Stability of the $\mathbf{P} _n c^{1}-\left(P^{0}+P^{1}\right)$ element

Erell Jamelot, Patrick Ciarlet, Stefan Sauter

To cite this version:

Erell Jamelot, Patrick Ciarlet, Stefan Sauter. Stability of the $\mathbf{P} _n c^{1}-\left(P^{0}+P^{1}\right)$ element. ENUMATH 2023 - The European Conference on Numerical Mathematics and Advanced Applications, Sep 2023, Lisbonne, Portugal. hal-04414894v1

HAL Id: hal-04414894
 https://hal.science/hal-04414894v1

Submitted on 24 Jan 2024 (v1), last revised 12 Feb 2024 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Stability of the $P_{n c}^{1}-\left(P^{0}+P^{\mathbf{1}}\right)$ element

Erell Jamelot ${ }^{[0000-0002-9919-0793]}$ and
Patrick Ciarlet, Jr ${ }^{[0000-0003-1198-5063]}$ and Stefan Sauter

1 Stokes problem

A popular low-order method for solving the Stokes problem is the nonconforming Crouzeix-Raviart mixed finite element method [1, Example 4] (cf. [2, 3] for higher orders). The discrete velocity is piecewise affine, continuous in the barycentre of the interfaces between elements, but not globally continuous, $\mathbf{P}_{n c}^{1}$; and the discrete pressure is piecewise constant, P^{0}. This method introduces some consistency error on the discrete velocity, which may lead to an unphysical solution when solving the Navier-Stokes equations, especially when the source field is a strong gradient $[4,5]$. To recover consistency, the discrete pressure space can be generated by P^{1} continuous plus P^{0} basis functions, cf. the TrioCFD code [6, 7]. This leads to the $\mathbf{P}_{n c}^{1}-\left(P^{0}+P^{1}\right)$ mixed finite element method, which exhibits interesting numerical features. However, only an incomplete proof of the stability is available in [8, 9]. Our goal here is to gather evidence regarding the inf-sup condition. Let us consider Stokes problem set in an open, bounded, connected subset Ω of $\mathbb{R}^{d}, d=2,3$, with a Lipschitz boundary $\partial \Omega$:

$$
\begin{equation*}
\text { Find }(\mathbf{u}, p) \text { such that }-v \Delta \mathbf{u}+\nabla p=\mathbf{f} \text { and } \operatorname{div} \mathbf{u}=0 \text { in } \Omega . \tag{1}
\end{equation*}
$$

with Dirichlet boundary conditions for the velocity \mathbf{u} and a normalisation condition for the pressure $p: \mathbf{u}=0$ on $\partial \Omega, \int_{\Omega} p=0$. Given D an open subset of \mathbb{R}^{d}, let

[^0]us set $\mathbf{L}^{2}(D)=\left(L^{2}(D)\right)^{d}$, and $L_{z m v}^{2}(D)=\left\{q \in L^{2}(D) \mid \int_{D} q=0\right\}$. We denote by $(\cdot, \cdot)_{D}$ the $L^{2}(D)$ or $\mathbf{L}^{2}(D)$ scalar product, and $\|\cdot\|_{D}$ the associated norm. Let $\mathbf{H}_{0}^{1}(D)=\left(H_{0}^{1}(D)\right)^{d}$, and $\mathbf{H}^{-1}(D)=\left(H^{-1}(D)\right)^{d}$ its dual space. Due PoincaréSteklov inequality [10, Lemma 3.24], the semi-norm in $H_{0}^{1}(\Omega)$ is equivalent to the natural norm, so that $(v, w)_{H_{0}^{1}(\Omega)}=(\nabla v, \nabla w)_{\Omega}$ and $\|v\|_{H_{0}^{1}(\Omega)}=\|\nabla v\|_{\Omega}$. Let $\mathbf{v} \in \mathbf{H}_{0}^{1}(\Omega)$. We denote by $\left(v_{i}\right)_{i=1}^{d}$ the components of \mathbf{v}, and we set $\underline{\underline{\nabla}} \mathbf{v}=\left(\partial_{j} v_{i}\right)_{i, j=1}^{d} \in$ $\left[L^{2}(\Omega)\right]^{d \times d}$. Let us set $\mathbf{V}=\left\{\mathbf{v} \in \mathbf{H}_{0}^{1}(\Omega) \mid \operatorname{div} \mathbf{v}=0\right\}$ which is a closed subset of $\mathbf{H}_{0}^{1}(\Omega)$. We denote by \mathbf{V}^{\perp} the orthogonal of \mathbf{V} in $\mathbf{H}_{0}^{1}(\Omega)$.

Proposition 1 The operator div : $\mathbf{H}_{0}^{1}(\Omega) \rightarrow L^{2}(\Omega)$ is an isomorphism of \mathbf{V}^{\perp} onto $L_{z m v}^{2}(\Omega)$. We call $C_{\text {div }}>1$ the constant such that: $\forall p \in L_{z m v}^{2}(\Omega), \exists!\mathbf{v}_{p} \in$ $\mathbf{V}^{\perp} \mid \operatorname{div} \mathbf{v}_{p}=p$ and $\left\|\mathbf{v}_{p}\right\|_{\mathbf{H}_{0}^{1}(\Omega)} \leq C_{\mathrm{div}}\|p\|_{\Omega}$ [11, Theorem 3.1 (e)].

Let $\mathbf{f} \in \mathbf{H}^{-1}(\Omega)$. The variational formulation of Problem (1) reads: Find $(\mathbf{u}, p) \in \mathbf{H}_{0}^{1}(\Omega) \times L_{z m v}^{2}(\Omega)$ such that $\forall(\mathbf{v}, q) \in \mathbf{H}_{0}^{1}(\Omega) \times L_{z m v}^{2}(\Omega)$:

$$
\begin{equation*}
v(\mathbf{u}, \mathbf{v})_{\mathbf{H}_{0}^{1}(\Omega)}-(p, \operatorname{div} \mathbf{v})_{\Omega}-(q, \operatorname{div} \mathbf{u})_{\Omega}=\langle\mathbf{f}, \mathbf{v}\rangle_{\mathbf{H}_{0}^{1}(\Omega)} . \tag{2}
\end{equation*}
$$

One can prove that Problem (2) is well-posed with the T-coercivity theory [12, 13, 14], using Poincaré-Steklov inequality [10, Lemma 3.24] and Proposition 1.

2 Discretization

Consider $\left(\mathcal{T}_{h}\right)_{h}$ a family of simplicial triangulations of Ω. For a given $\mathcal{T}_{h}:=\{K\}$, we call $\mathcal{F}_{h}:=\{F\}$ its set of $(d-1)$-simplices, called facets (faces if $d=3$, edges if $d=2$), and $\mathcal{V}_{h}:=\{S\}$ its set of vertices. In the bounds, we will use \lesssim and \gtrsim for (hidden) constants independent of \mathcal{T}_{h}.

- For all $K \in \mathcal{T}_{h}$, we call h_{K} and ρ_{K} the diameters of K and its inscribed sphere respectively, and we let: $\sigma_{K}=\frac{h_{K}}{\rho_{K}}$. When the $\left(\mathcal{T}_{h}\right)_{h}$ is a shape-regular triangulation family (see e.g. [10, def. 11.2]), there exists a constant $\sigma>1$, called the shape regularity parameter, such that for all h, for all $K \in \mathcal{T}_{h}, \sigma_{K} \leq \sigma$.
- Let $\mathcal{F}_{h}=\mathcal{F}_{h}^{i} \cup \mathcal{F}_{h}^{b}$, where $\mathcal{F}_{h}^{b}:=\left\{F \in \mathcal{F}_{h} \mid F \subset \partial \Omega\right\}, \mathcal{F}_{h}^{i}=\mathcal{F}_{h} \backslash \mathcal{F}_{h}^{b}$.

For all $K \in \mathcal{T}_{h}$, we set $\mathcal{F}_{K}^{i}=\left\{F \in \mathcal{F}_{h}^{i} \mid F \subset \partial K\right\}$.
For all $F \in \mathcal{F}_{h}, M_{F}$ denotes the barycentre of F, and \mathbf{n}_{F} its unit normal (outward oriented if $F \subset \partial \Omega$). For all $K \in \mathcal{T}_{h}$ and $F \subset \partial K$, we denote by $\mathbf{n}_{F, K}$ the normal vector of F outgoing from K. Let \hat{K} be the reference simplex. For all $K \in \mathcal{T}_{h}$, we denote by $T_{K}: \hat{K} \rightarrow K$ the geometric mapping such that $\forall \hat{\mathbf{x}} \in \hat{K}, \mathbf{x}_{\mid K}=T_{K}(\hat{\mathbf{x}})=$ $\mathbb{B}_{K} \hat{\mathbf{x}}+\mathbf{b}_{K}$, where $\mathbb{B}_{K} \in \mathbb{R}^{d \times d}$ and $\mathbf{b}_{K} \in \mathbb{R}^{d}$. Let us set $J_{K}=\operatorname{det}\left(\mathbb{B}_{K}\right)$. Recall that [10, Lemma 11.1]: $\left|J_{K}\right|=|K| /|\hat{K}|,\left\|\mathbb{B}_{K}\right\| \leq h_{K} / \rho_{\hat{K}},\left\|\mathbb{B}_{K}{ }^{-1}\right\| \leq h_{\hat{K}} / \rho_{K}$. For all $v \in L^{2}(\Omega)$, we set: $v_{K}=v_{\mid K}, \quad \underline{v}_{K}=\int_{K} v /|K|, \quad \tilde{v}_{K}=v_{K}-\underline{v}_{K}, \quad \hat{v}_{K}=v \circ T_{K}$. By changing the variable, we get: $\|v\|_{K}^{2}=\left|J_{K}\right|\left\|\hat{v}_{K}\right\|_{\hat{K}}^{2}$. Let $v \in H^{1}(K)$. By changing the variable, we get: $\nabla v_{\mid K}=\left(\mathbb{B}_{K}^{-1}\right)^{T} \nabla_{\hat{\mathbf{x}}} \hat{\hat{v}}$, and $\|\nabla v\|_{K}^{2} \leq\left\|\mathbb{B}_{K}^{-1}\right\|^{2}\left|J_{K}\right|\left\|\nabla_{\hat{\mathbf{x}}} \hat{v}\right\|_{\hat{K}}^{2}$,

Stability of the $\mathbf{P}_{n c}^{1}-\left(P^{0}+P^{1}\right)$ element
$\left\|\nabla_{\hat{\mathbf{x}}} \hat{v}\right\|_{\hat{K}}^{2} \leq\left\|\mathbb{B}_{K}\right\|^{2}\left|J_{K}\right|^{-1}\|\nabla v\|_{K}^{2}$.
We set $\mathcal{P}_{h} H^{1}=\left\{v \in L^{2}(\Omega) ; \quad \forall K \in \mathcal{T}_{h}, v_{\mid K} \in H^{1}(K)\right\}$, endowed with: $(v, w)_{h}:=$ $\sum_{K \in \mathcal{T}_{h}}(\nabla v, \nabla w)_{K},\|v\|_{h}^{2}=\sum_{K \in \mathcal{T}_{h}}\|\nabla v\|_{K}^{2}$. We define the operator ∇_{h} such that: $\forall q \in \mathcal{P}_{h} H^{1}, \nabla_{h} q \in \mathbf{L}^{2}(\Omega)$ is such that $\forall \mathbf{v} \in \mathbf{L}^{2}(\Omega),\left(\nabla_{h} q, \mathbf{v}\right)_{\Omega}=\sum_{K \in \mathcal{T}_{h}}(\nabla q, \mathbf{v})_{K}$. Let $K \in \mathcal{T}_{h}$ and $F \subset \partial K$, we denote by $T_{F, K}$ the geometric mapping such that $\forall \mathbf{x} \in F$, $T_{F, K}\left(T_{K}^{-1}(\mathbf{x})\right)=\mathbf{x}$. We let $\hat{F}_{F, K}=T_{K}^{-1}(F)$. For all $v \in \mathcal{P}_{h} H^{1}$, for all $K \in \mathcal{T}_{h}$ and for all $F \subset \partial K$, we set: $v_{F, K}=\left(v_{\mid K}\right)_{\mid F}, \underline{v}_{F, K}=\int_{F} v_{\mid K} /|F|, \tilde{v}_{F, K}=v_{\mid K}-\underline{v}_{F, K}, \hat{v}_{F, K}=$ $v \circ T_{F, K}$. By changing the variable, we get $\left\|v_{F, K}\right\|_{F}^{2}=\left(|F| /\left|\hat{F}_{F, K}\right|\right)\left\|\hat{v}_{F, K}\right\|_{\hat{F}_{F, K}}^{2}$. According to Equation [1, (3.17)], it holds:

$$
\begin{equation*}
\forall K \in \mathcal{T}_{h}, \forall F \subset \partial K, \quad|F||K|^{-1} \lesssim \rho_{K}^{-1} \tag{3}
\end{equation*}
$$

We set $\mathcal{P}_{h} \mathbf{H}^{1}=\left[\mathcal{P}_{h} H^{1}\right]^{d}$ and for all $\mathbf{v} \in \mathcal{P}_{h} \mathbf{H}^{1}: \underline{\underline{\nabla}}_{h} \mathbf{v}=\left(\left(\nabla_{h} v_{i}\right)^{T}\right)_{i=1}^{d} \in\left[L^{2}(\Omega)\right]^{d \times d}$. Let $F \in \mathcal{F}_{h}^{i}$ such that $F=\partial K_{L} \cap \partial K_{R}$ and $\mathbf{n}_{F}=\mathbf{n}_{F, K_{L}}$. The jump of $v \in \mathcal{P}_{h} H^{1}$ across F is defined by: $[v]_{F}:=v_{\mid K_{L}}-v_{\mid K_{R}}$. For $F \in \mathcal{F}_{h}^{b}$, we set: $[v]_{F}:=v_{\mid F}$.
For a subset D of \mathbb{R}^{d}, for $k \in \mathbb{N}$, we call $P^{k}(D)$ the set of degree k polynomials on $D, \mathbf{P}^{k}(D)=\left(P^{k}(D)\right)^{d}$, and $\mathcal{P}_{\text {disc }}^{k}\left(\mathcal{T}_{h}\right)=\left\{q \in L^{2}(\Omega) ; \quad \forall K \in \mathcal{T}_{h}, q_{\mid K} \in P^{k}(K)\right\}$. For $k>0$ we define $\mathcal{P}^{k}\left(\mathcal{T}_{h}\right)=C^{0}(\bar{\Omega}) \cap \mathcal{P}_{\text {disc }}^{k}\left(\mathcal{T}_{h}\right)$. We call $\pi_{0}: L^{2}(\Omega) \mapsto$ $\mathcal{P}_{\text {disc }}^{0}\left(\mathcal{T}_{h}\right)$ the L^{2}-orthogonal projection onto $\mathcal{P}_{d i s c}^{0}\left(\mathcal{T}_{h}\right)$, such that $\forall q \in L^{2}(\Omega)$, $\pi_{0}(q)=\sum_{K \in \mathcal{T}_{h}} \pi_{0}(q)(K) \mathbb{1}_{K}$ where $\forall K \in \mathcal{T}_{h}, \pi_{0}(q)(K)=\int_{K} q /|K|$.
For $K \in \mathcal{T}_{h}$ and a vertex S of $K, \lambda_{S, K}$ denotes the barycentric coordinate related to S. We can endow $\mathcal{P}^{1}\left(\mathcal{T}_{h}\right)$ with the basis $\left(\phi_{S}\right)_{S \in \mathcal{V}_{h}}$ such that: $\forall K \in \mathcal{T}_{h}, \phi_{S \mid K}=\lambda_{S, K}$ if $S \in K$, zero otherwise, so that $\mathcal{P}^{1}\left(\mathcal{T}_{h}\right)=\operatorname{vect}\left(\left(\phi_{S}\right)_{S \in \mathcal{V}_{h}}\right)$.
Let $k \in \mathbb{N}^{\star}, v \in H^{1}(K) \cap P^{k}(K)$. Using the discrete trace inequality [15, Thm. 5] and Poincaré-Steklov inequality [10, Lemma 12.11], we have:

$$
\begin{equation*}
\left\|{\overline{\left(\tilde{v}_{F, K}\right)}}_{F, K}\right\|_{\hat{F}_{F, K}}^{2} \lesssim\left\|{\overline{\left(\tilde{v}_{F, K}\right)}}_{K}\right\|_{\hat{K}}^{2} \lesssim\left\|\nabla_{\hat{\mathbf{x}}} \widehat{v}_{K}\right\|_{\hat{K}}^{2} . \tag{4}
\end{equation*}
$$

Proposition 2 For all $K \in \mathcal{T}_{h}, \forall v \in H^{1}(K) \cap P^{1}(K),\|\nabla v\|_{K} \lesssim\left(\rho_{K}\right)^{-1}\|\tilde{v}\|_{K}$.
Proof. We follow the proof of [16, Lemma 2]: changing the variable, we have $\|\nabla v\|_{\mathbf{L}^{2}(K)} \lesssim\left\|\mathbb{B}_{K}{ }^{-1}\right\||K|^{1 / 2}\left|\int_{\hat{K}} \nabla_{\hat{\mathbf{x}}} \hat{v}_{K}\right|$. Integrating by parts in the reference element, it holds: $\left|\int_{\hat{K}} \nabla_{\hat{\mathbf{x}}} \hat{v}_{K}\right|=\left|\int_{\partial \hat{K}} \hat{v}_{K} \hat{\mathbf{n}}_{\mid \partial \hat{K}}\right|$. We get the result using Cauchy-Schwarz, [15, Thm. 5] and changing the variable again.

We set $\mathcal{P}_{h} \mathbf{H}(\operatorname{div})=\left\{\mathbf{v} \in \mathbf{L}^{2}(\Omega) ; \quad \forall K \in \mathcal{T}_{h}, \mathbf{v}_{\mid K} \in \mathbf{H}(\operatorname{div} ; K)\right\}$.
We define the operator div_{h} such that: $\forall \mathbf{v} \in \mathcal{P}_{h} \mathbf{H}(\operatorname{div}), \operatorname{div}_{h} \mathbf{v} \in L^{2}(\Omega)$ is such that $\forall q \in L^{2}(\Omega),\left(\operatorname{div}_{h} \mathbf{v}, q\right)_{\Omega}=\sum_{K \in \mathcal{T}_{h}}(\operatorname{div} \mathbf{v}, q)_{K}$.

Let $\mathbf{X}_{0, h}$ be the space of the discrete velocity of the nonconforming CrouzeixRaviart mixed finite element method, defined by:

$$
\begin{align*}
& \mathbf{X}_{h}=\left(X_{h}\right)^{d}, \quad X_{h}=\left\{v_{h} \in \mathcal{P}_{\text {disc }}^{1}\left(\mathcal{T}_{h}\right) ; \quad \forall F \in \mathcal{F}_{h}^{i}, \int_{F}\left[v_{h}\right]=0\right\} ; \\
& \mathbf{X}_{0, h}=\left(X_{0, h}\right)^{d}, X_{0, h}=\left\{v_{h} \in X_{h} ; \quad \forall F \in \mathcal{F}_{h}^{b}, \int_{F} v_{h}=0\right\} \tag{5}
\end{align*}
$$

The condition on the jumps of v_{h} on the inner facets is often called the patch-test condition. Due to this condition, one can prove that [1, Lemma 2]:
Proposition 3 The broken norm $v_{h} \rightarrow\left\|v_{h}\right\|_{h}$ is a norm over $X_{0, h}$.
For all $K \in \mathcal{T}_{h}$, for all $F \subset \partial K, \lambda_{F, K}$ denotes the barycentric coordinate related to the vertex $S_{F, K}$ opposite to facet F in K. We can endow X_{h} with the basis $\left(\psi_{F}\right)_{F \in \mathcal{F}}$ such that for all $K \in \mathcal{T}_{h}, \psi_{F \mid K}=1-d \lambda_{F, K}$ if $F \subset \partial K$ and zero otherwise. We then have $\psi_{F \mid F}=1$, so that $\left[\psi_{F}\right]_{F}=0$ if $F \in \mathcal{F}_{h}^{i}$, and for all $F^{\prime} \neq F, \int_{F^{\prime}} \psi_{F}=0$. We have: $X_{h}=\operatorname{vect}\left(\left(\psi_{F}\right)_{F \in \mathcal{F}_{h}}\right)$ and $X_{0, h}=\operatorname{vect}\left(\left(\psi_{F}\right)_{F \in \mathcal{F}_{h}^{i}}\right)$.
Let $\Pi_{h}: \mathbf{H}^{1}(\Omega) \mapsto \mathbf{X}_{h}$ be the Crouzeix-Raviart interpolation operator, such that: $\forall \mathbf{v} \in \mathbf{H}^{1}(\Omega), \Pi_{h}(\mathbf{v})=\sum_{F \in \mathcal{F}_{h}} \Pi_{F} \mathbf{v} \psi_{F}, \Pi_{F} \mathbf{v}=\underline{\mathbf{v}}_{F}=\int_{F} \mathbf{v} /|F|$.
Proposition 4 The interpolation operator Π_{h} is such that [16, Lemma 2]: $\forall \mathbf{v}_{h} \in$ $\mathbf{H}_{0}^{1}(\Omega),\left\|\Pi_{h}\left(\mathbf{v}_{h}\right)\right\|_{h} \leq\left\|\mathbf{v}_{h}\right\|_{\mathbf{H}_{0}^{1}(\Omega)}$.

However, due to the consistency error on the discrete velocity, it is well-known $[17,18]$ that choosing the space of the discrete pressures equal to $\mathcal{P}_{d i s c}^{0}\left(\mathcal{T}_{h}\right) \cap$ $L_{z m v}^{2}(\Omega)$ yields inaccurate results when solving Navier-Stokes equations. Starting from [19], a new element is proposed in [8]. The space of the discrete pressures is then: $Q_{h}=Q_{0, h}+Q_{1, h}$, where $Q_{0, h}:=\mathcal{P}_{d i s c}^{0}\left(\mathcal{T}_{h}\right) \cap L_{z m v}^{2}$ and for $k>0$, $Q_{k, h}:=\mathcal{P}^{k}\left(\mathcal{T}_{h}\right) \cap L_{z m v}^{2}(\Omega)$. One can build an L^{2}-orthogonal sum letting $\tilde{Q}_{1, h}=$ $\left\{q_{h} \in Q_{h} \mid \forall K \in \mathcal{T}_{h}, \int_{K} q_{h}=0\right\}$.
Proposition 5 We have: $Q_{h}=Q_{0, h} \stackrel{\perp}{\oplus} \tilde{Q}_{1, h}$. Let $q_{h} \in Q_{h}$ and $\tilde{q}_{1, h}:=q_{h}-\pi_{0}\left(q_{h}\right)$, it holds: $\left\|q_{h}\right\|_{\Omega}^{2}=\left\|\pi_{0}\left(q_{h}\right)\right\|_{\Omega}^{2}+\left\|\tilde{q}_{1, h}\right\|_{\Omega}^{2}$.

To prove the discrete inf-sup condition of $\mathbf{X}_{0, h} \times Q_{h}$, we need some Lemmas.
Lemma 1 Let $k \in \mathbb{N}^{\star}$ and $\left(\mathbf{v}_{h}, q_{k, h}\right) \in \mathbf{X}_{0, h} \times Q_{k, h}$. We then have:

$$
\begin{equation*}
\left|\sum_{K \in \mathcal{T}_{h}} \sum_{F \subset \partial K}\left(\mathbf{v}_{h} \cdot \mathbf{n}_{F, K}, q_{k, h}\right)_{F}\right| \lesssim \sigma\left\|\mathbf{v}_{h}\right\|_{h}\left\|\tilde{q}_{k, h}\right\|_{\Omega} . \tag{6}
\end{equation*}
$$

Proof. We start with the proof of [19, Lemma 3.1]. Using the patch-test, one obtains:

$$
\sum_{K \in \mathcal{T}_{h}} \sum_{F \subset \partial K}\left(\mathbf{v}_{h} \cdot \mathbf{n}_{F, K}, q_{k, h \mid K}\right)_{F}=\sum_{K \in \mathcal{T}_{h}} \sum_{F \subset \partial K}\left(\tilde{\mathbf{v}}_{F, K} \cdot \mathbf{n}_{F, K}, \tilde{q}_{k, h \mid K}\right)_{F} .
$$

We can compute the following estimates, using (4) twice and (3):
$\left|\left(\tilde{\mathbf{v}}_{F, K} \cdot \mathbf{n}_{F, K}, \tilde{q}_{k, h \mid K}\right)_{F}\right| \lesssim|F|\left\|\hat{\tilde{\mathbf{v}}}_{F, K}\right\|_{\hat{F}_{F, K}}\left\|\overline{\left(\tilde{q}_{k, h}\right)}{ }_{K}\right\|_{\hat{F}_{F, K}} \lesssim \sigma_{K} \| \underline{\underline{\nabla} \mathbf{v}_{h}\left\|_{K}\right\| \tilde{q}_{k, h} \|_{K} .}$
Summing and using the discrete Cauchy-Schwarz inequality, we obtain (6).
Let us set $\mathbf{X}_{N, h}:=\left\{\mathbf{v}_{h} \in \mathbf{X}_{0, h} \mid \forall F \in \mathcal{F}_{h}^{i}, \quad \mathbf{v}_{h} \times \mathbf{n}_{F}=0\right\}$. We can build an explicit right inverse of div_{h} from Q_{h} to $\mathbf{X}_{N, h}$.
Lemma 2 For all $q_{h} \in Q_{h}$, there exists $\mathbf{v}_{N, h} \in \mathbf{X}_{N, h}$ such that:

$$
\begin{array}{r}
-\left(\operatorname{div}_{h} \mathbf{v}_{N, h}, \pi_{0}\left(q_{h}\right)\right)_{\Omega}=v^{-1}\left\|\pi_{0}\left(q_{h}\right)\right\|_{\Omega}^{2} \\
\left\|\mathbf{v}_{N, h}\right\|_{h} \leq C_{\operatorname{div}} v^{-1}\left\|\pi_{0}\left(q_{h}\right)\right\|_{\Omega} . \tag{8}
\end{array}
$$

Proof. Let $q_{h} \in Q_{h}$. From Proposition $1, \exists \mathbf{v}_{N} \in \mathbf{H}_{0}^{1}(\Omega) \mid \operatorname{div} \mathbf{v}_{N}=-v^{-1} \pi_{0}\left(q_{h}\right)$ and $\left\|\mathbf{v}_{N}\right\|_{\mathbf{H}_{0}^{1}(\Omega)} \leq C_{\text {div }} v^{-1}\left\|\pi_{0}\left(q_{h}\right)\right\|_{\Omega}$. Let $\mathbf{v}_{N, h} \in \mathbf{X}_{N, h} \mid \forall F \in \mathcal{F}_{h}^{i}, \mathbf{v}_{N, h}\left(M_{F}\right)=$ $\left(\Pi_{h}\left(\mathbf{v}_{N}\right)\left(M_{F}\right) \cdot \mathbf{n}_{F}\right) \mathbf{n}_{F}$. Integrating by part twice, we get: $\forall K \in \mathcal{T}_{h}, \int_{K} \operatorname{div} \mathbf{v}_{N, h}=$ $\int_{K} \operatorname{div} \mathbf{v}_{N}$, hence (7). Using Proposition 4, we get (8).

We can also build an explicit right inverse of the discrete divergence operator from $Q_{1, h}$ to $\mathbf{X}_{T, h}:=\left\{\mathbf{v}_{h} \in \mathbf{X}_{0, h} \mid \forall F \in \mathcal{F}_{h}^{i}, \quad \mathbf{v}_{h} \cdot \mathbf{n}_{F}=0\right\}$, if [19, Hyp. 4.1] holds:
Hypothesis 1. We suppose that \mathcal{T}_{h} is such that $\partial \Omega$ contains at most one edge for $d=2$ and at most two facets for $d=3$, of the same element $K \in \mathcal{T}_{h}$.

Lemma 3 Assuming Hypothesis $1, \forall q_{1, h} \in Q_{1, h}, \exists \mathbf{v}_{T, h} \in \mathbf{X}_{T, h}$ such that:

$$
\begin{align*}
\left(\nabla q_{1, h}, \mathbf{v}_{T, h}\right)_{\Omega} & \gtrsim v^{-1} \sigma^{-2(d-2)}\left\|\tilde{q}_{1, h}\right\|_{\Omega}^{2}, \tag{9}\\
\left(\operatorname{div} \mathbf{v}_{T, h}, q_{0, h}\right)_{K} & =0 \quad \forall q_{0, h} \in Q_{0, h}, \tag{10}\\
\left\|\mathbf{v}_{T, h}\right\|_{h} & \lesssim v^{-1} \sigma^{2}\left\|\tilde{q}_{1, h}\right\|_{\Omega} . \tag{11}
\end{align*}
$$

Proof. Let us consider $q_{1, h} \in Q_{1, h}$. For all $K \in \mathcal{T}_{h}$, we let $q_{K}:=q_{1, h \mid K}$ and $\hat{q}_{K}=q_{K} \circ T_{K}$. Since $q_{1, h} \in H^{1}(\Omega)$ we have (see e.g. [20, Prop. 2.2.10]): $\forall F \in$ $\mathcal{F}_{h}^{i} \mid F=K \cap K^{\prime}, \nabla q_{K} \times \mathbf{n}_{F}=\nabla q_{K^{\prime}} \times \mathbf{n}_{F}$. We construct $\mathbf{v}_{T, h} \in \mathbf{X}_{T, h} \mid \forall F \in \mathcal{F}_{h}^{i}$, $\mathbf{v}_{T, h}\left(M_{F}\right)=v^{-1} h_{F}^{2} \mathbf{n}_{F} \times\left(\nabla q_{1, h} \times \mathbf{n}_{F}\right)$, where h_{F} is the diameter of F. We have $\forall K \in \mathcal{T}_{h}$:

$$
\begin{equation*}
\left(\nabla q_{1, h}, \mathbf{v}_{T, h}\right)_{K}=v^{-1} \frac{|K|}{d+1} \sum_{F \in \mathcal{F}_{K}^{i}} h_{F}^{2}\left|\nabla q_{K} \times \mathbf{n}_{F}\right|^{2} \tag{12}
\end{equation*}
$$

Let $\mathbf{n}_{\hat{F}_{F, K}}$ be the unit normal vector of the facet $\hat{F}_{F, K}$ outgoing from \hat{K}. We have: $\mathbf{n}_{F, K}=|K|\left(\mathbb{B}_{K}^{-1}\right)^{T}\left|\hat{F}_{F, K}\right||F|^{-1} \mathbf{n}_{\hat{F}_{F, K}}$.
Consider $d=2$. Changing the variable, assuming Hypothesis 1 , we get:

$$
\begin{equation*}
\sum_{F \in \mathcal{F}_{K}^{i}} h_{F}^{2}\left|\nabla q_{K} \times \mathbf{n}_{F}\right|^{2}=\sum_{F \in \mathcal{F}_{K}^{i}}\left|\hat{F}_{F, K}\right|^{2}\left|\nabla_{\hat{\mathbf{x}}} \hat{q}_{K} \times \mathbf{n}_{\hat{F}_{F, K}}\right|^{2} \gtrsim\left|\nabla_{\hat{\mathbf{x}}} \hat{q}_{K}\right|^{2} \tag{13}
\end{equation*}
$$

Consider $d=3$. It holds that $\left|\nabla q_{K} \times \mathbf{n}_{F}\right|=\left|\hat{F}_{F, K}\right||F|^{-1}\left|\mathbb{B}_{K} \nabla_{\hat{\mathbf{x}}} \hat{q}_{K} \times \mathbf{n}_{\hat{F}_{F, K}}\right|$ changing the variable. Hence: $\left|\nabla q_{K} \times \mathbf{n}_{F}\right| \gtrsim|F|^{-1}\left\|\mathbb{B}_{K}^{-1}\right\|^{-1}\left|\nabla_{\hat{\mathbf{x}}} \hat{q}_{K} \times \mathbf{n}_{\hat{F}_{F, K}}\right|$. Notice that $h_{F}|F|^{-1}\left\|\mathbb{B}_{K}^{-1}\right\|^{-1} \gtrsim \sigma_{K}^{-1}$. Assuming Hypothesis 1 , we then have:

$$
\begin{equation*}
\sum_{F \in \mathcal{F}_{K}^{i}} h_{F}^{2}\left|\nabla q_{K} \times \mathbf{n}_{F}\right|^{2} \gtrsim \sigma_{K}^{-2}\left|\nabla_{\hat{\mathbf{x}}} \hat{q}_{K}\right|^{2} \tag{14}
\end{equation*}
$$

Using Poincaré-Steklov inequality [10, Lemma 12.11] in \hat{K}, we have: $\left|\nabla_{\hat{\mathbf{x}}} \hat{q}_{K}\right|^{2} \gtrsim$ $\left\|\hat{q}_{K}-\underline{\hat{q}}_{K}\right\|_{\hat{K}^{2}}^{2}$. Using (13) and (14) in (12), it holds:

$$
\begin{equation*}
\left(\nabla q_{1, h}, \mathbf{v}_{T, h}\right)_{K} \gtrsim v^{-1} \sigma_{K}^{-2(d-2)}|K|\left|\nabla_{\hat{\mathbf{x}}} \hat{q}_{K}\right|^{2} \gtrsim v^{-1} \sigma_{K}^{-2(d-2)}\left\|\tilde{q}_{K}\right\|_{K}^{2} \tag{15}
\end{equation*}
$$

We obtain (9) by summation. Remark that $\nabla \psi_{F \mid K}=|K|^{-1}|F| \mathbf{n}_{F, K}$. Let us prove (10). Since $\nabla \psi_{F \mid K} \perp \mathbf{v}_{T, h}\left(M_{F}\right)$, $\left(\operatorname{div} \mathbf{v}_{T, h}, q_{0, h}\right)_{K}=|K| q_{0, h}(K) \sum_{F \in \mathcal{F}_{K}^{i}} \nabla \psi_{F \mid K}$. $\mathbf{v}_{T, h}\left(M_{F}\right)=0$. Let us prove (11). For all $K \in \mathcal{T}_{h}, \underline{\underline{\nabla}} \mathbf{v}_{T, h \mid K}=\sum_{F \in \mathcal{F}_{K}^{i}} \mathbf{v}_{T, h}^{K}\left(M_{F}\right) \otimes$
$\nabla \psi_{F \mid K}$. Hence: $\left\|\underline{\underline{\nabla}} \mathbf{v}_{T, h}\right\|_{K}^{2} \lesssim v^{-2} \sum_{F \in \mathcal{F}_{K}^{i}}|F|^{2}|K|^{-1} h_{F}^{4}\left|\nabla q_{K} \times \mathbf{n}_{F}\right|^{2}$. Using (3), and assuming Hypothesis 1, we get: $\left\|\underline{\underline{\nabla}} \mathbf{v}_{T, h}\right\|_{K}^{2} \lesssim v^{-2} \sigma_{K}^{2} h_{K}^{2}|K| \sum_{F \in \mathcal{F}_{K}^{i}}\left|\nabla q_{K} \times \mathbf{n}_{F}\right|^{2} \lesssim$ $v^{-2} \sigma_{K}^{2} h_{K}^{2}\left\|\nabla q_{K}\right\|_{K}^{2}$. From Proposition 2: $\left\|\underline{\underline{\nabla}} \mathbf{v}_{T, h}\right\|_{K} \lesssim v^{-1} \sigma_{K}^{2}\left\|\tilde{q}_{K}\right\|_{K}$.

Let $b_{h}: \mathbf{X}_{h} \times Q_{h} \mapsto \mathbb{R} \mid \forall\left(\mathbf{v}_{h}, q_{h}\right) \in \mathbf{X}_{h} \times Q_{h}, b_{h}\left(\mathbf{v}_{h}, q_{h}\right)=-\left(\operatorname{div}_{h} \mathbf{v}_{h}, q_{0, h}\right)_{\Omega}+$ $\left(\mathbf{v}_{h}, \nabla q_{1, h}\right)_{\Omega}$ with $q_{h}=q_{0, h}+q_{1, h}$ such that $\left(q_{0, h}, q_{1, h}\right) \in Q_{0, h} \times Q_{1, h}$.

Theorem 1 The following continuity property holds:

$$
\begin{equation*}
\forall\left(\mathbf{v}_{h}, q_{h}\right) \in \mathbf{X}_{0, h} \times Q_{h}, \quad\left|b_{h}\left(\mathbf{v}_{h}, q_{h}\right)\right| \lesssim \sigma\left\|\mathbf{v}_{h}\right\|_{h}\left\|q_{h}\right\|_{\Omega} \tag{16}
\end{equation*}
$$

Assuming Hypothesis 1, the following inf-sup condition holds:

$$
\begin{equation*}
\forall q_{h} \in Q_{h}, \exists \mathbf{v}_{h} \in \mathbf{X}_{0, h}, \quad b_{h}\left(\mathbf{v}_{h}, q_{h}\right) \gtrsim \frac{1}{\sqrt{2}} C_{\mathrm{div}}^{-2} \sigma^{-2 d}\left\|\mathbf{v}_{h}\right\|_{h}\left\|q_{h}\right\|_{\Omega} \tag{17}
\end{equation*}
$$

Proof. Let us prove (16). Let $\left(\mathbf{v}_{h}, q_{h}\right) \in \mathbf{X}_{0, h} \times Q_{h}$. Integrating by parts, we have:

$$
\begin{equation*}
b_{h}\left(\mathbf{v}_{h}, q_{h}\right)=-\left(\operatorname{div}_{h} \mathbf{v}_{h}, \pi_{0}\left(q_{h}\right)\right)_{\Omega}+\sum_{K \in \mathcal{T}_{h}} \sum_{F \subset \partial K}\left(\mathbf{v}_{h} \cdot \mathbf{n}_{F, K}, q_{1, h}\right)_{F} \tag{18}
\end{equation*}
$$

Using Cauchy-Schwarz, we have: $\left|\left(\operatorname{div}_{h} \mathbf{v}_{h}, \pi_{0}\left(q_{h}\right)\right)_{\Omega}\right| \leq \sqrt{d}\left\|\mathbf{v}_{h}\right\|_{h}\left\|\pi_{0}\left(q_{h}\right)\right\|_{\Omega}$. Using (6) in (18), we obtain (16) from Proposition 5. Let us prove (17), starting from the proof of [19, Lemma 4.2]. Let $q_{h} \in Q_{h} \backslash\{0\}$, where $q_{h}=q_{0, h}+q_{1, h}$ is such that $\left(q_{0, h}, q_{1, h}\right) \in Q_{0, h} \times Q_{1, h}$. Let $\mathbf{v}_{N, h}:=\mathbf{v}_{N, h}\left(q_{h}\right)$ be like in Lemma 2. Using (18) with $\mathbf{v}_{h}=\mathbf{v}_{N, h}$, (6) and (7), we have:

$$
\begin{equation*}
b_{h}\left(\mathbf{v}_{N, h}, q_{h}\right) \gtrsim v^{-1}\left\|\pi_{0}\left(q_{h}\right)\right\|_{\Omega}^{2}-\sigma\left\|\mathbf{v}_{N, h}\right\|_{h}\left\|\tilde{q}_{1, h}\right\|_{\Omega} \tag{19}
\end{equation*}
$$

Using (8) and Young inequality, we have for all $\varepsilon>0$:

$$
\begin{equation*}
-\left\|\mathbf{v}_{N, h}\right\|_{h}\left\|\tilde{q}_{1, h}\right\|_{\Omega} \geq-\frac{1}{2} C_{\mathrm{div}} v^{-1}\left(\varepsilon\left\|\pi_{0}\left(q_{h}\right)\right\|_{\Omega}^{2}+\varepsilon^{-1}\left\|\tilde{q}_{1, h}\right\|_{\Omega}^{2}\right) \tag{20}
\end{equation*}
$$

We now insert the bound (20) in (19) to get:

$$
\begin{equation*}
b_{h}\left(\mathbf{v}_{N, h}, q_{h}\right) \gtrsim v^{-1}\left(\left(1-\frac{\varepsilon}{2} C_{\mathrm{div}} \sigma\right)\left\|\pi_{0}\left(q_{h}\right)\right\|_{\Omega}^{2}-\frac{C_{\mathrm{div}}}{2 \varepsilon} \sigma\left\|\tilde{q}_{1, h}\right\|_{\Omega}^{2}\right) \tag{21}
\end{equation*}
$$

Let $\mathbf{v}_{T, h}:=\mathbf{v}_{T, h}\left(q_{1, h}\right)$ be like in Lemma 3. Using (9) and (10), we get:

$$
\begin{equation*}
b_{h}\left(\mathbf{v}_{T, h}, q_{1, h}\right)=\left(\nabla q_{1, h}, \mathbf{v}_{T, h}\right)_{\Omega} \gtrsim v^{-1} \sigma^{-2(d-2)}\left\|\tilde{q}_{1, h}\right\|_{\Omega}^{2} \tag{22}
\end{equation*}
$$

Last, we consider $\mathbf{v}_{h}^{\star}=\mu \mathbf{v}_{N, h}+\mathbf{v}_{T, h}$, where $\mu>0$. Using (21) and (22), we have:

$$
\begin{aligned}
& b_{h}\left(\mathbf{v}_{h}^{\star}, q_{h}\right)=\mu b_{h}\left(\mathbf{v}_{N, h}, q_{h}\right)+b_{h}\left(\mathbf{v}_{T, h}, q_{h}\right), \\
& \quad \gtrsim v^{-1}\left(\mu\left(1-\frac{\varepsilon}{2} C_{\mathrm{div}} \sigma\right)\left\|\pi_{0}\left(q_{h}\right)\right\|_{\Omega}^{2}+\left(\sigma^{-2(d-2)}-\frac{\mu C_{\mathrm{div}}}{2 \varepsilon} \sigma\right)\left\|\tilde{q}_{1, h}\right\|_{\Omega}^{2}\right) .
\end{aligned}
$$

Let us choose $\varepsilon=\left(C_{\operatorname{div}} \sigma\right)^{-1}<1$ and $\mu=\sigma^{-2(d-2)} \varepsilon^{2}$. We obtain that:

Stability of the $\mathbf{P}_{n c}^{1}-\left(P^{0}+P^{1}\right)$ element

$$
\begin{equation*}
b_{h}\left(\mathbf{v}_{h}^{\star}, q_{h}\right) \gtrsim C_{\min } v^{-1}\left\|q_{h}\right\|_{\Omega}^{2} \text { with } C_{\min }=\varepsilon^{2} \sigma^{-2(d-2)}=C_{\mathrm{div}}^{-2} \sigma^{-2(d-1)} \tag{23}
\end{equation*}
$$

We will now bound $\left\|\mathbf{v}_{h}^{\star}\right\|_{h}$ by $\left\|q_{h}\right\|_{\Omega}$. We have: $\left\|\mathbf{v}_{h}^{\star}\right\|_{h}^{2} \leq 2\left(\mu^{2}\left\|\mathbf{v}_{N, h}\right\|_{h}^{2}+\left\|\mathbf{v}_{T, h}\right\|_{h}^{2}\right)$. Using (8) and (11) $\left\|\mathbf{v}_{h}^{\star}\right\|_{h}^{2} \leq 2 v^{-2}\left(\mu^{2} C_{\text {div }}^{2}\left\|\pi_{0}\left(q_{h}\right)\right\|_{\Omega}^{2}+\sigma^{4}\left\|\tilde{q}_{1, h}\right\|_{\Omega}^{2}\right)$, hence:

$$
\begin{equation*}
\left\|\mathbf{v}_{h}^{\star}\right\|_{h}^{2} \leq C_{\max }^{2} v^{-2}\left\|q_{h}\right\|_{\Omega}^{2} \text { with } C_{\max }=\sqrt{2} \sigma^{2} \tag{24}
\end{equation*}
$$

Using (24) in (23), we get (17) with $C_{\min } C_{\max }^{-1}=\frac{1}{\sqrt{2}} C_{\text {div }}^{-2} \sigma^{-2 d}$.
Let $\mathbf{V}_{h}:=\left\{\mathbf{v}_{h} \in \mathbf{X}_{0, h} \mid \forall q_{h} \in Q_{h}, b_{h}\left(\mathbf{v}_{h}, q_{h}\right)=0\right\}$. Let $\left(\mathbf{v}_{h}, q_{1, h}\right) \in \mathbf{V}_{h} \times$ $Q_{1, h}$. Integrating by parts, we have $0=b_{h}\left(\mathbf{v}_{h}, q_{1, h}\right)=-\left(\operatorname{div}_{h} \mathbf{v}, \pi_{0}\left(q_{1, h}\right)\right)_{\Omega}+$ $\sum_{F \in \mathcal{F}_{h}} \int_{F} q_{1, h}\left[\mathbf{v}_{h}\right] \cdot \mathbf{n}_{F}=0+\sum_{F \in \mathcal{F}_{h}} \int_{F} q_{1, h}\left[\mathbf{v}_{h}\right] \cdot \mathbf{n}_{F}$. Hence:
Lemma 4 For all $\left(\mathbf{v}_{h}, q_{1, h}\right) \in \mathbf{V}_{h} \times Q_{1, h}$, it holds: $\sum_{F \in \mathcal{F}_{h}} \int_{F} q_{1, h}\left[\mathbf{v}_{h}\right] \cdot \mathbf{n}_{F}=0$.
Let $\ell_{\mathbf{f}} \in \mathcal{L}\left(\mathbf{X}_{h}, \mathbb{R}\right)$ be such that $\forall \mathbf{v}_{h} \in \mathbf{X}_{h}, \ell_{\mathbf{f}}\left(\mathbf{v}_{h}\right)=\left(\mathbf{f}, \mathbf{v}_{h}\right)_{\Omega}$ if $\mathbf{f} \in \mathbf{L}^{2}(\Omega)$, $\ell_{\mathbf{f}}\left(\mathbf{v}_{h}\right)=\left\langle\mathbf{f}, \mathcal{I}_{h}\left(\mathbf{v}_{h}\right)\right\rangle_{\mathbf{H}_{0}^{1}(\Omega)}$ if $\mathbf{f} \notin \mathbf{L}^{2}(\Omega)$, where $\mathcal{I}_{h}: \mathbf{X}_{0, h} \rightarrow \mathbf{Y}_{0, h}$ is for instance an averaging operator [10, §22.4.1], with $\mathbf{Y}_{0, h}=\left\{\mathbf{v}_{h} \in \mathbf{H}_{0}^{1}(\Omega) \mid \forall K \in \mathcal{T}_{h}, \mathbf{v}_{h \mid K} \in\right.$ $\left.\mathbf{P}^{k}(K)\right\}$. The discretization of Problem (1) with the $\mathbf{P}_{n c}^{1}-\left(P^{0}+P^{1}\right)$ element reads: Find $\left(\mathbf{u}_{h}, p_{h}\right) \in \mathbf{X}_{0, h} \times Q_{h}$ such that $\forall\left(\mathbf{u}_{h}, p_{h}\right) \in \mathbf{X}_{0, h} \times Q_{h}$

$$
\begin{equation*}
v\left(\mathbf{u}_{h}, \mathbf{v}_{h}\right)_{h}+b_{h}\left(\mathbf{v}_{h}, p_{h}\right)+b_{h}\left(\mathbf{u}_{h}, q_{h}\right)=\ell_{\mathbf{f}}\left(\mathbf{v}_{h}\right) . \tag{25}
\end{equation*}
$$

Due to Proposition 3 and Theorem 1, Problem (25) is well posed. We can derive error estimates similar to those given by [1, Theorems 3, 4, 6].

3 Convergence estimates

3.1 Optimal estimates in $2 D$

When $\Omega \subset \mathbb{R}^{2}$, we have the two Lemmas below.
Lemma 5 For all $\left(\mathbf{v}_{h}, q_{h}\right) \in \mathbf{V}_{h} \times Q_{2, h},\left(\nabla q_{h}, \mathbf{v}_{h}\right)_{\Omega}=0$.
Proof. Let $\left(\mathbf{v}_{h}, q_{h}\right) \in \mathbf{V}_{h} \times Q_{2, h}$. Integrating by parts and using Lemma 4, we get that $\forall q_{1, h} \in Q_{1, h}:\left(\nabla q_{h}, \mathbf{v}_{h}\right)_{\Omega}=-\sum_{F \in \mathcal{F}_{h}} \int_{F} q_{h}\left[\mathbf{v}_{h}\right] \cdot \mathbf{n}_{F}=-\sum_{F \in \mathcal{F}_{h}} \int_{F}\left(q_{h}-\right.$ $\left.q_{1, h}\right)\left[\mathbf{v}_{h}\right] \cdot \mathbf{n}_{F}=\sum_{F \in \mathcal{F}_{h}} \int_{F}\left(q_{h}-q_{1, h}\right)\left[\mathbf{v}_{h}-\mathbf{v}_{h}\left(M_{F}\right)\right] \cdot \mathbf{n}_{F}$. Hence, we obtain: $\left(\nabla q_{h}, \mathbf{v}_{h}\right)_{\Omega}=-\sum_{K \in \mathcal{T}_{h}} \sum_{F \subset \partial K} \int_{F}\left(q_{h}-q_{1, h}\right)\left(\mathbf{v}_{h}-\mathbf{v}_{h}\left(M_{F}\right)\right) \cdot \mathbf{n}_{F, K}$. Choose $q_{1, h}$ such that $\forall S \in \mathcal{V}_{h}, q_{1, h}(S)=q_{2, h}(S)$. Then, $\forall F \in \mathcal{F}_{h}$, the degree 3 polynomial $\left(q_{h}-q_{1, h}\right)\left(\mathbf{v}_{h}-\mathbf{v}_{h}\left(M_{F}\right)\right)$ vanishes at the quadrature points of Simpson's rule. Since it is exact for degree 3 polynomials, $\forall F \in \mathcal{F}_{h}, \int_{F}\left(q_{h}-q_{1, h}\right)\left(\mathbf{v}_{h}-\mathbf{v}_{h}\left(M_{F}\right)\right) \cdot \mathbf{n}_{F, K}=0$ and $\left(\nabla q_{h}, \mathbf{v}_{h}\right)_{\Omega}=0$.

Lemma 6 Let $\phi \in H^{3}(\Omega) \cap L_{z m v}^{2}(\Omega)$ such that $|\phi|_{H^{3}(\Omega)} \neq 0$.
Then, $\forall \mathbf{v}_{h} \in \mathbf{V}_{h},\left(\nabla \phi, \mathbf{v}_{h}\right)_{\Omega} \lesssim \sigma h^{2}|\phi|_{H^{3}(\Omega)}\left\|\mathbf{v}_{h}\right\|_{\Omega}$.

Proof. Let $\mathbf{v}_{h} \in \mathbf{V}_{h}$. Using Lemma 5 and Cauchy-Schwarz, it holds: $\left|\left(\nabla \phi, \mathbf{v}_{h}\right)_{\Omega}\right|=$ $\left|\left(\nabla\left(\phi-q_{h}\right), \mathbf{v}_{h}\right)_{\Omega}\right|$ for all $q_{h} \in Q_{2, h}$. We then use Bramble-Hilbert Lemma [10, Lemma 11.9] to conclude.

Theorem 2 Suppose that Ω is convex. Let $\phi \in H^{3}(\Omega) \cap L_{z m v}^{2}(\Omega)$ such that $|\phi|_{H^{3}(\Omega)} \neq 0$. Let $\left(\mathbf{u}_{h}, p_{h}\right)$ be the solution of Problem (25) with $\mathbf{f}=\nabla \phi$. The solution of Problem (1) is then $(\mathbf{u}, p)=(0, \phi)$. It holds:

$$
v\left\|\mathbf{u}_{h}\right\|_{h} \lesssim \sigma^{2} h^{3}|\phi|_{H^{3}(\Omega)} ; \quad v\left\|\mathbf{u}_{h}\right\|_{\Omega} \lesssim \sigma^{3} h^{4}|\phi|_{H^{3}(\Omega)} .
$$

Proof. Setting $\mathbf{v}_{h}=\mathbf{u}_{h}$ as test-function in Problem (25) and using Lemma 6, it holds: $v\left\|\mathbf{u}_{h}\right\|_{h}^{2}=\left(\nabla \phi, \mathbf{u}_{h}\right)_{\Omega} \lesssim \sigma h^{2}|\phi|_{H^{3}(\Omega)}\left\|\mathbf{u}_{h}\right\|_{\Omega}$. From [1, Theorem 4], have: $\left\|\mathbf{u}_{h}\right\|_{\Omega} \lesssim \sigma h\left\|\mathbf{u}_{h}\right\|_{h}$. We deduce that $v\left\|\mathbf{u}_{h}\right\|_{h} \lesssim \sigma^{2} h^{3}|\phi|_{H^{3}(\Omega)}$. Using this estimate, we get that $v\left\|\mathbf{u}_{h}\right\|_{\Omega} \lesssim \sigma^{3} h^{4}|\phi|_{H^{3}(\Omega)}$.

3.2 Extension to 3D

When $\Omega \subset \mathbb{R}^{3}$, let \mathcal{E}_{h} be the set of edges of \mathcal{T}_{h}. Let $E:=S_{i} S_{j} \in \mathcal{E}_{h}$. We set $\phi_{E}:=4 \lambda_{i} \lambda_{j}$ where λ_{i} (resp. λ_{j}) is the barycentric coordinate related to vertex S_{i} (resp. $\left.S_{j}\right)$. Let $\tilde{P}^{2}\left(\mathcal{T}_{h}\right)=\operatorname{vect}\left(\left(\tilde{\phi}_{E}\right)_{E \in \mathcal{E}_{h}}\right)$, where for every edge $E, \tilde{\phi}_{E}$ is the canonical extension of ϕ_{E} to all simplices intersecting with $\operatorname{int}(E)$. In order to obtain optimal results in $3 D$ similar to those obtained in $2 D$, the discrete pressure space can be $Q_{h}=Q_{0, h}+Q_{1, h}+\tilde{Q}_{2, h}$, where $\tilde{Q}_{2, h}$ is a subspace of $\tilde{P}^{2}\left(\mathcal{T}_{h}\right) \cap L_{z m v}^{2}(\Omega)$ [9]. One can then prove Lemma 5 in 3D using a 7-point quadrature rule on a triangle, exact for polynomials of degree 3 . The quadrature points are the barycentre of the triangle, its vertices and the midpoints of its edges. Lemma 6 follows. Finally, in [9, Theorem 4.4.6, page 92], it is claimed that one obtains a convergence result identical to the one of Theorem 2, now in 3D.

4 Numerical results for the stationary Navier-Stokes model

Let us consider stationary Navier-Stokes equations set in $\Omega=(0,1)^{d}$:

$$
\begin{equation*}
\text { Find }(\mathbf{u}, p) \text { such that }-v \Delta \mathbf{u}+\mathbf{u} \cdot \nabla \mathbf{u}+\nabla p=\mathbf{f} \text { and } \operatorname{div} \mathbf{u}=0 \text { in } \Omega \tag{26}
\end{equation*}
$$

with Dirichlet boundary conditions on the velocity. Computations are done with the TrioCFD code $[6,7]$ with the $\mathbf{P}_{n c}^{1}-\left(P^{0}+P^{1}\right)$ finite element. The convection term is discretized using the MUSCL scheme [6]. Let us set: $\|(\mathbf{u}, p)\|_{v}^{2}:=\|\nabla \mathbf{u}\|_{\Omega}^{2}+v^{-2}\|p\|_{\Omega}^{2}$. The discrete errors values are $\varepsilon_{0}^{v}\left(\mathbf{u}_{h}\right):=\left\|\mathbf{u}-\mathbf{u}_{h}\right\|_{\Omega} /\|(\mathbf{u}, p)\|_{v}$ for the velocity and $\varepsilon_{0}^{v}\left(p_{h}\right):=v^{-1}\left\|p-p_{h}\right\|_{\Omega} /\|(\mathbf{u}, p)\|_{v}$ for the pressure.
We first consider the 2 D case and the prescribed solution $\mathbf{u}=(y,-x)^{T}, p=\left(x^{2}+\right.$ $\left.y^{2}\right) / 2-1 / 3$ so that $\mathbf{f}=0$. Figure 1 shows $\varepsilon_{0}^{\nu}\left(\mathbf{u}_{h}\right)$ (left) and $\varepsilon_{0}^{\nu}\left(p_{h}\right)$ (right) against

Stability of the $\mathbf{P}_{n c}^{1}-\left(P^{0}+P^{1}\right)$ element
the number of degrees of freedom N, for $v=10^{-1}, v=10^{-2}$ and $v=10^{-3}$. Table

Fig. $12 D$ case. Plots of $\varepsilon_{0}^{\nu}\left(\mathbf{u}_{h}\right)$ and $\varepsilon_{0}^{\nu}\left(p_{h}\right)$ for $v=10^{-1}, v=10^{-2}$ or $v=10^{-3}$.

1 shows the convergence rates for the velocity $\tau_{\mathbf{u}}$ (left) and for the pressure τ_{p} (right), where $h \approx N^{-1 / 2}$. We then consider the 3D case and the prescribed solution

Table $12 D$ case, convergence rates.

$$
\left.\begin{array}{ll|llll}
v & 10^{-1} & 10^{-2} & 10^{-3} \\
\hline \tau_{\mathbf{u}} & 3.9 & 3.3 & 2.3
\end{array} \quad \begin{array}{ll}
v & 10^{-1} \\
\tau_{p} & 3.4
\end{array} \right\rvert\, \begin{array}{ll}
-2 & 10^{-3} \\
\hline
\end{array}
$$

$\mathbf{u}=(y-z, z-x, x-y)^{T}, p=\frac{1}{2}\left(x^{2}+y^{2}+z^{2}\right)-x y-x z-y z-1 / 4$ so that $\mathbf{f}=0$. Figure 2 shows $\varepsilon_{0}^{\nu}\left(\mathbf{u}_{h}\right)$ (left) and $\varepsilon_{0}^{\nu}\left(p_{h}\right)$ (right) against the number of degrees of freedom N, for $v=10^{-1}, v=10^{-2}$ and $v=10^{-3}$. Table 2 shows the convergence

Fig. $23 D$ case. Plots of $\varepsilon_{0}^{v}\left(\mathbf{u}_{\boldsymbol{h}}\right)$ and $\varepsilon_{0}^{v}\left(p_{h}\right)$ for $v=10^{-1}, v=10^{-2}$ or $v=10^{-3}$.

rates for the velocity $\tau_{\mathbf{u}}$ (left) and for the pressure τ_{p} (right), where $h \approx N^{-1 / 3}$. More

Table $23 D$ case, convergence rates.
numerical results are available in $[8,9,6,21]$. The $\mathbf{P}_{n c}^{1}-\left(P^{0}+P^{1}\right)$ scheme has good approximation properties and can therefore be used to solve the Navier-Stokes equations in the context of industrial simulation. We plan to study discrete pressure enrichment to higher order nonconforming Crouzeix-Raviart mixed FEM [2, 3].

Acknowledgements We would like to thank P.-E. Angeli for his contribution to §4.

References

1. M. Crouzeix and P.-A. Raviart, RAIRO, Sér. Anal. Numer., 7, 33 (1973), 33-75.
2. S. Sauter, Computers \& Mathematics with Applications, 149 (2023), 49-70.
3. S. Sauter and C. Torres, Mathematics of Computation, 92, 341 (2023), 1033-1059.
4. F. Hecht, RAIRO, Sér. Anal. Numér. 15, 2 (1981), 119-150.
5. A. Linke, Comput. Methods Appl. Mech. Engrg. 268 (2014), 782-800.
6. P.-E. Angeli et al, FVCA8 benchmark for the Stokes and Navier-Stokes equations with the TrioCFD code, in: Finite Volumes for Complex Applications VIII - Methods and Theoretical Aspects, C. Cancès and P. Omnes editors, Springer (2017), 181-302.
7. CEA/STMF, https://triocfd.cea.fr/.
8. S. Heib, Nouvelles discrétisations non structurées pour des écoulements de fluides à incompressibilité renforcée, PhD thesis, Univ. Pierre et Marie Curie - Paris VI, France, 2003.
9. T. Fortin, Une méthode éléments finis à décomposition $\mathbf{L}^{\mathbf{2}}$ d'ordre élevé motivée par la simulation d'écoulement diphasique bas Mach, Univ. Pierre et Marie Curie - Paris VI, 2006.
10. A. Ern and J.-L. Guermond, Finite elements I, Springer, 2021.
11. C. Amrouche, P. G. Ciarlet and C. Mardare, Journal de Mathématiques Pures et Appliquées, 104, 2 (2015), 207-226.
12. A.-S. Bonnet-Ben Dhia and P. Ciarlet Jr., Méthodes variationnelles pour l'analyse de problèmes non coercifs, M.Sc. AMS lecture notes (ENSTA-IPP), 2022.
13. M. Barré, P. Ciarlet Jr., The T-coercivity approach for mixed problems, C. R. Acad. Sci. Paris, Ser. I (to appear).
14. E. Jamelot, Improved stability estimates for solving Stokes problem with Fortin-Soulie finite elements, submitted.
15. T. Warburton and J.S. Hesthaven, Comput. Methods Appl. Mech. Engrg. 192, 25 (2003), 2765-2773.
16. T. Apel, S. Nicaise and J. Schöberl, Numerische Mathematik 89, 2 (2001), 193-223.
17. P. Emonot, Méthode de volumes éléments finis : applications aux équations de Navier-Stokes et résultats de convergence, PhD thesis, Université Claude Bernard - Lyon I, France, 1992.
18. V. John, A. Linke, C. Merdon, M. Neilan and L.G. Rebholz, SIAM REVIEW 59, 3 (2017), 492-544.
19. C. Bernardi and F. Hecht, ESAIM: M2AN, 34, 5 (2000), 953-980.
20. F. Assous, P. Ciarlet Jr. and S. Labrunie, Mathematical Foundations of Computational Electromagnetism, Springer (2018).
21. S. Gounand, https://cea.hal.science/cea-02489502/document

[^0]: Erell Jamelot
 Université Paris-Saclay, CEA, Service de Thermo-hydraulique et de Mécanique des Fluides, 91191
 Gif-sur-Yvette cedex, France, e-mail: erell.jamelot@cea.fr
 Patrick Ciarlet, Jr
 POEMS, CNRS, INRIA, ENSTA Paris, Institut Polytechnique de Paris, 91120 Palaiseau, France e-mail: patrick.ciarlet@ensta-paris.fr
 Stefan Sauter
 Institut für Mathematik, Universität Zürich, Winterthurerstr 190, CH-8057 Zürich, Switzerland
 e-mail: stas@math.uzh.ch

