
HAL Id: hal-04414810
https://hal.science/hal-04414810

Submitted on 24 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MEAN ORBITAL MOTION OF GEODETIC
SATELLITES AND ITS APPLICATIONS

Pierre Exertier, Gilles Metris, S. Bruinsma, F. Barlier

To cite this version:
Pierre Exertier, Gilles Metris, S. Bruinsma, F. Barlier. MEAN ORBITAL MOTION OF GEODETIC
SATELLITES AND ITS APPLICATIONS. Dynamics and Astrometry of Natural and Artificial Ce-
lestial Bodies, Jul 1996, Poznan, Poland. pp.333-340, �10.1007/978-94-011-5534-2_46�. �hal-04414810�

https://hal.science/hal-04414810
https://hal.archives-ouvertes.fr


MEAN ORBITAL MOTION OF GEODETIC SATELLITES AND
ITS APPLICATIONS

P. EXERTIER, G. MÉTRIS, S. BRUINSMA1 AND F. BARLIER

Observatoire de la Côte d’Azur, CERGA
Grasse, France

Abstract. Averaging methods are convenient tools for studying long-periodic

variations of the motion of artificial satellites. The main lines of a semi-analytical

theory of the mean motion are given. We show how, when coupled with a careful

reduction of the tracking data, this theory allows to determine parameters related

to the temporal variations of the Earth gravity field (e.g. the amplitude of 18.6

years tide and the secular variation of even zonal harmonics). The theory is also

very useful for other applications such as mission analysis.

1. Introduction

The most elegant, and so far most accurate, method for studying the global
Earth gravity field in time and space (combined ocean-atmosphere-Earth)
is to analyse the induced perturbations in the orbits of artificial satellites.
Several ”geodetic” satellites have now been routinely tracked by lasers for
two decades. Low satellites (e.g. Starlette at 900 km altitude) are more
sensitive to the atmosphere and to the Earth gravity field at mean wave-
lengths, whereas higher satellites (e.g. Lageos at 6000 km) are suitable for
the study of long wavelengths, including their temporal variations, and
the Earth rotation. The development of highly precise Earth gravity field
models in view of precise orbit determination (see Schwintzer et al., 1996;
Tapley et al., 1994) allows the determination of the temporal variations
of mass distribution in the oceans, atmosphere and solid Earth. In order
to provide enough information on these geodynamical phenomena from a
satellite perturbation analysis, it is necessary to extract the secular and
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long periodic effects appearing in satellite orbits. A natural strategy is (1)
to use dynamical arcs as long as possible, that is several tens of thousands
of orbital revolutions (typically 10 to 20 years), and (2) to remove short
periodic effects. This is exactly the spirit of averaging methods.

The method of averaging is a well-known tool in celestial mechanics
(Moons, 1993). With such a technique, the first goal is to improve the
accuracy of the solution by removing short periodic terms which can be
corrupted by unknown local phenomena in time and space. Due to the
limited accuracies of the available initial conditions for the artificial bod-
ies and the averaging methods used for the computation, investigations
developed in the 70s revealed large approximations (e.g. Wagner, 1973).
Following these ideas, we have defined the concept of mean orbital mo-
tion more comprehensively and more precisly. This has led to the develop-
ment of a semi-analytical theory of the mean orbital motion (Métris, 1991;
Métris and Exertier, 1995). The theory is based on the concept of filtered
elements permitting exact separation between short-period and long-period
variations of the orbital motion. The theory initially developed for gravi-
tational effects has been extended to dissipative ones (e.g. drag, radiation
pressure). The purpose of this paper is to show which ingredients, theo-
retical and practical, have permitted to precisely describe the long term
changes of satellite orbital elements. To provide an unprecedented informa-
tion on geodynamical processes, investigations over long periods of time of
the motion of Lageos and Starlette form the basis of our applications.

The organization of the paper is the following: after recalling the prin-
ciple of the averaging method in Section 2, the analytical theory used to
compute the mean orbital motion is summarized in Section 3. Section 4 is
dedicated to examples of applications realized with the method.

2. Principle of the Averaging Method

Satellite motion can be described by the temporal evolution of six indepen-
dent parameters. We will consider that the study of the orbital motion can
be treated as a study of the temporal evolution of six signals. These signals
result either from observations or from a dynamical model; the goal of any
perturbation analysis is to compare both signals, observed and theoretical,
permitting the fit of model parameters and initial conditions of the motion.

There is a considerable freedom in the selection of the solution tech-
nique with properly chosen variables. The averaging technique consists in
transforming (filtering) the initial system of motion equations and process-
ing the integration of the transformed equations to provide the theoretical
signal. Thus, in order to set up an averaging method, it is necessary : (1)
to properly define the transformation (filtering) to be applied both to ob-
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served and theoretical signals, and the variables used during this operation,
(2) to develop the tools allowing to perform the filtering that leads to the
theory of the mean orbital motion, and (3) to compare the solution with
the observations properly reduced, and to analyse the residuals.

Given a set of variables Xi(t) describing the satellite motion, the filtered
variables Xi(t) over the period T result from the removal of, and only of, the
short-period variations from Xi(t), i.e. the periodic variations with a period
smaller than T . The concept of filtered elements is completely defined by
the specification of the set of elements Xi, and the cut-off period T .

The variables chosen for the processing of the transformation are of
great importance1. ¿From a practical point of view, Delaunay variables
(Brouwer, 1959) have been chosen because they are canonical action-angle
variables, they highlight the different frequencies, and they are close to the
Keplerian elements. In absence of resonances, the cut-off period must be
slightly larger than one day (e.g. 1.2 days), to permit the removal of all
periodic terms related to the orbital and Earth sidereal periods. In the case
of weak resonance between these two periods, the cut-off period is chosen
so as to remove these resonant terms. Orbits in deep resonance have not
been considered, because most current geodetic space missions avoid this
kind of dynamical configuration.

3. Theory and Observations

3.1. THEORETICAL FILTERED DELAUNAY ELEMENTS

In classical methods, the temporal evolution of osculating elements is gov-
erned by a differential system (e.g. Lagrange or Hamilton or Gauss equa-
tions). Here, we shall examine if, in a similar way, filtered elements can
be the result of the integration of a modified (averaged) Hamiltonian sys-
tem. Only the main lines will be explained here; readers interested in more
details can refer to (Métris, 1991; Métris and Exertier, 1995).

The differential equations of motion expressed in Delaunay canonical
variables (vi, Vi; i = 1, 3) are derived from the Hamiltonian H of the dis-
turbed system:

v̇i =
∂H
∂Vi

(i = 1, 3), V̇i = −∂H
∂vi

(i = 1, 3). (1)

In absence of external time dependent parameters, the short period removal
is accomplished by elimination of the mean anomaly l from the differential

1In particular we have shown (Métris and Exertier, 1995) that the mean motion is
not unique but depends on the choice of the set of variables Xi.
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system. In this aim, a canonical change of variables has been performed:

(l, g, h, L,G,H) −→ (l′, g′, h′, L′, G′, H ′)
H(l, g, h, L,G,H; ε) −→ H′(−, g′, h′, L′, G′, H ′; ε) (2)

The transformation is constructed by means of Lie transforms according
to the Deprit algorithm (Deprit, 1969). It is completely determined by its
generating function W , which is developed in powers of ε:

W (l, g, h, L,G,H; ε) =
∑
k≥0

εk

k!
Wk+1 =

∂

∂ε

∑
k≥1

εk

k!
Wk

 (3)

Following the standard process (see Deprit and Rom, 1970), at each order
k, Wk is determined up to a function independent of l. Applying a Lie
transform to a function of the old variables (vi,Vi) permits to express it in
function of the new variables (v′i,V

′
i ). In particular:

vi = v′i+

[
ε
∂W1

∂Vi
+
ε2

2

(
∂W2

∂Vi
+

{
∂W1

∂Vi
;W1

})]
(v′j , V

′
j ) +O(ε3)

Vi = V ′i−
[
ε
∂W1

∂vi
+
ε2

2

(
∂W2

∂vi
+

{
∂W1

∂vi
;W1

})]
(v′j , V

′
j ) +O(ε3)

(4)
where {φ;ψ} stands for the Poisson bracket of φ and ψ. But in fact, we are

looking for a set of variables (v′i,V
′
i) such as:{

v′i =< vi >l′ =< v′i >l′ + < vi − v′i >l′

V
′
i =< Vi >l′ =< V ′i >l′ + < Vi − V ′i >l′

(5)

As a result of the averaging,< v′i >= v′i and < V ′i >= V ′i . Expression (4)
allows the computation of < vi − v′i >l′ and < Vi − V ′i >l′ knowing the
generating function W . If W1 is chosen in such a way that < W1 >l= 0
(thanks to the integration constant) the mean values (5) are of second order.

It would be simpler to obtain the total equivalence between the two
sets of variables (v′i,V

′
i ) and (v′i,V

′
i). But, it can be proved that this is

not possible beyond the first order. This is the reason why (v′i,V
′
i) can

not be directly obtained by the integration (numerical, for example) of the
canonical averaged system. An important step in our solution is precisely
to add a change of variables (Eq. 5) which is not canonical.

The above algorithm states the bases of the computation of the the-
oretical filtered elements but it is not always usable in this form; in par-
ticular, for non-gravitational forces no Hamiltonian exists. Fortunately, we
can show that, provided that the perturbation fulfills some conditions of
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periodicity (more or less satisfied in reality), the filtering can be performed
by means of numerical quadratures, at least up to the first order of these
small perturbations. This was applied for the drag and radiation pressure
perturbations.

3.2. OBSERVED FILTERED DELAUNAY ELEMENTS

If we could directly observe the variables of the motion, it would be suffi-
cient to apply a digital filter to get observed filtered variables. This is of
course not the case: observations are more or less complicated functions of
the elements. In classical methods, one simply computes the value of this
function using theoretical elements and compares it to the observation. Un-
fortunately, in our case, the use of theoretical filtered elements to compute
the function does not produce the searched theoretical filtered observation
because the function is not linear with respect to the variables. The prob-
lem has been solved by Exertier (1988, 1990). The first step consists in
converting the observations into variables of the motion via orbit fits (us-
ing short arcs) to get ”observed osculating elements”. Then, in a second
step, observed osculating elements are filtered to produce ”observed filtered
elements”. We have checked the robustness of this data reduction scheme
and have shown that a level of 10−9 between a simulated observed signal
and the corresponding theoretical signal can be achieved by this procedure.

At this stage a question may arise: what is the gain, if a classical method
must be used anyway to compute observed filtered elements? Several ad-
vantages exist: (1) one can get very good results with only, let us say, one
filtered element per month computed with typically one week of obser-
vations, (2) even with a larger density of filtered elements, the factor of
compression of the useful information ranges from thousands to one mil-
lion, and (3) being independent of the dynamical model used to compute
them, these filtered elements are computed once for all.

4. Applications

If, as explained above, building a precise averaging method is a difficult task,
it is rewarded by the following benefits: (1) we are free of short periodic
variations always difficult to modelize, (2) the CPU time is reduced by more
than a factor 10, and the same parameters are always recovered with very
different methods.

4.1. GEODYNAMICS

The temporal variations of the external gravitational field represent a dy-
namic aspect of the mass redistribution within the ocean-atmosphere-solid
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Earth system. Satellite solutions place bounds on the aggregate mass redis-
tribution ongoing within this system. In particular, Satellite Laser Ranging
(SLR) observations acquired on Lageos for twenty years account for the
drastic improvement seen in the long wavelength static, time-dependent,
and tidal geopotential fields (Marshall et al., 1995).

Among the temporal variations of the gravity field, tides are the best
understood for they have the largest effects and occur at well known astro-
nomical frequencies. For near-Earth orbit determination, the tide modeling
problem represents a challenge: to improve the long wavelength tidal terms,
which give rise to long period perturbations. This is particularly true for
the 18.6 year ocean and solid-Earth tides. The analysis of 15 years of SLR
data on Lageos reduced in terms of mean orbital elements, has permitted
to extract without ambiguities a 18.6 year periodic signal in the mean as-
cending node of the orbit related to these phenomena. The amplitude of the
signal, when expressed in terms of oceanic tide, is of 2 cm ± 0.1 cm with
zero phase, the residuals on the node being at the level of 85 mas (Exertier
et al., 1995)..

To date, direct assessment of non-tidal changes in the geopotential has
been restricted to variations in a few zonal harmonics. The coefficients (sec-
ular, annual and semi-annual) for the J2 harmonic have been determined
from our study on the mean orbital motion of Lageos (ibid). As an exam-
ple, we found a secular variation of J2 of (2.4± 0.3)× 10−11/yr, which is in
good agreement with other results (e.g. Gegout and Cazenave, 1993; Eanes
1995).

The most challenging aspect in the study of temporal gravitational vari-
ations will be to attempt to separate the contributions from individual geo-
physical processes, given the estimate of their overall effect from satellite
determinations. In this field, the semi-analytical theory of the mean orbital
motion will certainly play an increasing role.

4.2. NON-CONSERVATIVE FORCES

Of particular importance in the development of contemporary gravity mod-
els are the laser geodetic satellites. These satellites are passive targets con-
structed as solid, dense spheres. Their simple form reduces both the magni-
tude and complexity of their surface forces. Since separation and modeling
of conservative and non-conservative forces acting on these satellites is eas-
ier to achieve than with complex satellite forms, they have provided the
most important data for geopotential recovery.

The semi-analytical theory of the mean orbital motion has been ex-
tended to non-conservative forces. In particular, we have treated the prob-
lem of averaging solar radiation pressure including its associated shadowing
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effects, and drag. Atmospheric drag is a significant non-conservative force
modeling problem for new missions orbiting at low-Earth altitudes (between
350 km and 500 km) (Bruinsma et al., 1996), and satellites with complex
shapes. The analysis of 12 years of Starlette SLR data reduced in terms of
mean orbital elements, has permitted to extract properly the decrease of
the mean semi-major axis due to drag. This has permitted to evaluate the
performance over long periods of recent atmospheric density models: DTM
(Barlier et al., 1978; Berger et al., 1996) and MSIS86 (Hedin et al., 1987).
The two main conclusions are: (1) DTM94 and MSIS86 are comparable in
quality, and (2) they produce much better results for long term evolution of
filtered elements than for short periodic variations of osculating elements.

The averaging method can be very useful in other ways: since the residu-
als are clean of fast variations, it is easier to study new long period phenom-
ena. Moreover, with this process, we can also work on residuals issued from
other sources. For example, we used so called residual excitations (Eanes,
1995) produced at UT/CSR to improve the model of thermal forces acting
on Lageos (Métris et al., 1995). This kind of work could hardly be performed
by classical methods (using osculating motion) because the physical model
is at the same time complicated and poorly known. Thus, one needs many
tests, the interpretation of which must be very visual.

4.3. MISSION ANALYSIS

Planning and designing a satellite mission requires powerful computational
tools, which are used to determine the orbital parameters satisfying the mis-
sion’s objectives with minimum cost. Lifetime estimations are an important
part of mission analysis, and the concept of mean motion in this context is
of particular interest for two reasons: the averaged orbital elements reflect
only the long period perturbations, which enhances their interpretability,
and secondly, the computational speed as compared to the classical exceeds
a factor 15. The latter reason allows the fast computation of several lifetime
scenarios, with varying initial conditions and a predicted solar activity. The
solar activity predictions are the weak point in satellite lifetime predictions,
since they are not very accurate; errors of the order of 20% (Brown, 1992)
must be reckoned with when the prediction is given several years before
solar maximum. Thus, the lifetime of a particular (low-Earth) satellite in a
given configuration is a function of the predicted solar activity, with large
error bars. Any other model error will be negligible compared to it.

Lifetimes for the German satellite CHAMP, to be launched into a polar,
circular orbit at an altitude of 500 km in 1999, were estimated. The lifetime
estimates varied between 4 and 12 years under stronger or weaker solar
regimes, and, depending on the solar activity level, orbit corrections during
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the mission will be necessary (Bruinsma, et al.1996).

5. Conclusion

The concept of filtered elements applied to dedicated satellites appears
to be a powerful tool for long term analysis. It is efficient for monitoring
geophysical changes; good results have been obtained concerning the deter-
mination of J̇2 and of the 18.6 year tide. The theory of the mean motion
has been also used to study non-gravitational forces. It is used intensively
by CNES for mission analysis purposes.
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Métris, G., Vokrouhlický, D., Ries, J.C., and Eanes, R.J.: 1996, “Non-gravitational effects



MEAN ORBITAL MOTION OF GEODETIC SATELLITES 9

and the Lageos eccentricity excitations”, J. Geophys. Res., in press.
Moons, M.: 1993, “Averaging approaches”, Artificial satellite theory workshop, U.S.N.O

Washington D.C. (USA).
Schwintzer, P., Reigber, Ch., Bode, A., Kang, Z., Zhu, S.Y., Massmann, F.-H., Raimondo,

J.C., Biancale, R., Balmino, G., Lemoine, J.M., Moynot, B., Marty, J. C., Barlier,
F., and Boudon, Y.: 1996, “Long-wawelength global gravity field models: GRIM4-S4,
GRIM4-C4”, J. Geodesy , in press.

Tapley, B.D., et al.: 1994, “The JGM3 gravity model”, Annales Geophysicae 12, Suppl.
1, C192.

Wagner, C.A.: 1973, “Zonal gravity harmonics from satellite long arcs by seminumerical
method”, J. Geophys. Res. 78, 3271–3280.


