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ABSTRACT

In direct imaging at high contrast, the bright glare produced by the host star makes the detection and the
characterization of sub-stellar companions particularly challenging. In spite of the use of an extreme adaptive
optics system combined with a coronagraphic mask to strongly attenuate the starlight contamination, dedicated
post-processing methods combining several images recorded with the pupil tracking mode of the telescope are
needed to reach the required contrast.

Among the large variety of post-processing methods of the field, the PACO algorithm capturing locally the
spatial correlations of the data with a multi-variate Gaussian model shown better detection sensitivity than
standard methods of the field (e.g., cADI, PCA, TLOCI). However, there is a room for improvement to increase
the detection sensitivity due to the approximate fidelity of the statistical model embedded in PACO with respect
to the observations.
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In that context, we recently proposed to combine the statistics-based model of PACO with a deep learning
approach in a three-step algorithm. First, the data are centered and whitened locally using the PACO framework
to improve the stationarity and the contrast in a preprocessing step. Second, a convolutional neural network
(CNN) is trained in a supervised fashion to detect the signature of synthetic sources in the preprocessed science
data. Finally, the trained network is applied to the preprocessed observations and delivers a detection map. A
second network is trained to infer locally the photometry of detected sources. Both deep models are trained
from scratch with a custom data augmentation strategy allowing to generate a large training set from a single
spatio-temporo-spectral dataset. This strategy can be applied to process jointly the images of observations
conducted with angular, and eventually spectral, differential imaging (A(S)DI). In this proceeding, we present in
a unified framework the key ingredients of the deep PACO algorithm both for ADI and ASDI.

We apply our method on several datasets from the the IRDIS imager of the VLT/SPHERE instrument. Our
method reaches, in average, a better trade-off between precision and recall than the comparative algorithms.

Keywords: High angular resolution – techniques: image processing – methods: numerical – methods: statistical
– methods: data analysis.

1. INTRODUCTION

The future thirty meters class telescopes (e.g., ELT, GMT, TMT) will enable exploring much deeper the inner
environment of nearby solar-type stars than existing facilities. This goal raises several challenges from a data
science point of view, including: (i) approaching the ultimate performance of the instruments by an optimal
extraction of the signals of the sought objects, (ii) capturing a highly spatially structured nuisance component
subject to strong temporal fluctuations, and (iii) building a model of the nuisance component from several datasets
to bypass the limits of ADI at very short angular separations. In that context, data-driven approaches combining
statistical modeling with deep learning could be highly valuable to deal with the complexity of high-contrast
observations.

In previous works, we have developed the PACO algorithm [8, 5, 7, 11, 10] dedicated to the post-processing
of A(S)DI observations [14, 16] for exoplanet detection and characterization by direct imaging at high contrast.
PACO captures locally the spatial correlations of the nuisance component (i.e., speckles plus other sources of
noise) with a scaled mixture of multi-variate Gaussian models. Its parameters are estimated in a data-driven
fashion at the scale of a patch of a few tens of pixels. PACO delivers reliable detection confidences with an
improved sensitivity with respect to the classical processing methods of the field (e.g., cADI [14, 12], PCA [18, 1],
TLOCI [15]). However, it remains room for improvement, especially at short angular separations.

Very recently, we proposed a new algorithm, dubbed deep PACO [9, 6], improving the detection sensitivity of
PACO. The proposed method combines the statistics-based model of PACO with a deep learning model in a
three steps procedure. First, the data are centered and whitened locally using the PACO framework to improve
the stationarity and the contrast in a pre-processing step. Second, a convolutional neural network is trained
from scratch, in a supervised fashion, to detect the signature of synthetic sources in the pre-processed science
data. Finally, the trained network is applied to the pre-processed observations and delivers a detection map.
Photometry of detected sources can be estimated by a second deep neural network. Both models are trained
from scratch with a custom data augmentation strategy allowing to generate large training sets from a single
spatio-temporo-spectral dataset.

We review the main ingredients of the deep PACO algorithm in Sect. 2. Section 3 presents comparative
results obtained on VLT/SPHERE data. Finally, Sect. 4 draws our main conclusions and briefly discusses some
future research directions.



2. THE DEEP PACO ALGORITHM

2.1 Direct Model of the Observations

A stack r ∈ RN×T×L of high-contrast images is composed of N -pixels frames, recorded at times t ∈ J1;T K and in
spectral channels ℓ ∈ J1;LK. The contribution rℓ ∈ RN×T writes:

rℓ = fℓ +

P∑
p=1

αp,ℓ hℓ(ϕp) , (1)

where fℓ ∈ RN×T and hℓ ∈ RN×T are respectively the contribution of the nuisance component (i.e., speckles and
other additive sources of noise) and of any point-like source taking the form of the off-axis point-spread function
(PSF), at spectral channel ℓ. The contribution of a source p ∈ J1;P K is centered at location Ft,ℓ(ϕp) in the t-th
image of the ℓ-th channel, where ϕp is its initial location on an image at a time tref and spectral channel λref of
reference. Ft,ℓ is a deterministic function accounting for the apparent motion of the sought sources induced by
ASDI.

2.2 Statistical Modeling of the Nuisance Component

As in [10], we model the fluctuations of the nuisance component f by a statistical model whose parameters
are estimated locally (in this work, at a scale of non-overlapping square patches of K pixels). The locality of
the model allows to account for the non-stationarity of the nuisance. We note P the set of pixel locations on
which the parameters of the statistical model should be evaluated. The distribution of a patch of nuisance fn,t,ℓ

centered at pixel n ∈ P, at time t, and channel ℓ is modeled by a scaled multi-variate Gaussian: N (mn,ℓ, σ
2
n,t,ℓCn).

The sample estimators {m̂n,ℓ , σ̂
2
n,t,ℓ , Ŝn} of {mn,ℓ , σ

2
n,t,ℓ ,Cn} are obtained from the T L patches rn ∈ RK×T×L

through the maximum-likelihood:
m̂n,ℓ =

(∑
t
σ̂−2
n,t,ℓ

)−1 ∑
t
σ̂−2
n,t,ℓ rn,t,ℓ ,

Ŝn = 1
T L

∑
t,ℓ

σ̂−2
n,t,ℓ(rn,t,ℓ − m̂n,ℓ)(rn,t,ℓ − m̂n,ℓ)

⊤ ,

σ̂2
n,t,ℓ = K−1(rn,t,ℓ − m̂n,ℓ)

⊤ Ŝ−1
n (rn,t,ℓ − m̂n,ℓ) ,

(2)

The number of samples involved in the computation of Ŝn being lower than the number K of pixels in a patch,
the sample covariance Ŝn is very noisy. As in [10], we regularize it by shrinkage [13, 4] to form Ĉn as follows:

Ĉn = (1− ρ̂n) Ŝn + ρ̂n F̂n , (3)

where F̂n is a diagonal matrix with only the sample variances. The weight ρ̂n sets a bias-variance trade-off and it
is estimated in data-driven fashion:
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Ŝ2
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with Q =
(∑

t,ℓ σ̂
−2
n,t,ℓ

)2
/
(∑

t,ℓ σ̂
−4
n,t,ℓ

)
the equivalent number of patches involved in the computation of Ĉn in the

presence of the scaling factors {σ̂2
n,t,ℓ}t=1:T,ℓ=1:L. Given the statistics of the nuisance, the dataset r is preprocessed

by centering and whitening to form r̃ ∈ RN×T×L with attenuated spatial structures:

r̃n,t,ℓ = Wn,t,ℓ rn,t,ℓ = σ̂−1
n,t,ℓ L̂

⊤
n (rn,t,ℓ − m̂n,ℓ) , (5)

such that L̂nL̂
⊤
n = Ĉ−1

n .



2.3 Detection by Supervised Deep Learning

We aim to produce a detection map ŷ in [0; 1]
M
, where each pixel-value represents the pseudo-probability that a

source is centered at that location at time tref. In order to perform supervised training of our model, we generate
S pairs { (r [s];y[s]}s=1:S of synthetic samples/ground truths, resulting from the massive injection of point-like
sources. The trained model is data-dependent, i.e. it differs for each A(S)DI dataset due to the high variability of
the nuisance component from one observation to the other. We thus resort to data-augmentation to generate
a large training basis from a single dataset: we apply a random permutation of the T images of each spectral
channel for each training sample s. Synthetic sources are injected inside the temporally permuted data following
the direct model (1) to form the intermediate datasets {sr ∈ RN×T×L}s=1:S :

sr
[s]
ℓ = P[s] fℓ +

P [s]∑
p=1

α
[s]
p,ℓ hℓ(ϕ

[s]
p ) , (6)

with P the operator performing a random permutation of the temporal frames. For each synthetic source p and if
L > 2, we select randomly a synthetic SED αp ∈ RL from a custom library of 10,000 sub-stellar spectra generated
with ExoREM [3]. Before injection of synthetic sources, the initial dataset r is pre-processed to form r̃. After
injection of synthetic sources, the set S[s] of locations impacted by the signal of the fiducial sources is determined.
Outside S[s], the pre-processed images are obtained from the temporal permutation of r̃. Inside S[s], the statistics
of the nuisance and the pre-processed images are updated given the contamination of the P [s] injected sources to
form {qr ∈ RN×T×L}s=1:S such that:

qr
[s]
n,t,ℓ =

{
Wn,t,ℓ sr

[s]
n,t,ℓ, for n ∈ S[s] ∩ P ,

P[s] r̃n,t,ℓ, for n ∈ P− S[s] ∩ P .
(7)

Finally, the apparent motion of the injected sources are compensated to co-align their signals within { (r [s] ∈
RN×T×L}s=1:S :

(r
[s]
t,ℓ = Dt,ℓ qr

[s]
t,ℓ , (8)

with Dt,ℓ the operator performing a rotation of the image at time t and spectral channel ℓ by the opposite of the
parallactic angle at time t.

At training time, the network parameters are optimized by minimizing the Dice2 loss [19]:

L[s] = 1−

∑
m

y
[s]
m ŷ

[s]
m + ϵ∑

m
y
[s]
m + ŷ

[s]
m + ϵ

−

∑
m
(1− y

[s]
m )(1− ŷ

[s]
m + ϵ)∑

m
2− y

[s]
m − ŷ

[s]
m + ϵ

, (9)

where {y[s]; ŷ[s]} is a set of ground truth and predicted detection maps, and ϵ is a small stability parameter. At

validation time, we compute from a predicted detection map ŷ[s] ∈ [0; 1]
M

thresholded at τ ∈ [0; 1], the true
positive rate (TPR) and the false discovery rate (FDR). From these two quantities, receiver operating curves
(ROCs) are built and the area under ROCs (AUC) is derived as an overall measurement of the trade-off between
precision and recall.

Concerning the architecture, we use a U-Net with a ResNet18 as encoder backbone∗. The network weights are
optimized from scratch with AMSGrad. The number of epochs, the number of samples per epoch, the batch size,
the weight decay, and the learning rate are discussed in details in [9, 6].

3. RESULTS ON VLT/SPHERE DATA

For our experiments, we have selected three datasets from the VLT/SPHERE-IRDIS imager [2]. The performance
of deep PACO are compared with the cADI, PCA, and PACO algorithms. The details about the observing

∗https://github.com/qubvel/segmentation models.pytorch

https://github.com/qubvel/segmentation_models.pytorch


10

missed: 0

10 false: 0

missed: 0detected: 13 detected: 13

false: 2

false: >15

false: 2false: 4

missed: 5detected: 8

false: 7

missed: 5detected: 8 missed: 2detected: 11

missed: 5detected: 8

false: >15

missed: 5detected: 8

false: 0

missed: 3detected: 10

0 5-5 0 5-5 0 5-5

false: 0

missed: 1detected: 4 detected: 5missed: 2

false: 0

deep PACO (ASDI)deep PACO (ADI)
H

IP
 8

83
99

 (2
01

5-
05

-1
0)

false: 0

missed: 2 missed: 1detected: 11 detected: 12

false: 1

false: 1

missed: 2detected: 4

false: 0

missed: 2detected: 4

false: 2

missed: 4detected: 2
PACO (ADI)PCA (ADI)cADI (ADI)

H
D

 9
50

86
 (2

02
1-

03
-1

1)
H

D
 9

50
86

 (2
01

5-
05

-0
5)

Figure 1. Detection maps obtained with cADI, PCA, PACO, and deep PACO on three datasets (HIP 88399 –2015-05-10–,
HD 95086 –2021-03-11–, HD 95086 –2015-05-05–) from the VLT/SPHERE-IRDIS instrument.

parameters, the pre-reduction of the recorded datasets, and the setting of the comparative algorithms are discussed
in [9, 6].

Figure 1 shows the detection maps obtained with the comparative algorithms. The detected peaks are classified
as true, missed, or false detections based on a thresholding of the output map at τ = 5 for the algorithms producing
a signal-to-noise map (i.e., cADI, PCA, PACO), and at τ = 0.5 for deep PACO producing a pseudo-probability
map. For the four considered algorithms, the results are obtained by processing the first spectral channel,
i.e. exploiting solely ADI. For the proposed approach, we compare ADI and ASDI by also considering a joint
processing of the two spectral channels of the dual band observations. These results illustrate the ability of deep
PACO to reach, in average, a better detection sensitivity and, at the same time, to avoid some spurious false
alarms produced by the comparative algorithms. The joint spectral processing allows to further improve the
trade-off between precision and recall.

4. CONCLUSION

As a proof of concept, we applied our method on several datasets from the VLT/SPHERE-IRDIS instrument.
We compared the deep PACO method against some state-of-the-art algorithms of the field, including PACO.
With ADI, our method reaches in average a better trade-off between precision and recall than the comparative
algorithms. A joint processing of spatio-temporo-spectral observations obtained with ASDI allows to further
improve the detection performance.

On the methodological side, we are currently investigating ways to improve the deep learning stage of the
proposed algorithm by jointly modeling the typical distribution of the nuisance component from multiple datasets.
This methodology would strongly differs from reference differential imaging (RDI, [17]) in the sense that a



highly non-linear model would be learned from the archived observations and would exploit several prior domain
knowledge. On the application side, we will consider to adapt and to apply the deep PACO algorithm on simulated
ELT high-contrast data (e.g., from ELT/HARMONI) to ground its benefits in the context of the future giant
telescopes.
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