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Abstract. A bidimensional simulation of a sphere moving at constant velocity into a cloud of smaller spherical

grains without gravity is presented with a non-smooth contact dynamics method. A dense granular “cluster”

zone of about constant solid fraction builds progressively around the moving sphere until a stationary regime

appears with a constant upstream cluster size that increases with the initial solid fraction φ0 of the cloud. A

detailed analysis of the local strain rate and local stress fields inside the cluster reveals that, despite different

spatial variations of strain and stresses, the local friction coefficient μ appears to depend only on the local

inertial number I as well as the local solid fraction φ, which means that a local rheology does exist in the

present non parallel flow. The key point is that the spatial variations of I inside the cluster does not depend on

the sphere velocity and explore only a small range between about 10−2 and 10−1. The influence of sidewalls is

then investigated on the flow and the forces.

1 Introduction

The response of a granular material to a mechanical per-

turbation arising from the motion of a solid object at its

surface or in its bulk is a fundamental issue in many fields

such as civil engineering for the resistance of soils to the

penetration or extraction of stakes and piles, biophysics

for the understanding of animal locomotion in sand which

may inspire new robotics, geophysics for the collision phe-

nomena in the impacts of meteorits on planets and aster-

oids, or in the formation of protoplanetary disks from dust

particles. In all these cases, the complex rheology of the

granular material plays a key role and needs to be well-

understood, which is particularly hard when the packing

is dense with a high solid fraction φ close to the so-called

liquid/solid or jamming transition. Different rheological

laws have been proposed for dense granular flows, such

as the so-called μ(I) rheology which relates the local fric-

tion coefficient μ and the local packing fraction φ to the

dimensionless inertial number I [1]. Such a rheological

framework gives good results in quasi-steady and quasi-

parallel flows but its validity for strongly non parallel flow

still needs to be addressed. Even in simple parallel shear

flows, the existence of such a local rheology and the in-

fluence of solid walls is still under investigation [2]. As a

matter of fact, the presence of far boundaries such as fixed

or mobile solid walls has shown to have strong and non

elucidated actions in different situations [3, 4]. To examine

this important question, one must have access simultane-

ously to the strain and stress fields in the bulk flow which
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is possible experimentally in some cases [5] but now easier

with discrete numerical techniques.

The object of the present paper is to investigate the lo-

cal rheology of granular matter in a strongly non parallel

flow around a moving sphere without any gravity field. We

use for this a recent powerful numerical method to inves-

tigate such a sphere motion within a bidimensional cloud

of spherical particles initially at rest with a solid fraction

φ0 far below the jamming point. We first recall the main

results reported in [6] in the case where the flow occurs far

from any boundaries, before discussing the possible influ-

ence of sidewalls.

2 Flow configuration and numerics

The numerical method we use here belongs to the class of

“Non-Smooth Contact Dynamic methods" [7] and is de-

scribed in details in [8]. We simulate the motion of dissipa-

tive rigid spheres with a non-elastic impact law (zero resti-

tution coefficient for the collisions) but without any static

nor dynamic friction between the spheres. The granular

assembly, made of slightly polydisperse spherical grains

of mean diameter dg and density ρ to avoid any possi-

ble crystallization, is contained in a rectangular box of

size Lx × Ly with (x, y) = (0, 0) at the center of the box.

The aspect ratio of the box has been varied in the range

1 � Lx/Ly � 15. An intruder sphere of larger diame-

ter d = 10dg, which is initially placed at one side of the

rectangular box at x � −Lx/2 and y = 0, is then moved

at constant velocity in the x-direction toward the opposite

side. The confinement by the sidewalls has been varied
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Figure 1. Snapshot of a simulation for the initial solid fraction

φ0 = 0.75. The grains appear in (light) dark blue when there is

(no) contact force in between. The larger intruder moving from

left to right appear in black. The length λc corresponds to the

cluster size in front it.

in the range 4 � Ly/d � 40. The interaction between

the grains and the moving sphere as well as between the

grains and the walls is solved using the same law as for the

grain-grain interaction. To prepare the granular medium at

the initial solid fraction φ0 = N(πd2
g/4)/(LxLy − πd2/4),

we pick randomly N centers of non-intersecting spheres of

mean diameter dg and apply a random force on the grains

to ensure an uniform spatial configuration of spheres with-

out any contact. All the explored initial configurations are

far below the jamming point φJ � 0.84.

Starting the intruder sphere motion, the numerical

solver gives the velocity vm of each particle m and the

contact force fnm exerted by particle n on particle m,

which allows to calculate the corresponding stress tensor

σm = (4/πd2
g)
∑

n emn ⊗ fnm, where emn is the unit vec-

tor giving the direction from the center of particle m to-

ward the center of particle n and ⊗ is the vector outer

product. The local solid fraction φm around each parti-

cle m is computed using a Voronoi tesselation. The local

solid fraction φ at any point of the domain is then com-

puted by interpolating the φm values onto a cartesian grid

of step Δx = Δy = 0.05dg, as well as the local veloc-

ity field v and stress field σ from the vm and σm values.

From the rate of strain tensor Di j = (∂iv j + ∂ jvi)/2, we ex-

tract the dilation rate ε̇ = (1/2)
∑

k Dkk and the shear rate

γ̇ = [(1/2)
∑

i, j(Di j − ε̇δi j)
2]1/2. From the stress tensor,

we extract the pressure p = −(1/2)
∑

k σkk and the shear

stress τ = [(1/2)
∑

i, j(σi j + pδi j)
2]1/2. The drag force F

exerted by the grains on the intruder can be calculated as

F = −∑m fm0 · ex, where fm0 is the contact force exerted

by particle m on the intruder and ex is the unit vector along

the x direction of motion.

The spatial variation of the different quantities will be

expressed in the polar coordinates (r, θ), where θ is the an-

gle relative to the x direction of motion and r the radial

position relative to the moving sphere center.

3 Flow results without sidewalls

As the intruder starts moving, it perturbs progressively the

initial grain assembly and a dense cluster zone of touching

0 1 432 65 7 8

λ
c /

 d
g

ts V0 / dg 

0

15

10

5

20

25

x 103

Figure 2. Time evolution of the upstream cluster size λc for φ0 =

0.4 (Lx = 8000dg, Ly = 100dg). The dotted line corresponds to

< λc/dg >= 9.7 ± 3.2.

grains grows around as illustrated in Fig. 1. The posi-

tion rc(θ, t) of the corresponding front delimiting the inner

perturbed cluster zone to the outer unperturbed zone is ex-

tracted from the simple criterion p(r > rc) = 0 for each

θ. A triangular zone with no grain inside, thus appear-

ing in white in Fig. 1, exists in the wake of the intruder as

already reported and analyzed in details by [9] in bidimen-

sional experiments. In the present paper, we only focus on

the cluster zone upstream the intruder (−π/2 � θ � π/2)

which is the key region where the drag force originates,

with high stresses and strain rates inside. The upstream

extension of the cluster λ = rc − d/2 is averaged in the

small θ range −5 deg < θ < 5 deg around the x-direction

of motion. As in one dimensional experiments where a

straight rake starts moving [10], we observe that the front

position λmoves away linearly in time, with a velocity that

is proportional to V0 and increases with φ0. But in contrast

to the one-dimensional configuration of [10], this regime is

here only transient until a steady regime is reached with a

constant value λc despite some fluctuations (Fig. 2). This

steady regime appears when the grain flux upstream the

intruder is balanced by the grain flux on the intruder sides

which can not occur in the one-dimensional configuration

of [10] as no grains can circumvent the rake. In the follow-

ing, we restrict our study to this steady state regime which

allows time averaging of the different quantities.

The cluster steady size λc is observed to increase with

φ0 from only a few grains at low φ0 (e.g. λc � 3dg at

φ0 = 0.3) to many grains at high φ0 (e.g, λc � 53dg at

φ0 = 0.7), and diverges at the approach of a critical value

φc with the scaling law λc � 1.5dg(φc − φ0)−2 with the

value φc � 0.85± 0.01 very close to the jamming point φJ .

The local solid fraction φ in the cluster does not vary sig-

nificantly with θ in a large azimutal range and displays the

about constant value φ � 0.83 in all the cluster for large

enough φ0 (φ0 � 0.6), except close to the intruder where φ
decreases down to about 0.75 and near the front where φ
decreases down to φ0.

In the present simulations where no gravity acts and

no pressure is imposed from any external boundary, no

stress scale exists except the kinetic pressure ρV2
0 arising
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Figure 3. Radial evolution of (a) the dimensionless dilation rate

ε̇ and shear rate γ̇, (b) the dimensionless pressure p and shear

stress τ, (c) the solid fraction φ, and (d) the inertial number I for

an initial solid fraction φ0 = 0.75.

from collision processes. The present regime corresponds

therefore to the inertial high velocity regime found by

[11] in their bidimensional experiments of a disk dragged

within a monolayer of steel beads and also found by [12]

in their numerical simulations of a bidimensional assem-

bly of disks with no friction with the bottom plate. In our

simulation, we do not observe any quasi static regime at

low velocity where the drag force would be velocity in-

dependent or would depend only weakly on the veloc-

ity. The existence of such a quasi-static regime which

is the most often seen regime [3, 4] arises from the ex-

istence of another natural scale of pressure in the sys-

tem which may come either from gravity and solid fric-

tion. We found here that the drag force F increases lin-

early with the initial solid fraction φ0 with the scaling law

F � 5φ0ρdg2V2
0 � φ0ρddgV2

0/2. Thus, F does not diverge

at the approach of φc in contrast to the cluster size λc. This

may be explained by the fact that the grains at the outer

limit of the growing cluster do not touch any limit bound-

ary in the present simulations.

Let us now detail the flow in the dense cluster around

the moving intruder (Fig. 3). The dilation rate ε̇ is about

zero and thus the flow is incompressible in the overall clus-

ter, except near the cluster rim at the front (Fig. 3a) where

there is significant φ variation collinear with velocity as

mass conservation reads φ ε̇ + v · ∇φ = 0. The shear

rate γ̇(r, θ) is observed to be maximum close to the mov-

ing sphere at r � d/2 and then strongly decreases away

from it with the law γ̇(r, 0) � 4(V0/dg)[(dg/r)2 + α] with

α � 0.003 (Fig. 3a), and also decreases toward the equa-

tor. The key point is that its maximal value γ̇(d/2, θ) does

not depend significantly on φ0 neither does its radial or az-

imuthal decreasing rate. This means that an intrinsic flow

appears close to the moving sphere within the cluster zone

independently of its possible diverging size. This flow has

an intrinsic length scale which is thus independent of φ0

and is of the order of 1d and thus of about 10dg for the

present size ratio d/dg = 10. This flow zone corresponds
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Figure 4. Local friction coefficient μ = τ/p (filled symbols) and

local solid fraction φ (open symbols) as a function of the local

inertial number I inside the cluster zone for different initial solid

fractions φ0 = 0.5 (�), 0.7 (◦) and 0.75 (�). Fits of equations

μ = 0.25+ 0.53/(1+ I/0.03) (—) and φ = 0.846(1− 0.8I) (- - -).

to the narrow crown of lower solid fraction φ < 0.8 (Fig.

3c).

The local pressure p(r, θ) is maximal at the sphere sur-

face in front of the moving sphere (r � d/2, θ � 0) and

decreases radially away from it with the approximate law

p(r, 0) � 5.5φ0ρV2
0 [(dg/r) + β] with β � 0.07 and toward

the equator (Fig. 3b). The spatial variations of the shear

stress τ are very similar to those of the pressure p with

always τ < p (Fig. 3b).

The strong coupling between τ and p means that the

rheological behavior of the grain assembly appears to be

of frictional type although no microscopic friction exists

in the system. We thus test the possible existence of

the local rheology μ(I) where the local friction coefficient

μ = τ/p would be linked to the local inertial number

I = γ̇dg/
√

p/ρφ [1]. As τ and p have the same scaling

in V0, μ will not depend here on the velocity V0 neither

does I values as both γ̇ and
√

p scales as V0. The only

spatial variation of I will come from the weak difference

of the spatial scalings of γ̇ and
√

p, together with the weak

spatial variation of φ (see φ(r) shown in Fig. 3d). We see

in Fig.3d that I has its highest value of about 0.2 close to

the intruder and decreases away from it following the same

master curve whatever the cluster size. For the largest clus-

ter size (φ0 = 0.75), we see that I tends towards a non-zero

asymptotic value close to 10−2. We observe only weak az-

imuthal variations of I around the intruder.

In Fig. 4 where μ and φ are plotted as a function of I,

all data collapse into master curves which means that a lo-

cal rheology appears in the present flow. The solid fraction

φ decreases with the approximate scaling φ = φm(1 − aI)

with φm = 0.846± 0.002 and a = 0.80± 0.03, and the fric-

tion coefficient μ increases as μ = μs + (μ2 − μs)/(1+ I/I0)

with μs = 0.25 ± 0.05, μ2 = 0.78 ± 0.02 and I0 = 0.03.

The φm value is very close to the critical value φc � 0.85

found for the divergence of λc. We believe that φc and φm

both correspond to the jamming point φJ of the system.

The about constant value 0.83 observed for φ in the clus-

ter core corresponds to the asymptotic minimum value of

Im = α/β
1/2 � 0.01 reached in the flow. The observed μ(I)
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Figure 5. Influence of sidewalls. Radial evolution (a) of the di-

mensionless shear rate γ̇ and (b) of the dimensionless pressure

p for the same initial solid fraction φ0 = 0.7 and streamwise

extension Lx/dg = 550 but different lateral extensions Ly/dg cor-

responding to different confinement ratio d/Ly = 0.25 (—) , 0.1

(— - —), 0.05 (— —), 0.025 (– –) and 0.0125 (- - -).

and φ(I) variations are very similar to what have been al-

ready observed in other granular flow configurations [1].

In the present configuration, the inertial number I that nat-

urally arises ranges within only one decade from 0.01 to

0.15. As a consequence μ only varies roughly from 0.45

to 0.70 and φ roughly from 0.75 to 0.83. The region of

high I (high μ and low φ) is close to the moving sphere but

it is worth noting that I does not vanish far away. Note that

the present natural range of I corresponds to a well-posed

behaviour of the μ(I)-rheology [14].

4 Influence of sidewalls

Let us now present some preliminary results on the influ-

ence of sidewalls. By decreasing transverse wall gap Ly
from 800dg to 40dg, we observe that the drag force F in-

creases with the confinement ratio d/Ly as expected from

[13], and that the upstream cluster size λc also increases.

When the sidewalls are close enough(Ly/d � 10, the front

of the cluster is no more curved but perpendicular to the

sidewalls and much far from the intruder. If we look at

the local shear rate and pressure (Fig. 5), we observe that

γ̇ is not affected significantly upstream the intruder by the

presence of these lateral walls but the pressure is, with a

non-zero plateau value that appears far from the intruder

in the cluster beyond the rapid pressure decrease close to

the intruder. An approximate scaling for the pressure is

now p(r, 0) � 5.5φ0ρV0
2[dg/r + β(d/Ly)], where β(d/Ly)

is a increasing fonction of d/Ly that still needs to be deter-

mined.

5 Conclusion

Our simulation results show that a steady state regime is

reached in the dense flow around an intruder moving at

constant velocity within a cloud of grains. The granular

flow in the dense cluster around the intruder is found to

obey a local rheology where the local friction coefficient μ
and the local solid fraction φ are given by the inertial num-

ber I even if no microscopic friction between the grains is

considered here. With close sidewalls, the spatial varia-

tion of stresses are strongly affected with a significative

non-zero value that arises for the pressure far upstream the

intruder within a long range plateau.
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