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Abstract
A novel experimental method is applied to localize the initial suppression of turbulence, in the
form of density fluctuations, at the transition from the low (L-) to the high (H-) confinement
mode in toroidal magnetic fusion plasmas. The high radial and temporal resolution, combined
with the unprecedented statistical significance, provided the awaited information on a possible
dominant E×B shear layer in L-H transition physics. We show, for the first time, that the
H-mode turbulence suppression is initiated at the inner E×B shear layer in the ASDEX
Upgrade tokamak possibly shedding light on the causality behind the L-H transition process.

Keywords: L-H transition, E×B shear, shear layer

1. Introduction

The physics of the L-H transition in toroidal magnetically
confined plasmas is a persisting enigma which has a crit-
ical implication for achieving efficient energy production in
a fusion reactor that is to be operated in H-mode. The lead-
ing explanation for the L-H transition and the amount of heat-
ing power Pthr required to access it is the E×B shear stabil-
ization of turbulence at the plasma edge [1]. The E×B velo-
city (vE×B = Er/B) in the confined region may result from any
non-ambipolar transport mechanism, e.g. ion orbit losses [2],
collisional (neoclassical) processes [3], or from turbulence
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stresses [4]. Here, Er is the radial electric field and B is the
magnetic field strength. Outside the last closed flux surface
(or separatrix), in the so-called Scrape-Off Layer (SOL), Er is
mostly determined by the non-ambipolar parallel transport of
ions and electrons defining the plasma potential via a sheath
region in front of the targets [5]. In the confined region inside
the separatrix, the vE×B profile shape features two shear lay-
ers, hereafter referred to as the inner and outer layers. The
knowledge of which shear layer is responsible for the L-H
transition is crucial to tailor experimental strategies aimed
to influence the dominant shear layer and, in turn, optim-
ize the H-mode access. Several previous works have already
shown the impact of the E×B flow shear on turbulence [6–
9]. In this Letter, we show, thanks to state-of-the-art dia-
gnostics and advanced analysis, the possibility to identify at
which shear layer the turbulence is firstly stabilized at the L-H
transition.

In recent years, several experimental and modeling results
pointed to the influence of the SOL and divertor conditions on

1 © 2024 The Author(s). Published by IOP Publishing Ltd
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the L-H power threshold. At the JET tokamak, it was observed
that Pthr increases with the X-point height and decreases with
the divertor closure [10]. Similar observations were obtained
at the DIII-D and MAST tokamaks [11, 12]. Along the same
lines, modeling results showed a correlation between Pthr and
vE×B just outside the last closed flux surface which could
point to the importance of the nearby outer shear layer in
the L-H transition physics [13]. Moreover, in an interchange-
drift-Alfvén turbulence model, the separatrix parameters well
sort out the ASDEX Upgrade confinement [14]. However, the
model describes the H-mode sustainment but not its triggering.
Finally, a theory based on the relative alignment of the E×B
shear and the Reynold stress predicts a positive coupling to
the outer shear due to the symmetry breaking of the magnetic
shear at the X-point [15]. All of these findings would suggest
a dominant role of the outer shear layer. On the other hand,
a correlation between the edge ion heat flux and the H-mode
onset has been found in ASDEX Upgrade and ALCATOR C-
mod [16, 17] suggesting that the inner shear layer is the relev-
ant one for the L-H transition. Finally, zonal flows can impact
both the outer and the inner layer [18–20]. These are, however,
all indirect and not conclusive indications since outer and inner
shear layers are strongly coupled. For instance, an increase of
the E×B velocity at the inner shear would at the same time
steepen the outer one while a change in the divertor conditions
might also affect the density and temperature gradients within
the separatrix and, in turn, the inner E×B shear. For these
reasons, it is essential to directly measure the impact of the
shear layer on the turbulence in the edge region. If the impact
can be pinpointed temporally and locally, the shear region that
plays the key role can be identified. The knowledge of the
dominant shear layer for the L-H transition physics might help
in validating any model of it.

2. Experiments

We present a novel method to radially localize the initial
suppression of density fluctuations at the L-H transition. It
exploits the Doppler reflectometry (DR) diagnostic, allow-
ing to probe both the density fluctuation amplitude (in a
limited wavenumber range), and the fluctuation propagation
velocity, with a sub-µs time resolution and spatial sensitiv-
ity at the mm scale. Density fluctuations are a marker of
the local turbulence and their reduction at the L-H transition
has been a well-recognized and fundamental characteristic of
this transition almost since its discovery [21]. Furthermore,
density fluctuations are frequently employed as indicators of
the overall turbulence behavior, particularly when investig-
ating the interplay between turbulence and flows as the L-
H transition [9, 18]. Therefore, in the following, we will
at times use the term ’turbulence’ and ’density fluctuations’
interchangeably.

The key of the method is the development of a discharge
scenario where L-H-L dithers, typically at a frequency around
100 Hz [7, 10, 22], are present for a long time interval. To
achieve this, the heating power has to be finely tuned just above

Figure 1. Repetitive L-H-L dither discharge scenario: (a)
line-averaged electron density, (b) NBI power, (c) DR probing
frequency of the X-mode (red) and O-mode (blue) systems, (d)
L-H-L dithers frequency.

Pthr, while the electron density ne is in the range where Pthr

increases with density. This assures a fall back into L-mode
after the rise of the density following the L-H transition [23].
Figure 1 shows such scenario with standard lower single null
edge optimized shape, favorable B×∇B drift, plasma current
of Ip = 0.8 MA, Bt =−2.5 T, and safety factor q95 = 5.3: the
Neutral Beam Injection (NBI) power (figure 1(b)) is stepped
by changing the NBI duty cycle, resulting in different phases,
separated by the vertical lines, where the line averaged elec-
tron density (figure 1(a)) remains in the same range, while the
L-H-L dithers frequency fLHL (figure 1(d)) is changed. Within
one phase, two DR systems, one in X-mode and one in O-
mode, probe the plasma at frequencies scanned respectively
in the range 76 GHz – 94 GHz and 50 GHz – 60.8 GHz
four times (figure 1(c)). These frequencies corresponds to per-
pendicular wave number ranges of roughly 10÷ 14 cm−1 for
the X-mode and 7÷ 9 cm−1 for the O-mode, which typically
coincides with the transition between ion and electron modes
(ITG—ETG) still below electron temperature gradient mode
peak in the k-spectra [24]. Here, we only show the analysis
of the time window between 3.9 s and 4.9 s in which fLHL is
mostly stable at around 200 Hz, however the same results were
obtained also in the other phases. The frequency fLHL is calcu-
lated using the poloidal magnetic field fluctuation (Ḃθ) signal
measured by a magnetic pick-up coil close to the X-point [25,
26]. An example of few L-H-L dithers as measured by the coil
are shown in figure 2(a), where the H- and the L-mode parts
are shaded in gray and green, respectively. Roughly 150 out of
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Figure 2. Synchronization procedure: (a) define a reference L-H
transition (red) using the Ḃθ signal; calculate the running correlation
(b) and set an acceptance threshold (in this case 0.8); use the
maximum of the correlation for every L-H transition (in red in (b))
as synchronization time-point. Figure (c) shows the synchronized
Ḃθ over 150 L-H dithers.

the total 200 L-H transitions within the reference phase have
been selected and synchronized using an algorithm based on
the running correlation of one reference L-H-L dither Ḃθ sig-
nature with the other dithers. A threshold in the correlation of
0.8 has been used to select only similar L-H transitions and the
maximum correlation for a given transition as the synchroniza-
tion time point. Figure 2(a) shows the reference L-H transition
and other three L-H-L dithers, in figure 2(b) the running correl-
ation and in figure 2(c) the synchronized Ḃθ over the 150 L-H
transitions. The exact definition of the L-H time point tLH is
arbitrary and it has been defined by means of the turbulence
measurement as shown later. Due to the large number of L-H
transitions considered, the statistical significance of this ana-
lysis is much higher than in earlier L-H transition studies in
which often only one or, in best cases, a few L-H transitions
were investigated.

3. Results

Figure 3 shows the amplitude of ne fluctuation level, i.e. the
amplitude of the DR signal ADR, for the X-mode (figure 3(a))
and the O-mode channel (figure 3(b)) synchronized to the one
L-H-L dither and conditionally averaged as a function of the
normalized plasma radius ρpol and time. Red indicates high
turbulence level while blue shows low turbulence level. Note
that ADR is the measurement of the back-scattered microwave
signal which can be used only as a qualitative monitor of the
ne fluctuation, while a quantitative estimation of ñe is not pos-
sible [27]. Nevertheless, in this work, we analyzed both the
O-mode and X-mode systems to highlight the consistency and
robustness of the results as they respond differently to the tur-
bulence amplitude [24]. The radial positions associated with

the probing frequencies have been traced during the L-H-L
cycle (in figure 3, see movement in time of the location of
the measurements). The mapping was done by means of a
ray-tracing code [28] with the density profiles obtained by
synchronizing and conditionally averaging the of the elec-
tron density from the lithium beam emission spectroscopy
diagnostic [29]. The radial uncertainty in the density pro-
file derived from the Li beam measurements is approximately
3 mm within the specified region. This uncertainty encom-
passes the effects of both the radial integration of the Li
beam measurement channel and the finite lifetime of the Li2p
excited state. The ne profile temporal resolution is the result
of the binning the raw data, which is originally sampled at 1
microsecond intervals, and has been set to 200 µs to obtain a
relatively accurate emission profile for the reconstruction of
electron density. As for the equilibrium reconstruction, it is
based on a pressure-constrained equilibrium with a time resol-
ution of 100 microseconds [30]. We do not expect significant
changes on shorter time scales as these are prevented by the
passive stabilizing loop structure present in AUG.

The synchronized DR data in figure 3 are binned to an
equivalent temporal resolution of 10 µs which is the hori-
zontal extension of the pixels, while the vertical one is the
radial resolution from the ray-tracing code. Note that the tur-
bulence level measured by DR for a certain frequency ADR is
normalized to its mean value ⟨ADR⟩ before the L-H transition
(t ∈ [−0.5,0] ms) to emphasize relative changes and to take
into account the variation of the launched microwave power
with the probing frequency. Both O-mode and X-mode chan-
nels show a localized initial turbulence decrease at ρpol ≈ 0.98
at the L-H transition which extends towards the last close flux
surface and the plasma center within fewmicroseconds. To our
knowledge, this is the first time that the L-H transition could
be radially localized with this accuracy.

To determine at which E×B shear layer the initial turbu-
lence reduction is triggered, the E×B velocity right before
the transition needs to be determined. This can be done directly
from the DR data. Thus uncertainties in the equilibrium recon-
struction and in the relative alignment of different diagnostics
are avoided. In principle, to localize the initial turbulence rel-
ative to the vE×B shear layers, it is not necessary tomap the DR
signals on ρpol since we could just look at the probing frequen-
cies. This is of crucial importance because we want to detect a
phenomenon on the 1mm scale and the usual uncertainties of
the equilibrium reconstruction are in the range of millimeters.
The measurements are nevertheless shown mapped to help the
reader understand the analysis method. Figure 4 shows the
vE×B profiles from the X-mode (red) and O-mode (blue) chan-
nels, evaluated within the last 0.5 ms before the L-H trans-
ition. The vE×B minimum is roughly consistent with previous
studies using the DR diagnostic [31]. The absolute values are
lower than the CXRS measurements in [32] while the position
and the values of the gradients are compatible. The position
of the initial turbulence suppression, i.e. ρpol,shear ≈ 0.98 (see
figure 3), is indicated by the black vertical line and it is clearly
located within the inner shear layer for both X- and O-mode.
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Figure 3. Synchronized turbulence level ADR normalized to the pre-L-H during an L-H-L transition from (a) X-mode DR and (b) O-mode
DR. High to low turbulence levels are color coded from red to blue. The dashed horizontal line indicate roughly the initial turbulence
suppression position and the vertical line the L-H transition time point.

Figure 4. Synchronized vE×B profiles over 150 L-H dithers, right
before the L-H transition (t− tLH ∈ [−0.5,0.0]ms): X-mode DR
(red) and O-mode DR (blue). The vertical line indicates the radial
position of the initial turbulence suppression.

4. Conclusion and outlook

To conclude, we developed a new method to localize the L-H
transition based on DR and on a plasma scenario with repet-
itive L-H-L dithers. The high statistical significance, com-
bined with the high temporal and radial resolution allowed us
to answer the long-standing question on a possible dominant
shear layer in the L-H transition. In this Letter, we provide
the evidence that the turbulence, in the form of density fluc-
tuations, suppression at the L-H transition is initiated at inner
E×B shear layer. Efforts in modeling and understanding the
L-H transition shall therefore focus on the behavior of the
inner E×B shear, or more in general, in reproducing this fea-
ture of the L-H transition phenomenology. Finally, the sim-
plicity of the method to localize the L-H transition proposed

in this Letter makes it well applicable to any fusion plasma
device equipped with DR, allowing a direct comparison to the
results shown here.

As an outlook, the newly installed Comb-Reflectometry at
ASDEX Upgrade will offer the possibility to measure simul-
taneously at several different sampling frequencies providing
time resolved ADR profiles without the need of repetitive L-
H transitions [33]. This will open the possibility to investig-
ate many different scenarios and to test single step transitions
against repetitive L-H-L dithers.
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