are small (often < 1.2), they have minimal 

impact on the graph regression. Yet, this information is still valuable when combined with the 

other structural information because it can help identify abnormal spatial organization (e.g., 

asymmetry) during the graph convolution of the GNN. Moreover, we have shown an increase 

in distances among the NAIS population compared to the control group, likely due to 

deformation at a distance from the infarct site, notably in the lesioned hemisphere.  These 

results highlight the importance of preserving the global structure of the BG and thalami to 

maintain hand motor function after early brain lesion. This indirectly confirms the vulnerability 

of these deep grey matter structures to early brain lesion (Loh, et al., 2017) and their role in 

contributing to and modulating motor functions. 

The results suggest that local morphometric changes in the BG and thalamus such as elongation 

and distances, in addition to volume changes, strongly influence hand motor function. For the 

‘unaffected’ hand, these elongation characteristics are more closely linked to the motor 

function than the volume of these structures.  This finding is supported by our results (Table 4) 

but it is difficult to explain. Variations in brain development following a unilateral lesion in 

both hemispheres (i.e., lesioned, and contra-lesioned hemispheres) may be related. 

Additionally, the contra-lesioned hemisphere, despite being considered ‘healthy’ by definition 

still suffers from the consequences of neonatal stroke. This confirms a previous conclusion 

stating that: “Neonatal stroke does not appear to be only a focal lesion but a lesion that impacts 

the whole developing brain” (Al Harrach, et al., 2021). 
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Regarding our results, we found a relationship between motor functions in both hands and the 

macrostructural organization of the basal ganglia and thalamus. Optimal function, specifically 

in motor control, is associated not only with the volume of these brain structures but also with 

their shape and inter-hemispherical distances. The three macrostructural information 

considered appear to be complementary. Sometimes, removing one set of data results in worse 

outcomes than using only one set of information. For example, in the ‘unaffected’ hand, the 

model based on elongation alone performs better than the one based on elongation and 

distances while in the affected hand, model based on volume alone performs better than 

combined with distances. This raises a possible « Goldilocks principle » for brain motor 

function relationships (Bigler, 2015). 

This paper focuses on highlighting the potential use of assessing the macrostructural 

characteristics, including elongations and distances (thus not limited to volume), of the basal 

ganglia and thalamus in MRI as an early biomarker for predicting motor function in both hands 

after early brain lesion. However, this study has limitations that should be discussed along with 

future work to address them. 

First, we assess the hand motor function of children after NAIS by using the Box and Blocks 

Test (BBT), which only evaluates gross manual dexterity. In future work, we plan to investigate 

the potential correlation between the macrostructural organization of the BG/thalamus and fine 

hand motor function, which can be evaluated using adapted tests such as the Nine Hole Peg 

Test (Smith, Hong, & Presson, 2000).  

In this study, only children who underwent NAIS were assessed using the Box and Blocks Test. 

This is a limitation in our work, as we would like to verify whether the relationship observed 

between the macrostructural organization of the basal ganglia/thalami and motor skills is also 

present in control participants. 

Another limitation of our study is the prediction of the BBT score normalized by the score of 

both hands. While this normalization may be sufficient to avoid fluctuations due to individual 

variabilities encountered in the raw BBT results, it is not yet optimal. Normalizing the score of 

each hand based on a complete neuropsychological evaluation could help to better overcome 

the impact of external factors (cognitive, behavioral, and motivational) on the motor 

performance. 

Then, we could discuss the limited sample size. Nevertheless, our study cohort is comparable 

in size to other studies investigating NAIS (Hassett, Carlson, Babwani, & Kirton, 2022) (Lee, 
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et al., 2005) and was already considered for previous work (Al Harrach, et al., 2019) (Al 

Harrach, et al., 2021) (Dinomais, et al., 2016). Moreover, this is a unique homogeneous cohort 

in terms of patients’ characteristics (term newborns aged 7 years), lesion characteristics 

(precise timing of the injury in the neonatal period, infarct localization in the MCA territory), 

and imaging conditions (monocentric data acquisition using a 3T MRI scanner). Therefore, our 

results are not blurred by the developmental consequences of prematurity, the diversity in the 

acquisition of motor skills with age, or experimental multicenter acquisition variability. When 

training the GNN, the leave-one-out cross-validation training strategy seems sufficient to 

mitigate the impact of limited training data. This may be explained by the GNN's relatively 

simple architecture (around only 100 trainable parameters), therefore less sensitive to the 

training dataset size, compared to architectures involving thousands of parameters. 

Finally, we observed a correlation between volume and elongation features in the graph 

structure. However, GNN models struggle with covariation between features, especially in 

deep models (Chen, et al., 2020). To address this issue, we considered a simple architecture 

consisting of only 2 convolutional layers. However, we could use a framework as proposed 

recently (Jin, Liu, Ma, Aggarwal, & Tang, 2022) to handle better feature covariations, filter 

out redundant information in the graphs, and improve model robustness and predictions.  

5. Conclusion  

The hand motor function of children following neonatal stroke is correlated with the 

macrostructural organization (volume, elongation, distances) of the basal ganglia and thalami, 

rather than with the volume of these structures alone. The structural information differently 

influences the motor function of each hand, with the affected hand being more correlated with 

the volume and the ‘unaffected’ hand with the elongation of the structures. Highly accurate 

prediction of a BBT score ratio for both hands (mean L1 distance < 0.03) is achievable through 

a graph regression strategy. This strategy utilizes a graph neural network that operates on 

graphs modeling the inter-hemispheric macrostructural organization of the basal ganglia and 

thalami. These findings support the exploration of macrostructural features of the basal ganglia 

and thalami on MRI as an early biomarker for predicting motor function in both hands after 

early brain injury. 



23 

 

Acknowledgements  

We sincerely thank the patients and their families for participating in this research. We also 

extend our gratitude to Rochelle Marsh for proofreading the English language. 

Funding  

This research was supported by the University Hospital of Angers (EudraCT number 2010-

A00976-33), the Ministry of Solidarity and Health (EudraCT number 2010-A00329-30), and 

the Fondation de l’Avenir (ET0-571).  The sponsors of the study did not play a role in the study 

design, data collection, data analysis, data interpretation, writing of the report, or decision to 

submit for publication. 

Competing interests  

The authors report no competing interests. 

References 

Al Harrach, M., Pretzel, P., Groeschel, S., Rousseau, F., Dhollander, T., Hertz-Pannier, L., . . . Dinomais, M. 

(2021). A connectome-based approach to assess motor outcome after neonatal arterial ischemic stroke. 

Annals of Clinical and Translational Neurology, 8(5), 1024-1037. doi:10.1002/acn3.51292 

Al Harrach, M., Rousseau, F., Groeschel, S., Wang, X., Hertz-Pannier, L., Chabrier, S., . . . Dinomais, M. (2019). 

Alterations in cortical morphology after neonatal stroke: compensation in the contralesional hemisphere? 

Developmental Neurobiology, 79(4), 303-316. doi:10.1002/dneu.22679 

Arsalidou, M., Duerden, E. G., & Taylor, M. J. (2013). The centre of the brain: topographical model of motor, 

cognitive, affective, and somatosensory functions of the basal ganglia. Human Brain Mapping, 34(11), 

3031-54. doi:10.1002/hbm.22124 

Bacciu, D., Errica, F., Micheli, A., & Podda, M. (2020). A gentle introduction to deep learning for graphs. Neural 

Networks, 129, 203-221. doi:10.1016/j.neunet.2020.06.006 

Bigler, E. D. (2015). Structural Image Analysis of the Brain in Neuropsychology Using Magnetic Resonance 

Imaging (MRI) Techniques. Neuropsychology Review, 25(3), 224-249. doi:10. 1007/s11065-015-9290-

0 

Caruso, J. C., & Cliff, N. (1997). Empirical size, coverage, and power of confidence intervals for Spearman's rho. 

Educational and psychological Measurement, 57(4), 637-654. doi:10.1177/0013164497057004009 

Chabrier, S., Pouyfaucon, M., Chatelin, A., Bleyenheuft, Y., Fluss, J., Gautheron, V., . . . Dinomais, M. (2019). 

From congenial paralysis to post-early brain injury developmental condition: Where does cerebral palsy 



24 

 

actually stand? Annals of Physical and Rehabilitation Medicine, 63(5), 431-438. 

doi:10.1016/j.rehab.2019.07.003 

Chabrier, S., Saliba, E., Nguyen The Tich, S., Charollais, A., Varlet, M.-N., Tardy, B., . . . Landrieu, P. (2010). 

Obstetrical and neonatal characteristics vary with birthweight in a cohort of 100 term newborns with 

symptomatic arterial ischemic stroke. European Journal of Paediatric Neurology, 14, 206-213. 

doi:10.1016/j.ejpn.2009.05.004 

Chen, D., Lin, Y., Li, W., Li, P., Zhou, J., & Sun, X. (2020). Measuring and relieving the over-smoothing problem 

for graph neural networks from the topological view. Proceedings of the AAAI conference on artificial 

intelligence, 34(4), 3438-3445. doi:10.1609/aaai.v34i04.5747 

Coupeau, P., Fasquel, J.-B., Démas, J., Hertz-Pannier, L., & Dinomais, M. (2023). Detecting cerebral palsy in 

neonatal stroke children: GNN-based detection considering the structural organization of basal ganglia. 

20th ISBI 2023-20th International Symposium on Biomedical Imaging. Cartagena de Indias, Colombia: 

IEEE. doi:hal-04092356 

Craig, B. T., Carlson, H. L., & Kirton, A. (2019). Thalamic diaschisis following perinatal stroke is associated with 

clinical disability. Neuroimage Clinical, 21, 101660. doi:10.1016/j.nicl.2019.101660 

Dinomais, M., Hertz-Pannier, L., Groeschel, S., Chabrier, S., Delion, M., Husson, B., . . . Nguyen The Tich, S. 

(2015). Long term motor function after neonatal stroke: Lesion localization above all. Human Brain 

Mapping, 36, 4793-4807. doi:10.1002/hbm.22950 

Dinomais, M., Hertz-Pannier, L., Groeschel, S., Delion, M., Husson, B., Kossorotoff, M., . . . Nguyen The Tich, 

S. (2016). Does Contralesional Hand Function After Neonatal Stroke Only Depend on Lesion 

Characteristics? Stroke, 47, 1647-1650. doi:10.1161/STROKEAHA.116.013545 

Fey, M., & Lenssen, J. (2019). Fast Graph Representation Learning with PyTorch Geometric. ICLR 2019 

Workshop on Representation Learning on Graphs and Manifolds. doi:10.48550/arXiv.1903.02428 

Fluss, J., Dinomais, M., & Chabrier, S. (2019). Perinatal stroke syndromes: Similarities and diversities in 

aetiology, outcome and management. European Journal of paediatric neurology, 23(3), 368-383. 

doi:10.1016/j.ejpn.2019.02.013 

Gilmore, J. H., Shi, F., Woolson, S. L., Knickmeyer, R. C., Short, S. J., Lin, W., . . . Shen, D. (2012). Longitudinal 

development of cortical and subcortical gray matter from birth to 2 years. Cerebral Cortex, 22(11), 2478-

2485. doi:10.1093/cercor/bhr327 

Hammers, A., Allom, R., Koepp, M. J., Free, S. L., Myers, R., Lemieux, L., . . . Duncan, J. S. (2003). Three-

dimensional maximum probability atlas of the human brain, with particular reference to the temporal 

lobe. Human Brain Mapping, 19, 224-247. doi:10.1002/hbm.10123 

Hanik, M., Demirtaş, M. A., Gharsallaoui, M. A., & Rekik, I. (2022). Predicting cognitive scores with graph 

neural networks through sample selection learning. Brain Imaging and Behavior, 16, 1123-1138. 

doi:10.1007/s11682-021-00585-7 

Hassett, J., Carlson, H., Babwani, A., & Kirton, A. (2022). Bihemispheric developmental alterations in basal 

ganglia volumes following unilateral perinatal stroke. Neuroimage Clinical, 35, 103143. 

doi:10.1016/j.nicl.2022.103143 

Hollander, E., Anagnostou, E., Chaplin, W., Esposito, K., Haznedar, M. M., Licalzi, E., . . . Buchsbaum, M. 

(2005). Striatal volume on magnetic resonance imaging and repetitive behaviors in autism. Biological 

Psychiatry, 58(3), 226-232. doi:10.1016/j.biopsych.2005.03.040 

Husson, B., Hertz-Pannier, L., Renaud, C., Allard, D., Presles, E., Landrieu, P., & Chabrier, S. (2010). Motor 

outcomes after neonatal arterial ischemic stroke related to early MRI data in a prospective study. 

Pediatrics, 126, 912-8. doi:10.1542/peds.2009-3611 



25 

 

Ilves, N., Lõo, S., Laugesaar, R., Loorits, D., Kool, P., Talvik, T., & Ilves, P. (2022). Ipsilesional volume loss of 

basal ganglia and thalamus is associated with poor hand function after ischemic perinatal stroke. BMC 

Neurology, 22(1), 23. doi:10.1186/s12883-022-02550-3 

Jin, W., Liu, X., Ma, Y., Aggarwal, C., & Tang, J. (2022). Feature overcorrelation in deep graph neural networks: 

A new perspective. KDD '22: Proceedings of the 28th ACM SIGKDD Conference on Knowledge 

Discovery and Data Mining, 709-719. doi:10.1145/3534678.3539445 

Jongbloed-Pereboom, M., Nijhuis-van der Sanden, M. G., & Steenbergen, B. (2013). Norm scores of the box and 

block test for children ages 3-10 years. American Journal of Occupational Therapy, 67, 312-8. 

doi:10.5014/ajot.2013.006643 

Kirton, A. (2013). Modeling developmental plasticity after perinatal stroke: defining central therapeutic targets in 

cerebral palsy. Pediatric Neurology, 28, 81-94. doi:10.1016/j.pediatrneurol.2012.08.001 

Kirton, A., Williams, E., Dowling, M., Mah, S., Hodge, J., Carlson, H., . . . Ichord, R. (2016). Diffusion imaging 

of cerebral diaschisis in childhood arterial ischemic stroke. International Journal of Stroke, 11(9), 1028-

1035. doi:10.1177/1747493016666089 

Kuczynski, A. M., Kirton, A., Semrau, J. A., & Dukelow, S. P. (2018). Bilateral reaching deficits after unilateral 

perinatal ischemic stroke: a population-based case-control study. Journal of NeuroEngineering and 

Rehabilitation, 15(1), 77. doi:10.1186/s12984-018-0420-9 

Lee, J., Croen, L. A., Lindan, C., Nash, K. B., Yoshida, C. K., Ferriero, D. M., . . . Wu, Y. M. (2005). Predictors 

of outcome in perinatal arterial stroke: a population-based study. Annals of Neurology, 58(2), 303-308. 

doi:10.1002/ana.20557 

Loh, W. Y., Anderson, P. J., Cheong, J. L., Spittle, A. J., Chen, J., Lee, K. J., . . . Thompson, D. K. (2017). 

Neonatal basal ganglia and thalamic volumes: very preterm birth and 7-year neurodevelopmental 

outcomes. Pediatric Research, 82(6), 970-978. doi:10.1038/pr.2017.161 

Makropoulos, A., Aljabar, P., Wright, R., Hüning, B., Merchant, N., Arichi, T., . . . Rueckert, D. (2016). Regional 

growth and atlasing of the developing human brain. NeuroImage, 125, 456-478. 

doi:10.1016/j.neuroimage.2015.10.047 

Narvacan, K., Treit, S., Camicioli, R., Martin, W., & Beaulieu, C. (2017). Evolution of deep gray matter volume 

across the human lifespan. Human Brain Mapping, 38(8), 3771-3790. doi:10.1002/hbm.23604 

Oldfield, R. C. (1971). The assessment and analysis of handedness: the edinburgh inventory. Neuropsychologia, 

9, 97-113. doi:10.1016/0028-3932(71)90067-4 

Peterson, B. S., Vohr, B., Staib, L. H., Cannistraci, C. J., Dolberg, A., Schneider, K. C., . . . Ment, L. R. (2000). 

Regional brain volume abnormalities and long-term cognitive outcome in preterm infants. The Journal 

of the American Medical Association, 284(15), 1939-1947. doi:10.1001/jama.284.15.1939 

Pietschnig, J., Penke, L., Wicherts, J. M., Zeiler, M., & Voracek, M. (2015). Meta-analysis of associations between 

human brain volume and intelligence differences: How strong are they and what do they mean? 

Neuroscience and Biobehavioral Reviews, 57, 411-432. doi:10.1016/j.neubiorev.2015.09.017 

Raju, T. N., Nelson, K. B., Ferriero, D., & Lynch, J. K. (2007). Ischemic perinatal stroke: summary of a workshop 

sponsored by the National Institute of Child Health and Human Development and the National Institute 

of Neurological Disorders and Stroke. Pediatrics, 120, 609-619. doi:10.1542/peds.2007-0336 

Raznahan, A., Shaw, P. W., Lerch, J. P., Clasen, L. S., Greenstein, D., Berman, R., . . . Giedd, J. N. (2014). 

Longitudinal four-dimensional mapping of subcortical anatomy in human development. Proceedings of 

the National Academy of Sciences of the United States of America, 111(4), 1592-1597. 

doi:10.1073/pnas.1316911111 



26 

 

Sandman, C. A., Head, K., Muftuler, L. T., Su, L., Buss, C., & Davis, E. P. (2014). Shape of the basal ganglia in 

preadolescent children is associated with cognitive performance. NeuroImage, 99, 93-102. 

doi:10.1016/j.neuroimage.2014.05.020 

Simonovsky, M., & Komodakis, N. (2017). Dynamic edge-conditioned filters in convolutional neural networks 

on graphs. Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 3693-3702). 

IEEE/CVF. doi:10.1109/CVPR.2017.11 

Smith, Y. A., Hong, E., & Presson, C. (2000). Normative and validation studies of the nine-hole peg test with 

children. Perceptual and Motor Skills, 90, 823-843. doi:10.2466/pms.2000.90.3.823 

Yushkevich, P. A., Gao, Y., & Gerig, G. (2016). ITK-SNAP: An interactive tool for semi-automatic segmentation 

of multi-modality biomedical images. 2016 38th Annual International Conference of the IEEE 

Engineering in Medicine and Biology Society (EMBC), (pp. 3342-3345). 

doi:10.1109/EMBC.2016.7591443 

 


