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Introduction

Active Brownian particles (ABP) are a widely used model system to study the statistical physics of swimming micro-organisms [1,2,3]. In the ABP model, particles undergo Brownian translational and rotational motion, and in addition possess an "active" mechanism of self-propulsion along a fixed body axis. The simplest such model is that of active hard spheres (AHS), where particle interactions are spherically symmetric and only enforce no-overlap conditions. In particular, no direct interactions between the swimming directions of AHS exist. Despite this simplification, AHS still show interesting non-equilibrium phase behavior that allows to investigate many principles of actively driven systems. They can also be realized to good approximation in experiments on colloidal "Janus" particles [4,5,6].

For equilibrium ("passive") fluids, the basic quantity revealing the structural correlations in the disordered fluid state is the structure factor S(q), or alternatively the radial pair-distribution function g(r) [START_REF] Hansen | Theory of Simple Liquids: with Applications to Soft Matter 4[END_REF]. Since the early days of liquid state physics, the structure factor has been measured by scattering experiments and computed by simulations and integral equation theory. In this respect the hardsphere system (including its two-dimensional version of hard disks) has played a pivotal role to understand fluid structure and to test approximative theories. The hard-sphere potential does not have an energy scale and therefore, temperature is irrelevant in determining the phase behavior. This allows to examine the role of structural correlations in fluids most clearly. The structural properties of active fluids have been much less studied (but see [START_REF] Härtel | Microscopic structure in suspensions of active hard disks[END_REF] for a recent exception). This is a significant gap, because the homogeneous active fluid can provide a clear-cut testing ground to extend the well-established concepts of classical statistical physics to regions far from thermal equilibrium.

In this contribution, we provide reference simulation data for the static structure factor S(q) and the pair distribution function g(r) of active Brownian hard disks in two spatial dimensions. As stated above, hard-sphere like interactions are the least arbitrary starting point to describe sterical repulsion between particles, and in equilibrium fluids, the approach to start from hard spheres and extend to other types of interactions has been hugely successful. In active fluids, there might be a subtle interplay between the softness of repulsion and active driving [START_REF] Härtel | Microscopic structure in suspensions of active hard disks[END_REF], so that it is important to establish the hard-sphere reference case. We restrict ourselves to two-dimensional systems for simplicity. To date, most experiments on Janus colloids are done in quasi-2D settings, and many simulation studies of the phase behavior of ABP have also been performed in 2D. Brownian dynamics simulations of strict hard disks are not straightforward as already known from passive systems (see e.g. [START_REF] Cichocki | [END_REF]10,11]) so special care is needed for the algorithm used. Here we choose an event-driven scheme [11] which is particularly designed to be efficient for Brownian hard disks.

Sufficiently strong self propulsion induces clustering of ABP, so that for a large range of densities, ABP systems evolve into inhomogeneous states of very dense clusters separated by very dilute regions [12,13]. This phenomenon is called motilityinduced phase separation (MIPS) as it shares a number of qualitative features with the liquid-gas phase separation known from equilibrium fluids. MIPS has been studied in great detail for various spherical ABP models with different interactions between the particles [14,15,16], since recently also including the hard-sphere case (using the same simulation algorithm as ours) [START_REF] Levis | Active brownian equation of state: metastability and phase coexistence[END_REF]. Here we deliberately restrict our attention to the homogeneous fluid state outside the spinodal of MIPS.

Methods and Techniques

The active Brownian hard-disk system obeys the following equations of motion for the positions r j and the orientation angles θ j of the particles (relative to a fixed laboratory coordinate frame):

d r j = 2D t d W j + v 0 e(θ j ) dt , | r j -r k | ≥ σ ∀j, k , (1a) 
dθ j = 2D r dW θ j . (1b) 
Here, j = 1, . . . N labels the particles. Brownian translational and rotational diffusion is described by uncorrelated Wiener processes d W j and dW θ j ; their amplitude is given by the translational diffusion coefficient D t and the rotational diffusion coefficient D r . Self propulsion is modeled by a fixed swimming speed v 0 along the particles orientation, e(θ) = (cos θ, sin θ) T . The hard-sphere interactions translate into nooverlap conditions | r j -r k | ≥ σ for all particle pairs. The hard-core diameter σ and the translational diffusion coefficient D t are used to set the units of length and time in the following. There remain three parameters to specify the state of the system: the density n = N/V , expressed as a dimensionless packing fraction η = (π/4)nσ 2 , the self-propulsion velocity v 0 (in units of D t /σ), and the rotational diffusion coefficient D r (in units of D t /σ 2 ). For three-dimensional passive hard spheres, the Stokes-Einstein relation fixes D r = 3D t /σ 2 , assuming Stokes flow in the solvent and stick boundary conditions on the particle surface. However, for active systems, the effective rate of change of particle orientations may be significantly different from this passive value, depending on the swimming mechanism. We will therefore fix D r = 1 as a reference case for most simulations, and also explore the effect of changes in D r , i.e., changes in the persistence of active motion.

Given the particle positions, one obtains the static structure factor,

S(q) = 1 N N j,k=1 e -i q•( rj -r k ) , (2) 
where the angular brackets denote an average over the non-equilibrium stationary state, and q is the wave vector of the density fluctuations that are probed by S(q). Note that in the homogeneous, isotropic fluid, S(q) depends on q only through its magnitude q = | q|. The static structure factor is intimately related to the radial distribution function g(r) defined by

g(r) = 1 nN j =k δ( r -( r j -r k )) , (3) 
which quantifies the probability density for finding a particle at distance r from a given particle, irrespective of their orientations. Again, g(r) quantifies structural properties of the isotropic homogeneous fluid, although for ABP systems, the angle-resolved pair distribution function provides further information [START_REF] Härtel | Microscopic structure in suspensions of active hard disks[END_REF]. Simulations were carried out using an event-driven Brownian dynamics (ED-BD) algorithm [11]. In the ED-BD simulation, a fixed "Brownian" time step ∆t is introduced, and at each time step, Gaussian trial displacements ∆ r i and angle increments ∆θ i are drawn for all the particles. The self-propulsion term is included by drawing the ∆ r i from appropriately shifted Gaussians. To propagate the system to the next time steps, the trial displacements have to be modified to avoid particle overlaps. This is done by assigning to the particles pseudo-velocities v i = ∆ r i /∆t, and by performing event-driven molecular dynamics using these pseudo-velocities in the time interval [t, t + ∆t]. This way, the ED-BD algorithm guarantees no-overlap conditions at any time, and thus incorporates hard-sphere interactions exactly.

In the passive case, the ED-BD algorithm has been shown to accurately describe the Brownian motion of hard spheres, if the time step is reasonably small, ∆t < 0.1 σ 2 /D t , say [11]. Note however that for strong self-propulsion and/or fast reorientational diffusion, significantly smaller time steps may be required. The extension to active particles has been used to study glassy dynamics of dense AHS systems [START_REF] Ni | [END_REF], and more recently also MIPS [START_REF] Levis | Active brownian equation of state: metastability and phase coexistence[END_REF].

We performed runs with N = 1000 and N = 5000 particles to estimate finitesize effects. These are found to be small for the structural quantities we study for state points sufficiently far from the spinodal of MIPS. Results are shown for the N = 5000 system. The Brownian time step was chosen to be ∆t = 0.001 σ 2 /D t , and some runs with ∆t = 0.01 σ 2 /D t were performed to confirm that no significant finite-time step effects remain in S(q). From individual runs with a specific choice of parameters, after an initial transient time of t i = 333 σ 2 /D t to reach a stationary state, 133 configurations in [t i , t f ] with t f = 1000 σ 2 /D t were stored and analyzed to obtain S(q) and g(r). To obtain S(q), a set of 5000 q-vectors compatible with periodic boundary conditions were used to evaluate Eq. (2), which were afterwards binned according to | q|. For g(r), bins of width 0.01 σ were used in evaluating Eq. (3). 

Results

Passive Hard Disks

We begin by recalling the features of the passive reference system. The only relevant parameter in the passive hard-disk system is the packing fraction η. Hard disks are known to order at high densities, transforming first from the fluid to a hexatic phase, and later to a crystalline phase. The nature and phase-transition boundaries of the fluid-hexatic and the hexatic-solid transitions have only recently become clear in large-scale simulations [19] and experiments [20]: in the regime 0.700 ≤ η ≤ 0.716, coexistence between a fluid and the hexatic phase was found. There is a further continuous transition to a solid at η 0.720. In the following, we will restrict the discussion to packing fractions η ≤ 0.7.

The static structure factor of the fluid displays the standard features known from simple fluids (Fig. 1): with increasing packing fraction, intermediate-range order in the fluid becomes more pronounced, and this gives rise to damped oscillations in S(q) that become increasingly pronounced. The ordering is reflected in a pronounced first peak of S(q) at q * ≈ 6/σ (for η = 0.6). The position of this peak (or rather, the period of the oscillations) reflects a typical interparticle distance. The sharpness of the peak is an indicator for how pronounced ordering is.

For 3D hard spheres, several well known approximation schemes exist for S(q). For example, a widely used analytical, albeit approximate, expression is the Percus-Yevick (PY) structure factor [START_REF] Hansen | Theory of Simple Liquids: with Applications to Soft Matter 4[END_REF]. In 2D, no closed analytical form of the PY approximation for S(q) is known. An empirical expression has been proposed by Baus and Colot [21]. The Baus-Colot expression provides an excellent description of the data, as shown by the dashed lines in Fig. 1. Static structure factor S(q) of active Brownian hard disks with self-propulsion velocity v 0 = 10 Dt/σ and rotational diffusion coefficient Dr = 1 Dt/σ 2 , for packing fractions η = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7.

Active Hard Disks

We now turn to the discussion of the active hard-disk system with rotational diffusivity D r = 1. For self-propulsion velocities v 0 that are below the onset of motility-induced phase separation (estimated to be around v 0 = 12 in the present system [START_REF] Levis | Active brownian equation of state: metastability and phase coexistence[END_REF]), a similar evolution of S(q) with increasing packing fraction is seen as in the passive system. This case is shown in Fig. 2 for v 0 = 10.

In particular the evolution of the first and second peaks in S(q) does not differ qualitatively from the one in the passive system. For η = 0.7, the second peak around qσ = 12 exhibits an asymmetric shape, which we interpret as a precursor of incipient ordering. It is known that two-dimensional ABP systems crystallize at high densities (seen, for example, in active hard-core Yukawa systems [22]). For the hard-disk case discussed here, the passive system displays much stronger signatures of ordering in S(q) at η = 0.7 than the active system does. This is consistent with the expectation that -at least for self-propulsion velocities small enough to prevent MIPS -the ordering transition sets in at higher densities in the presence of active motion.

The main difference of the active S(q) to the passive one is in the low-q behavior. At densities comparable to the critical density of MIPS, a strong increase of S(q → 0) is seen in the active system. This is the signature of impending phase separation that is expected from the analogy with equilibrium systems. Precursors of this low-q increase are seen at all densities shown in Fig. 2.

The structure factors shown in Fig. 2 are exemplary for the active hard-disk fluid. At higher v 0 , only the low-density regime remains, because MIPS sets in; our simulations confirm that phase separation prevails for large v 0 up to very high densities. It is therefore, at least for D r ≈ 1, not possible to prepare a homogeneous monodisperse hard-disk fluid for large v 0 and large η.

To understand the effect of activity on the static structure of the fluid, it is instructive to discuss cuts in parameter space where the packing fraction is fixed. Increasing the self-propulsion velocity v 0 for a low-density system (η = 0.2 shown in Fig. 3a) causes two prominent changes: first, the main peak of S(q) shifts to larger q and increases in amplitude (and the subsequent peaks undergo a similar change).

The increase of the peaks in S(q) signals that structural order in the more active fluid is more pronounced, while the shift to larger q indicates that the average particle distance is reduced. This is consistent with a visual inspection of the simulation snapshots illustrated in Fig. 3b, which shows the formation of local areas with both higher ordering and density. Second, the low-q region of S(q) increases with increasing self-propulsion speed. This latter effect is attributed to the emergence of a phase-separated region, as discussed above. If one defines the isothermal compressibility κ T of the active fluid system in terms of the particle-number fluctuations by extending the well-known equilibrium relation, κ T = S(q → 0)/nk B T (where k B T is the thermal energy needed to define an energy scale for the compressibility), to the non-equilibrium stationary state, the active fluid is much more compressible than the passive one.

Interestingly, the S(q) appear to approach a limiting curve for large v 0 : in Fig. 3a, the strongest change is seen upon increasing v 0 from zero to about 10, while a further increase by a factor of 10 (up to v 0 = 100) only causes small further changes in the average fluid structure. Also the MIPS spinodal is nearly vertical in the v 0 -vs-η plane [START_REF] Levis | Active brownian equation of state: metastability and phase coexistence[END_REF], indicating that there is a regime where self-propulsion effects saturate. The shift in the peak positions of S(q) indicate that the average particle distance decreases from about 2π/5 σ ≈ 1.26 σ to about 2π/6 σ ≈ 1.05σ. Hence, the saturation may stem from the fact that for true hard disks, a further increase in activity cannot cause particles to stay closer than σ on average. The saturation effect may thus be masked for soft spheres.

The radial distribution function g(r) provides more intuitive information on the average structure. At the low density discussed here, η = 0.2, the equilibrium g(r) is relatively featureless: it shows a weak enhancement over the ideal-gas value at particle contact, but quickly decays to unity for larger r. Increasing v 0 for the low- density system leads to a strong enhancement of g(r) near contact, see Fig. 4. This is in line with the interpretation that the average particle distance decreases with increasing self-propulsion velocity. At sufficiently large v 0 there emerges a second peak around r = 2σ. Hence, active particles form small transient clusters. However, no pronounced peaks are seen at r ≈ nσ with n > 2. Thus, the system does not (yet) form large clusters with a statistically significant probability, and it also does not form pronounced intermediaterange order.

The changes in g(r) that are visible in Fig. 4 can be contrasted to those found in ABP systems with soft interactions [23]. There, a comparable change of v 0 only led to a relatively mild change in g(r), and the main effect was a shift of the nearestneighbour peak to smaller distances.

An appealing concept is to map activity onto an effective interaction between the particles. Quite robustly for a number of different ABP models, activity induces effective attractions that become increasingly strong when v 0 is increased [23,24,25,26]. For soft-sphere ABP, the interaction range was found to be around 20% of a particle diameter at moderate densities [23].

To describe the effects of attractions in passive colloidal systems, the squarewell system (SWS) is a canonical starting point [27]. In this model, a hard-sphere repulsion is supplemented by an attraction of fixed strength Γ and range δσ. For the three-dimensional SWS, the static structure factor S(q) can be obtained analytically within the mean-spherical approximation for δ not too large [28]. At low density, the SWS-S(q) displays a change upon increasing the attraction strength Γ that is similar to the one seen for the low-density AHS in Fig. 3: increasing attraction causes increased structural order, and a shift of the average particle separation to lower distances. This confirms earlier findings that activity can be mapped to an effective attraction in describing the fluid structure [24]. The mapping v 0 ↔ Γ is however quite nonlinear, 

v 0 = 0 v 0 = 4D t /σ v 0 = 8D t /σ v 0 = 12D t /σ v 0 = 0 v 0 = 4D t /σ v 0 = 8D t /σ v 0 = 12D t /σ Figure 5.
High-density fluid regime: static structure factor S(q) (top row), radial distribution function g(r) (middle row), and snapshots (bottom row) of active hard disks with packing fraction η = 0.6 (left column) respectively η = 0.7 (right column). Different curves correspond to different self-propulsion speeds v 0 = 0, 2, 4, 6, 8, 10, 12 (from blue to green; curves ordered by increasing firstpeak position in S(q) from left to right).

because the saturation effect we find for the AHS upon increasing v 0 is not found in the SWS upon increasing Γ.

We now turn to the high-density fluid, limited to small enough v 0 so that the system remains homogeneous. As the phase diagram confirms [START_REF] Levis | Active brownian equation of state: metastability and phase coexistence[END_REF], there opens a small window where the system is not yet crystallized and not yet phase-separated. We discuss two packing fractions for this case, η = 0.6 and η = 0.7. The latter case represents the upper end of the equilibrium fluid regime in passive hard disks, and the structure functions for this system already show precursors of a phase transition to the hexatic phase.

The S(q) at high densities, Fig. 5, demonstrate an interesting trend upon increasing v 0 that is absent at low densities: while the main peak of S(q) monotonically shifts to the right with increasing v 0 , it first weakens, and then increases with v 0 . The corresponding effect in g(r) is an interplay between a sharpening of the contact-value peak and an increasing depletion of the region between the first neighboring shells. However, this structural change is too subtle to be clearly visible in the simulation snapshots. The initial decrease in the amplitude of S(q) is much more pronounced at η = 0.7, but already noticable at η = 0.6, where precursors of hexatic ordering are not yet obvious. We therefore attribute the non-monotonic change to genuine change in the way activity influences the fluid structure, and not to the vicinity of a phase transition.

The non-monotonic trend revealed in Fig. 5 indicates that the effect of activity in the high-density hard-disk system is twofold: first, activity reduces ordering in the dense system. This is also expected from simulation studies of glassy dynamics, where a shift of the glass transition to higher densities with increasing activity was seen [START_REF] Ni | [END_REF]. Similar trends are confirmed for various other model systems [29,30] and predicted by theory [START_REF] Liluashvili | Mode-coupling theory for active brownian particles[END_REF]. Such a "fluidization" of the system is usually associated with a weakening of the peak amplitudes in S(q). It is reminiscent of the reentrant melting of glassforming systems with short-ranged attraction, where a similar decrease of peak height in S(q) with increasing attraction strength describes the structural changes of the system [28]. Second, stronger activity in the high-density system restores the effects that also prevail at lower densities. Here, activity favors structural order. For the case we study here, the crossover between the two effects occurs around v 0 = 5 D t /σ, slightly depending on the packing fraction.

Again, the comparison with the passive square-well system allows to understand the qualitative mapping of activity to effective interactions. Specifically, the nonmonotonic change in the first peak of S(q) allows to estimate the range of the effective attraction. For the SWS with an attraction range of, say, δ = 20%, the same trend is found at large densities as it was also found in the low-density state: increasing attraction strength Γ increases the peak height and shifts its position to larger q (recall Fig. 3). The situation changes however, if one considers short-ranged attractions. For, say, δ = 10%, the dense SWS reproduces a decrease in peak height with increasing Γ up to about Γ = 5 k B T , followed by an increase upon further increasing Γ. (To exemplify this, Fig. 6 shows the corresponding S(q) for a three-dimensional S(q), evaluated in the mean-spherical approximation [28].) From this similarity in trends one may conclude that indeed, activity in the AHS can be mapped to an effective attraction, of a range around 10%. The SWS also offers a physical explanation for the different behavior of S(q) at high densities as compared to low densities: at η ≈ 0.6, the average particle separation is on the order of 10% of a particle diameter. If the attraction range and the interparticle separation are comparable, the effect of increasing attraction strength is to increase disorder, because some particles will be bounded more strongly, while others can explore a larger configuration-space volume. Only if the attraction is sufficiently strong, the energetic increase in order offsets the entropic decrease.

Influence of Rotational Persistence

Activity induces a coupling between D r and the translational evolution. Thus, v 0 and D r are both relevant parameters for the active fluid. One way to describe ABP that is successful in the low-density limit is by assigning to the ABP system an effective temperature (or pressure) [START_REF] Takatori | [END_REF], based on the notion that a single ABP over long time and length scales undergoes diffusion with a renormalized diffusivity that in two spatial dimensions reads

D eff = D t + (1/2)v 2 0 /D r .
Here, only a specific combination of v 0 and D r enters. There are indications that the high-density dynamics of ABP on the contrary depends on both these parameters separately [START_REF] Liluashvili | Mode-coupling theory for active brownian particles[END_REF][START_REF] Ni | [END_REF]30], because at high densities the average distance between ineracting particles is easily shorter than the persistence length associated to the swimming, p = v 0 /D r . It is therefore interesting to see the effect that varying both v 0 and D r has on the stationary static structure.

The relevant dynamical rates of the AHS system thus are: the rate of passive Brownian diffusion, τ -1

0 = D t /σ 2 , the rate of self-propelled motion, τ -1 v = v 0 /σ,
and the rate of active effective diffusion, τ -1 a = v 0 p /σ 2 . From these rates, three dimensionless parameters can be formed to quantify the amount of "activity" in the system. (They are ratios of rates, and thus called "Péclet" numbers in analogy to hydrodynamic theory.) A natural choice from the equations of motion is the translational Péclet number that quantifies the rate of self propulsion in relation to passive diffusion, P e t = τ -1 v /τ -1 0 = v 0 σ/D t . The low-density theory suggests to use the rate of active over that of passive diffusion, P e = τ -1 a /τ -1 0 = v 2 0 /D r D t ; at high densities one may expect the persistence length to play a crucial role, and thus the ratio of self-propelled motion relative to active difusion, P e r = τ -1 v /τ -1 a . Note that P e -1 r = p /σ is sometimes also referred to by the symbol P e in the context of MIPS; we stick to the notation introduced in [START_REF] Takatori | [END_REF] to avoid confusion.

We thus compare the static structure factors obtained for the system at moderate density, η = 0.2, for various rotational diffusion coefficients, while keeping one of the three parameters (P e t , P e, or P e -1 r ) fixed. Varying D r over two orders of magnitude shows (Fig. 7) that the static structure factors S(q) are in fact independent on D r in the regime of moderately strong self propulsion. The curves for different D r fall on top of each other within error bars at fixed P e t , with the exception of a small increase towards q → 0. The latter indicates that the appearance of MIPS is influenced by both v 0 and D r , while the dependence on D r has no significant structural precursors in the fluid.

At fixed P e (middle panel of Fig. 7), an increase in D r has a similar effect as increasing v 0 regarding the change in nearest-neighbor structure that is reflected in the change of the peak positions in S(q). A similar conclusion holds for the evolution of S(q) with increasing D r at fixed persistence length (right panel of the figure). Note that one expects the dynamics for D r → ∞ at fixed v 0 to become identical to that of passive hard spheres, because in this limit the net effect of self propulsion vanishes. Figure 7 suggests that this is true only if the limit is taken such that the persistence length vanishes sufficiently quickly: only for the case of fixed P e t , the structure factor approaches the passive one with increasing D r at least at low q.

At high densities, the situation is less clear, because phase separation sets in at very different self-propulsion velocities for different D r . Static structure factors for η = 0.6 and η = 0.7, shown in Fig. 8, confirm the observation made above: as long as the system remains in the homogeneous fluid state, D r itself appears to have very little influence on the static structure. At fixed Péclet number or fixed persistence length, the increase of D r does not render the system more passive-like, but rather induces a change in S(q) that is similar to the one seen upon increasing v 0 at fixed D r .

Conclusions

We have obtained static structure factors and radial distribution functions from simulations of active Brownian hard-disk fluids.

The system remains in the homogeneous fluid phase for all packing fractions η 0.7 and low enough activities, v 0 12 D t /σ for D r = 1 D t /σ 2 ; it also remains a homogeneous fluid for low densities, η 0.2, and all the self-propulsion velocities we have studied.

The evolution of the static structure factor with density, outside the region of MIPS, resembles that of the passive fluid at finite q. On the low-density side of the phase-separation spinodal, increasing activity causes the fluid to exhibit slightly more pronounced ordering concommittant with a shift of typical interparticle separations to smaller distances. For the active hard-disk system, the static structure evolves from the passive one to an essentially v 0 -independent active one: the S(q) data with increasing v 0 converge to a well-defined limiting curve.

The high-density fluid reveals an interesting non-monotonic change in S(q) with increasing v 0 . Small self-propulsion velocities destroy the ordering that is present in the passive dense fluid, but further increasing the self-propulsion velocity reinstitutes more pronounced ordering at a shorter average particle separation. This highlights the interplay of a nearest-neighbor length scale (that determines the fluid structure in equilibrium) and the length scale introduced by persistent swimming.

It is possible to qualitatively understand the active-fluid S(q) by analogy to the effects caused by an attractive interaction in an equilibrium fluid. In particular the non-monotonic evolution of S(q) at high densities suggests an effective attraction of a range that is around 10% of the particle diameter. From this, an interplay between the effective activity-induced attraction width and the interparticle separation length arises. In the equilibrium fluid, such an interplay causes non-monotonic changes in the dynamics that lead to a reentrant melting of the glass [28,33]. Indeed, a similar reentrant behavior of the glassy dynamics of an active fluid (albeit not an ABP fluid) has been discussed [34]. It should, however, be stressed that the effective-attraction description of S(q) does not acknowledge the non-equilibrium nature of the active fluid. While changes in the glassy dynamics of an equilibrum fluid are largely governed by changes in S(q), the same need not be true for the ABP system.

The fact that activity enhances structural order in the low-density fluid might at first sight seem surprising: The single-particle dynamics of ABP can be mapped onto diffusion with an enhanced diffusivity, D eff ≥ D t . This mapping suggests a description in terms of an enhanced effective temperature, and from such a mapping, one would expect the oscillations in S(q) to become less pronounced. The qualitative mapping to an effective attraction, instead of an effective temperature, much better explains the observed changes in S(q).

The effect of rotational diffusivity on the low-density static structure of the active hard-disk fluid is weak. At high densities, the influence of D r is masked by the onset of phase separation, so that the trends emerging in S(q) are less clear. As already known from studies of MIPS, it is not possible to maintain the high-density strongly active system in a homogeneous fluid state. Doing so may be possible in suitably polydisperse systems (either using size polydispersity or polydispersity in self-propulsion speed).

Our data can be used as a reference for future theoretical studies which construct approximative closures for the structure based on the Smoluchowski equation [START_REF] Härtel | Microscopic structure in suspensions of active hard disks[END_REF]35,36] or for mode-coupling-like dynamical theories that either need static structure factor data as an input [36,29,37] or can in principle approximate it based on the equilibrium one [START_REF] Liluashvili | Mode-coupling theory for active brownian particles[END_REF]. As a remark, however, the extension of theoretical frameworks to calculate S(q) and related structural quantities that characterize the non-equilibrium steady state of active particles is not obvious, even for radially-symmetric pair potentials. There are two basic reasons for that: first, active Brownian particles possess an internal orientational degree of freedom which represents the direction of their intrinsic motion. This orientational degree of freedom is irrelevant for spherical passive systems but similar to molecular liquids with rotational symmetric shape (such as rods). For these liquid-crystalline systems, it is much more difficult to derive and numerically solve integral equations closures to access the orientationally averaged structure factor for the particle centers [START_REF] Gray | Theory of Molecular Fluids: Fundamentals 1st[END_REF]39,40]. Second, more importantly, active Brownian system are not in equilibrium which brings about complications in the description of the steady state.
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 1 Figure 1. Static structure factor S(q) of passive hard-disk systems with packing fractions η = 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 (top to bottom around qσ = 2). Solid lines: results from ED-BD simulations. Dashed lines represent the Baus-Colot expression for S(q).

  Figure 2.Static structure factor S(q) of active Brownian hard disks with self-propulsion velocity v 0 = 10 Dt/σ and rotational diffusion coefficient Dr = 1 Dt/σ 2 , for packing fractions η = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7.

Figure 3 .

 3 Figure 3. a) Low density fluid regime: static structure factor S(q) for active hard disks with Dr = 1 Dt/σ 2 and at packing fraction η = 0.2. Different curves corresond to different self-propulsion velocity: v 0 = 0 Dt/σ to v 0 = 100 Dt/σ increasing in steps of 10 (blue to green). b) Simulation snapshots at the indicated self-propulsion velocities.The self-propulsion of each particle is directed towards its red side. Note that the total simulation box is significantly larger than the region depicted here.

20 Figure 4 .

 204 Figure 4. Radial distribution function g(r) of an active Brownian hard-disk system at packing fraction η = 0.2, for self-propulsion velocities v 0 ∈ [0, 20] (in steps of two, from bottom to top at r = 1 + ).

Figure 6 .

 6 Figure 6. Static structure factor S(q) of a three-dimensional square-well system with short-ranged attraction (range 0.1σ), as a function of attraction strength (Γ = 0, 2, 4, 6, 8, and 10; blue to green), for moderate density (left panel; three-dimensional packing fraction ϕ = 0.1) and for high density (right panel; ϕ = 0.55).

Figure 7 .Figure 8 .

 78 Figure 7. Static structure factor of active hard-disks fluid at packing fraction η = 0.2 with different rotational diffusion coefficients Dr = 0.1, 1, and 10 (red, green, blue). Left: comparison at constant self-propulsion velocity (translational Péclet number) P et = v 0 σ/Dt = 10; middle: comparison at constant Péclet number P e = v 2 0 /DrDt = 100; right: comparison at constant persistence length (rotational Péclet number) P e -1 r = v 0 /σDr = 10.

Acknowledgments

We gratefully acknowledge funding from Deutsche Forschungsgemeinschaft (DFG) within the Special Priority Programme SPP 1726 "Microswimmers", grants VO 1270/7-2 and LO 418/17-2.