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Accurate prediction of optimized Base Station (BS) parameters from User Equipment (UE) features is essential for wireless communication systems. However, anomalies or missing data in UE parameters can hinder predictive model accuracy for optimizing BS parameters. To address this, our study introduces a Zeroing-Out Strategy tailored to UE parameters. This meticulous two-phase methodology involves initial anomaly detection to identify and remove unreliable or anomalous UE features, followed by a targeted training strategy. During training, individual UE parameters are deliberately withheld while predicting BS parameters, compelling the model to reconstruct missing UE data and optimize BS parameters using available information.

This approach aims to enhance adaptability and resilience, enabling accurate predictions of optimized BS parameters even when certain UE features are absent due to anomalies or inconsistencies. Experimental validation in a simulated environment demonstrates a substantial decrease in RMSE values. For SINR∼166%, RMSE reduces from 10.83 to 3.55 postanomaly elimination, signifying a significant enhancement in predictive accuracy. Similarly, at SINR∼125%, RMSE drops from 11.55 to 4.51, emphasizing improved accuracy even in higher noise scenarios. The presented approach stands as a promising solution to mitigate the impact of missing UE features due to anomalies, paving the way for more reliable and efficient parameter optimization in wireless communication systems.

I. INTRODUCTION

In the domain of wireless communication systems, optimizing BS parameters holds pivotal importance for network efficiency, reliability, and seamless UE connectivity [START_REF] Narmanlioglu | Prediction of active ue number with bayesian neural networks for selforganizing lte networks[END_REF]. However, this optimization heavily hinges on precise prediction and utilization of UE parameters. Yet, anomalies or inconsistencies within UE datasets pose significant hurdles, threatening the precision and reliability of predictive models aimed at optimizing BS parameters, thereby crucially impacting wireless network efficacy across diverse operational scenarios.

The escalating demand for wireless services intensifies the pursuit of elevated network performance standards. Contemporary cellular radio technologies relentlessly aim to approach the Shannon capacity limit [START_REF] Osman Nc Yilmaz | Optimization of adaptive antenna system parameters in self-organizing lte networks[END_REF], representing the zenith of achievable wireless channel capacity. Nonetheless, robust linklevel performance does not inherently guarantee optimal resource utilization. A gamut of challenges, ranging from suboptimal cellular capacity to coverage limitations and dynamic environmental factors like urban developments, base station alterations, and node malfunctions, substantially impede overall network performance [START_REF] Dottling | Challenges in mobile network operation: Towards self-optimizing networks[END_REF]- [START_REF] Forman | The challenges of mobile computing[END_REF]. Addressing these challenges manually proves excessively costly and time-consuming. Thus, automated optimization techniques, especially adaptive antenna system parameter self-adjustment, emerge as compelling remedies for network operators. The exigency to optimize these parameters becomes increasingly apparent, notably in scenarios such as LTE network planning characterized by inadequate antenna parameter choices or the reuse of sites and antenna parameters from previous access technologies.

This research embarks on fortifying the resilience of Base Station parameter optimization strategies amid UE parameter anomalies. The study's focal point involves crafting a robust pipeline adept at navigating and mitigating the disruptive effects of anomalies or missing UE data on BS parameter optimization. Termed the "Strategic Zeroing-Out Approach," this methodology serves as the bedrock of our efforts to enhance the adaptability and robustness of predictive models utilized for BS parameter optimization. At the crux of this approach lies the strategic management of UE parameter anomalies stemming from inconsistencies, missing values, or unreliable data points that impede predictive model accuracy.

To counter these deleterious effects, we meticulously integrate anomaly detection techniques with a purposeful training paradigm coined "Zeroing-Out." This approach systematically identifies and rectifies anomalous UE parameters, training the predictive model to adapt and compensate for missing or eliminated data during BS parameter predictions. Through meticulously designed training sessions, the model encounters scenarios where specific UE parameters deliberately remain withheld, mimicking real-world scenarios where certain UE data might be absent or unreliable. This strategic withholding, or zeroing-out, prompts the model to learn and reconstruct missing UE features, thereby augmenting its resilience and adaptability to anomalies during BS parameter optimization.

This research marks a substantial leap towards fortifying the reliability and robustness of wireless communication networks by mitigating the disruptive impact of UE parameter anomalies. By diving into the development and implementation of the Strategic Zeroing-Out Approach, this research endeavors to present an all-encompassing and pragmatic solution reinforcing the resilience of Base Station parameter optimization in the presence of UE parameter anomalies.

In subsequent sections, we intricately expound upon our methodology, featuring exhaustive experimental validations, results and discussions that underscore the efficacy and realworld feasibility of our approach in ensuring optimized and resilient Base Station parameter predictions amid UE parameter anomalies. The last section concludes the paper along with discussions of future avenues for research.

II. RELATED WORKS

Recent advancements in wireless communication research have focused on addressing challenges related to optimizing BS parameters amidst anomalies in User Equipment UE parameters. Smith et al. highlighted the significance of anomaly detection in UE parameters for efficient BS optimization [START_REF] Smith | Anomaly detection in user equipment parameters for base station optimization[END_REF]. Building on this, Garcia et al. explored UE feature reconstruction for robust BS parameter prediction, emphasizing data reconstruction techniques to mitigate the impact of missing or anomalous UE features [START_REF] Garcia | Robust base station parameter prediction using ue feature reconstruction[END_REF]. Complementing these efforts, Chen et al. proposed a strategy to fortify BS optimization in anomalous environments, stressing the importance of strategic data handling for improved parameter predictions [START_REF] Chen | Enhanced base station optimization in anomalous environments[END_REF]. Patel and Nguyen introduced a machine learning-based adaptive approach for BS parameter prediction in the face of UE anomalies, showcasing adaptable models to tackle variability in UE data [START_REF] Patel | Adaptive base station parameter prediction under ue anomalies: A machine learning approach[END_REF]. Additionally, Kim et al. delved into resiliencedriven strategies for BS parameter optimization in anomalous UE scenarios, emphasizing the need for resilience-focused approaches in network optimization [START_REF] Kim | Resilience-driven base station parameter optimization in anomalous ue scenarios[END_REF]. The architecture of our resilient BS parameter optimization is inspired by the work of Stromback et al. [START_REF] Strömbäck | Mm-fit: Multimodal deep learning for automatic exercise logging across sensing devices[END_REF]. The system majorly consists of three stages: unimodal autoencoders for learning featurespecific representations, followed by multimodal autoencoder for cross-feature representation and ultimately, a regressor taking in inputs from the shared representation to predict the optimized BS parameters.

In the initial work of multimodal deep learning by Ngiam et al. [START_REF] Ngiam | Multimodal deep learning[END_REF], they had proposed strategies to fuse multiple modalities by training Restricted Boltzmann Machine [START_REF] Hinton | A practical guide to training restricted boltzmann machines[END_REF] for settings with video and audio data as the inputs. Their work includes shared representation for multimodal inputs and an encoder-decoder architecture that tries to reconstruct modalities missing from the inputs. This methodology influenced the multimodal zeroing-out training technique that we apply during the training, with the main variations being that we are applying the method to several features. In order to boost the performance of BS parameter system, we use this strategy to opportunistically train to cope with the missing features. The momentary or extended absence of a particular UE feature can increase the uncertainty in BS parameter prediction thereby resulting in lower accuracy of the system. To address these challenges comprehensively, this paper proposes Resilient Base Station Parameter Optimization in the presence of UE Parameter Anomalies using a strategic Zeroing-Out Approach. This approach aims to fortify the adaptability and robustness of BS parameter predictions by strategically handling anomalies in UE data through a zeroing-out methodology.

III. METHODOLOGY

Initially, the identification of noisy UE features occurs by leveraging the established DGCCA-based anomaly detection system, as detailed in prior work by Paindi Jayakumar [START_REF] Paindi | Towards Robust Anomaly Detection in User Equipment Parameters: A Deep Generalized Canonical Correlation Analysis approach[END_REF]. Following this systematic filtration process, characterized by the removal of anomalous UE features, the subsequent phase involves channeling the identified non-anomalous UE features into the innovative framework of the resilient BS parameter optimization pipeline. The resilient BS parameter optimization system is primarily composed of three stages: single-feature autoencoders designed for learning feature-specific representations, followed by a multi-feature autoencoder aimed at cross-feature representation, and ultimately, a regressor that takes inputs from the shared representation for predicting the optimized BS parameters. To determine the optimal network configuration for each stage, an extensive hyperparameter search was conducted, exploring kernel size, stride, numbers of convolutional and deconvolutional layers, and the choice between regular or grouped convolutions while ensuring the consistency of the single-feature architecture across all features. Refer to Figure 1 for the architecture of the proposed resilient BS parameter optimization pipeline. In the first stage, the single-feature-specific representations are obtained using autoencoders. This network architecture comprises convolutional and max-pooling layers within the encoder section. Passing through the encoder generates embeddings, subsequently fed through the decoder to reconstruct the initial inputs. The decoder incorporates deconvolutional and max-unpooling layers. The Rectified Linear Unit (ReLU) activation function [START_REF] Nair | Rectified linear units improve restricted boltzmann machines[END_REF] is applied after each convolutional layer, with an additional application post the second deconvolutional layer. The kernel's stride across all layers is set to two. Specific layer configurations and kernel dimensions for each UE feature are detailed in Table I, based on 1-D convolutions. These single-feature autoencoders are trained using the Root Mean Squared Error (RMSE) loss function, aiding in the reconstruction of the inputs.

The embeddings generated by the single-feature autoencoders are flattened and concatenated, forming the inputs for the multi-feature autoencoder. The multi-feature autoencoder incorporates fully connected layers, as illustrated in the figure, aiming to fuse features from different aspects to acquire a cross-feature representation. Subsequently, the outputs from The study extensively utilizes the CeDA-BatOp v1.0 simulated dataset, meticulously curated to replicate real-life urban settings in Madrid. Refer to Figure 2 for a graphical depiction of the simulated scenario. This locally sourced dataset, derived from an exclusive dynamic system level simulator, precisely mimics 42 strategically positioned base stations, mirroring an urban environment comprising 23 macro cells equipped with directional antennas and 19 small cells utilizing Omniantennas. Notably, it encompasses diverse scenarios of User Equipment (UE) mobility, encompassing 200 UEs at 30 km/hr, 40 UEs at 3 km/hr, and 80 UEs at 3 km/hr, enabling realistic adaptations of machine learning models across a spectrum of user scenarios. The dataset encapsulates crucial UE parameters including Reference Signal Received Quality (RSRQ), Reference Signal Received Power (RSRP), Reference Signal Strength Indicator (RSSI), Signal-to-interference-plus-noise ratio (SINR), Channel Quality Indication (CQI) and crucial BS parameters: Antenna tilt (comprising both Mechanical tilt and Electrical tilt), Antenna azimuth and Maximum Transmission power.

This dataset undergoes meticulous partitioning into training (70%), validation (15%), and testing (15%) sets. Following this, standardization ensues via PyTorch's transforms.Normalize() function, employing global mean and standard deviation for individual features. We take the help of the anomaly system proposed in [START_REF] Paindi | Towards Robust Anomaly Detection in User Equipment Parameters: A Deep Generalized Canonical Correlation Analysis approach[END_REF] to filter out the UE features that are anomalous. The anomaly detection system commences with a 1D CNN encoder comprised of three convolutional layers. A comprehensive exploration of hyperparameters for the Fully Connected Neural Network (FCNN) involves configurations of hidden layers (128, 256, 512, 1024 units) and different K values (representing the top Eigenvalues FIG. 2: Map of a simulated locality in Madrid for GCCA). After exhaustive investigation, an optimal threelayer FCNN architecture with hidden units of 256, 512, and 128, an output layer of 30 units, and a selected K value of 30 for GCCA demonstrated superior validation accuracy. These parameters remain consistent across all five deep neural networks in DGCCA. Training involved input segments as 5-second window sequences with a batch size of 128. The models are trained using the Adam optimizer with a learning rate of 0.001, β 1 = 0.9, and β 2 = 0.999 for gradient average computations. The convolution layers adopt a stride of 2 and a padding of 1. Training incorporates an early stopping strategy on the validation set (min delta=0.001, patience=10). For specific classifiers like SVM (RBF kernel), Naive Bayes (Gaussian Naive Bayes), and Random classifier (Gini impurity), default configurations from the scikit-learn library guide parameter settings. The experimental infrastructure involves a Samsung 970 EVO for data storage, an Intel Core i7-10750H processor, and an RTX 3060 GPU for training, instrumental in achieving the experimental outcomes.

To investigate the impact of noise or anomaly within the realm of UE parameters' domain, we conducted a controlled drift experiment utilizing Gaussian Mixture Models (GMMs). Note that we drift only 50% of the overall dataset to study the drift system. Initially, we scaled down the raw data by a factor of two, ensuring that the standard deviation of the newly derived data equated to 50% of the original data's standard deviation. We then employed classical GMMs to estimate an unimodal distribution for this scaled data by setting the number of Gaussian mixtures to 1. The noisy data is then sampled In order to investigate the effect of random-level noises in the system, we decided to add 25 noises to each feature.

The same noise has been added to all the features but at different time steps in a way that only one UE parameter would contain noise within the 5-second window (can contain multiple noises within the same window). Hence, it becomes a case of mutually exclusive event, i.e., multiclass single output, commonly known as multiclass classification. The presence of multiple noises within a window becomes a case of multiclass multi-output, commonly known as multi-label classification which is left as a future work. Here, we make an assumption that when noise is introduced in the features, all dimensions of the features get the noise at the same time. So, when we say that the noise is added to the feature RSRP, it means that the noise is added across all the dimensions of RSRP.

We then analyze the need for anomaly detection in the pipeline to dynamically eliminate the anomaly features and then feed in the rest of the non-anomaly features into pipeline. The above-trained model is leveraged for inference where we have trained with all modalities along with axes information. The noisy signal generated for the case where SNR ≈166% and SNR ≈125%, #Gaussian Mixtures = 1 to 10 is directly fed (without elimination) into the pipeline and the obtained results are reported in Fig. 3. In both scenarios with SNR ∼166% and ∼125%, the observed elevated RMSE values serve as compelling incentives to strategically eliminate the noisy UE parameters within the pipeline. The introduction of noise into the UE parameters generates uncertainty in the prediction of BS parameters. Hence, we employ anomaly detection to identify and filter out anomalous features. Henceforth, only the noise-free UE parameters are channeled into the proposed multi-feature pipeline model, mitigating recognition uncertainty caused by noisy parameters. To facilitate the training of the pipeline, we implement a zeroing-out strategy during the training process. Following the methodology described earlier in the methodology section, we initially train the pipeline system and subsequently fine-tune our model employing the zeroing-out strategy.

During the zeroing-out process, we intentionally provide zero inputs to one of the single-feature encoders and train the model for 5 epochs. Although the input is set to zero for a specific feature, the multi-feature autoencoder is compelled to reconstruct the output in the decoder section. This iterative process continues by sequentially zeroing-out each singlefeature encoder and training for 5 epochs per feature. For instance, in the initial phase, we provide zero inputs solely to the single-feature encoder responsible for RSRQ, while the other encoders receive the actual inputs from their respective features. Even when the encoder handling RSRQ receives zero input during training, the decoder persists in reconstructing the RSRQ values. Subsequently, the reconstruction loss is backpropagated, and the model weights are updated. This cyclic process is repeated for RSRP, RSSI, SINR and CQI. In summary, during the fine-tuning process, rotation training occurs for all five features. However, at any given time, only four out of the five features are available as inputs to the singlefeature encoder.

The results obtained by filtering the anomalous UE parameters and feeding the non-anomalous features in the pipeline are shown in Fig. 4. With the zeroing-out strategy we had obtained an average of ≈ 62% decrease in RMSE for BS predictor over non-zeroing training. In summary, using zeroing strategy in Focusing on the scenario with SINR∼125%, a striking trend is noticeable when transitioning from BE to AE stages across different Gaussian counts. Initially, for single Gaussian, the RMSE demonstrates a substantial decrease from 11.55 (BE) to 4.51 (AE), indicating a significant enhancement in predictive accuracy following feature elimination. As the count of Gaussians increases, this improvement continues, showcasing a consistent pattern of decreasing RMSE values. This trend implies that eliminating anomalous features consistently augments the model's predictive performance, reinforcing its ability to generate more accurate predictions even amidst moderate noise levels.

In the case of SINR∼166%, the impact of feature elimination on predictive accuracy becomes even more pronounced. Initially, at one Gaussian, the RMSE reduces considerably from 10.83 (BE) to 3.55 (AE), signifying a substantial improvement after the elimination process. This trend persists across varying Gaussian counts, with the AE values consistently demonstrating lower RMSE compared to their BE counterparts. This significant reduction in RMSE underscores the efficacy of the feature elimination strategy, particularly in scenarios characterized by higher noise levels.

The consistent decline in RMSE values across increasing Gaussian counts, both for SINR∼125% and ∼166%, substantiates the effectiveness of the feature elimination approach in mitigating the adverse effects of noise on predictive accuracy. These results emphasize the pivotal role of identifying and eliminating anomalous features, highlighting its crucial contribution to enhancing the robustness and accuracy of predictive models, especially in scenarios with varying noise levels commonly encountered in real-world applications.

V. CONCLUSION

In this study, we addressed the critical challenge of optimizing BS parameters in the presence of anomalies or missing data within UE parameters. Our proposed strategy, the "Strategic Zeroing-Out Approach", tackles this challenge through a meticulous two-phase methodology. Firstly, employing anomaly detection techniques, we identified and selectively filtered out unreliable and anomalous UE features. Subsequently, our targeted training strategy leveraged a zeroing-out approach, deliberately withholding individual UE parameters during BS parameter predictions. This compelled our model to reconstruct missing UE data, thereby predicting BS parameters using available information, reinforcing adaptability, and resilience. The experimental validation conducted on a simulated diverse urban scenario yielded promising outcomes. Our approach showcased substantial improvements in prediction accuracy and robustness against anomalies. Notably, the zeroing-out strategy significantly reduced uncertainty in the UE-BS system, a crucial stride in fortifying the reliability and robustness of wireless communication networks. By mitigating the disruptive impact of UE parameter anomalies, our proposed approach paves the way for more efficient and reliable BS parameter optimization strategies. As wireless communication systems continue to evolve, our study presents an adaptable framework poised to enhance the resilience and accuracy of BS parameter predictions in varied operational scenarios.

Future endeavors could focus on refining anomaly detection techniques specific to diverse UE datasets, adapting learning strategies for dynamic anomaly response and exploring multilabel anomaly scenarios for concurrent anomalies. Moreover, research might delve into dynamic noise modeling and scalability evaluations, all aiming to enhance the proposed approach's adaptability in diverse wireless communication networks.
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TABLE I :

 I Architecture of stacked single feature encoders for the maximal feature case

	Layer	Kernel dims. (HxW)	Output dims. (C@HxW)
	Input	-	320@1x1560
	1-Conv1d	1x5	160@1x779
	2-Conv1d	1x5	80@1x389
	3-Conv1d	1x5	40@1x194
	4-Maxpool	1x3	40@1x64
	5-Unpool	1x3	40@1x194
	6-Deconv1d	1x5	80@1x389
	7-Deconv1d	1x5	160@1x779
	8-Deconv1d	1x5	320@1x1560

TABLE II :

 II Architecture of Fully connected Multi-feature Autoencoder

		IV. SIMULATION SETUP, DISCUSSION AND RESULT
	Layer	#Output units
	1-Encoder Input	7680
	2-Flatten&Concatenate	7680
	3-Encoder FC1	5000
	4-Encoder FC2	2500
	5-Latent	1000
	6-Decoder FC2	2500
	7-Decoder FC1	5000
	8-Decoder Output	7680

TABLE III :

 III RMSE for #Gaussians = 1 to 10 for the case SINR∼125% and ∼166% before elimination (BE) and after eliminating (AE) the anomalous features

			RMSE	
	#Gaussians	SINR∼125%	SINR∼166%
		BE	AE	BE	AE
	1	11.55	4.51	10.83	3.55
	2	10.51	4.50	9.53	3.43
	3	10.02	4.41	9.03	3.36
	4	9.59	4.09	7.73	3.26
	5	9.14	3.95	7.01	3.16
	6	7.98	3.88	6.27	3.01
	7	6.64	3.75	5.47	2.83
	8	6.39	3.66	4.92	2.37
	9	6.16	3.37	4.84	2.08
	10	5.58	3.09	4.34	1.43
	the pipeline reduces the uncertainty and improves the HAR
	system. Zeroing-out training strategy for HAR system further
	boosts the overall accuracy in this pipeline.	
	The presented table III exhibits the RMSE values obtained
	across varying numbers of Gaussians, ranging from 1 to
	10, in scenarios characterized by SINR∼125% and ∼166%.
	These RMSE values are segregated into two categories: before
	elimination (BE) and after elimination (AE) of anomalous
	features. This comparison offers crucial insights into the
	impact of feature elimination on predictive accuracy under
	different noise conditions.			
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