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Abstract. Provenance calculus has been introduced, about fifteen years ago, for
complementing relational algebra calculations in databases, with semiring oper-
ations in order to handle data lineage, incomplete or probabilistic information.
Possibilistic logic has started to be developed twenty years before, initially for
dealing with epistemic uncertainty, using the max-min semiring. Since then, sev-
eral variants and generalizations of possibilistic logic have been proposed, in-
volving various semirings. All these forms of possibilistic logic are surveyed and
paralleled with provenance calculus, through logical counterparts of relational
algebra operations. The paper ends with a discussion of the parallel between the
two research trends.

1 Introduction

Semirings are a mathematical structure that involves two associative operations with
distinct identity elements, the former, viewed as an “addition”, being commutative, and
the latter, viewed as a “product”, being distributive with respect to the former; moreover
the identity element of the former (denoted ‘0’) is an annihilating element for the latter.
When the product-like operation is commutative, one speaks of commutative semiring.
Such structures, clearly weaker than the computational structure with real numbers, are
currently encountered in many fields related to the treatment of information, such as
“tropical” semirings in automata theory [47], dioids in discrete event processes [21],
or various semirings in flexible constraint satisfaction problems in artificial intelligence
[54, 12], but also in fuzzy relational equations [23].

It has been proposed, about fifteen years ago, to associate tuples in relational databases
with different types of annotations [40, 42]. Annotations may be integers, subsets, poly-
nomials, but also Boolean expressions, probabilities, or levels in a finite scale. In each
case, semiring operations can be applied to these annotations, giving birth to various
forms of so-called provenance calculi. Thus, we can in particular describe what tuples
have been involved in the computation of an output tuple belonging to the result of
a query (“why-provenance”), or how the output tuple is derived (“how-provenance”),
where pieces of data are copied from (“where-provenance”) [19]. The idea of prove-
nance is often related to the lineage [22] of output tuples. Yet, the term “provenance”
applies to any calculus propagating tuple annotations by means of semiring operations.
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Quite similar to the annotation of tuples is the association of logical formulas with
weights or labels in weighted logics [25]. A prototypical example of this idea is the
possibilistic logic, introduced in the mid 1980’s [32]. Basic possibilistic logic formulas
are pairs made of a formula and its certainty level, understood as a lower bound of a
necessity measure. Since the necessity of the conjunction of two formulas is the min-
imum of the necessities of each formula, and we look for the derivation of formulas
with their greatest certainty level, possibilistic uncertainty is propagated by means of a
max-min semiring. But there exists a number of variants of possibilistic logic involving
different semirings. Interestingly enough, queries to a relational database where tuples
are associated with certainty levels can be handled in the possibilistic logic setting [50].

This paper aims at emphasizing the parallel between data provenance calculi with
possibilistic logic and related logics, and at identifying how provenance can be handled
in possibilistic logic for explanation purposes for instance. The paper is organized as
follows. Section 2 provides a brief presentation of the main provenance calculi. Section
3 surveys the various semirings at work in possibilistic and related logics. Section 4
provides a final discussion of the parallel between these two research trends.

2 Provenance calculus

The idea of provenance was already present in many database works at the beginnings
of years 2000’s, e.g. [22], [15], [14]. Provenance is then often linked to the annotation of
data. However, the proposal of endowing annotations with operations having a semiring
structure appeared in the work of Green and Tannen (and their co-workers) from 2006
[42, 40]. Detailed studies or introductions to provenance calculus in databases can be
found respectively in [19] and in [20, 52]. Provenance calculus aims at propagating
tuple annotations when computing query answers using relational algebra operations.
We use an example, due to Green and Tannen, for explaining the main ideas [42].

Let us consider two relations R and S respectively defined on attributes (A,B,C)
and (D,B,E). Let a b c and d b e be two tuples of R and S respectively, with respective
annotations p and r. The product-like operation (denoted ·) of the semiring associates
p ·r to the tuple a b c d e of the relation R 1 S obtained as the join of R and S on B and
defined on attributes (A,B,C,D,E). Given two relations R and S that both contain
the tuple a b c with respective annotations p and r, an addition-like relation denoted by
+ associates p+r to the tuple a b c in the union R∪S of R and S. This operation is also
used in case of projection operation (denoted by π) for keeping track of the different
tuples whose projection yields the same tuple. Let us take an example.

Example 1. Consider the query Q = σC=eπAC(πACR 1 πBCR ∪ πABR 1 πACR)
addressed to a relation R defined on attributes (A,B,C) (π stands for projection, σ for
selection, 1 for join). Suppose R contains the 3 tuples a b c, d b e and f g e, respectively
annotated by p, r and s. Then it can be checked that the output relation is given in the
Table 1 thereafter.

In this table, for final selection operation, we multiply with two special annotations,
1 and 0, depending if C = e or not ; p2 is short for p · p. One may replace p + p by
2p, and p2 + p2 by 2p2. In fact, the agreement of the calculus on formal annotations
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A C

a c (p2 + p2) · 0
a e p · r · 1
d c r · p · 0
d e (r2 + r · s+ r2) · 1
f e (s2 + s · r + s2) · 1

Table 1: Example of provenance calculus with polynomials

with the properties of union, join, projections and selections in relational algebra lead
to require that this calculus follows the properties of a commutative semiring [40].

As can be seen in the example, formal polynomials are used for encoding the way the
tuples are obtained. For instance, the output tuple d e in Table 1 is annotated with the
polynomial 2r2 + r · s. It acknowledges the fact that there are three different ways to
derive d e from relation R, two of them use r only (but twice), while the third way uses
r and s only once.

Now if we replace the formal annotations, p, r and s by integers (e.g., 2, 5 and 1
respectively) understood as the number of copies that there exists in R for each tuple, we
can count the number of ways of obtaining the output tuple d e for instance, by applying
the polynomial 2r2 + r · s (namely, 2 × 52 + 5 × 1 = 55). This is the bag semantics,
where annotations are multiplicities. Then the semiring is just (N,+,×, 0, 1).

Another reading of the polynomials is to regard annotations, p, r and s in the above
example, as Boolean variables, where + and · are taken as the Boolean disjunction ∨
and conjunction ∧ respectively. Then Table 2 is the rewrite of Table 1 using a Boolean
semiring (where ⊥ and ⊤ stand for “false” and “true” respectively):

A C

a c ((p ∧ p) ∨ (p ∧ p) · ⊥ = ⊥
a e (p ∧ r) ∧ ⊤ = p ∧ r
d c (r ∧ p) ∧ ⊥ = ⊥
d e ((r ∧ r) ∨ (r ∧ s) ∨ (r ∧ r)) ∧ ⊤ = r
f e ((s ∧ s) ∨ (s ∧ r) ∨ (s ∧ s)) ∧ ⊤ = s

Table 2: Example of provenance calculus with a Boolean semiring

If for example, we allocate the value “false” to r, meaning that the tuple d b e is
not in R, then the output relation reduces to f e, with the annotation s. Thus, one can
determine under which truth condition on the tuples in R, an output tuple belongs to the
answer. This corresponds to the Boolean semiring (B,∨,∧,⊥,⊤). However, note that
there is no negation in the logical expressions.

This is very similar to conditional tables (c-tables) introduced as early as 1984 for
handling incomplete information [44] where tuples can be associated with truth condi-
tions. In a c-table (see [1] for details), tuples can be annotated with logical expressions
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involving ¬, ∨, or ∧, and atomic conditions that can be combined, such as (x = a)
or (x = y) (where a is an attribute domain value); moreover logical constraints on
variables can be introduced. C-tables have been recognized as a powerful setting for
representing incomplete information in databases. This is now exemplified [1, 39].

Example 2. Suppose we know that Sally is taking math (z = 0) or computer science
(CS) (z ̸= 0) (but not both) and another course (x); Alice takes biology if Sally takes
math (i.e., z = 0), and math (t = 0) or physics (t ̸= 0) but not both) if Sally takes
physics (= x). This is represented thereafter by the c-table on Table 3.

Student Course Condition
(x ̸= math) ∧ (x ̸= CS)

Sally math (z = 0)
Sally CS (z ̸= 0)
Sally x
Alice biology (z = 0)
Alice math (x = physics) ∧ (t = 0)
Alice physics (x = physics) ∧ (t ̸= 0)

Table 3: Example of a c-table

Instead of annotating tuples with Boolean variables, on may use sets as well. Such a
set may represent an event to which a probability degree is attached that represents the
probability that the tuple is present in the database [41]. Then the probabilities of tuples
in the output of a query can be computed from the resulting annotated table, assuming
the independence of the events annotating the tuples in the relational database [37].

Some applications of provenance calculus may involve semirings other than the
ones involving integers, logical expressions, or sets we have already mentioned. A good
example is provided by access control levels [36]: Assume now that an XML database
is annotated with security information, where not only the tuples as a whole, but possi-
bly attribute values may be labelled with access levels belonging to the following totally
ordered scale A = P < C < S < T < 0, where P means “public”, C “confidential”,
S “secret”, and T “top-secret” (0 stands for something as “completely unaccessible”).
Then a database tuple may already involve “product” of access levels in case of at-
tributes that are annotated. Generally speaking, the output tuples are associated with
polynomials that have to be interpreted using the semiring (A,min,max, 0, P ), e.g., an
output tuple annotated with C · S · T + C2 · S = S corresponds to a “secret” piece of
information, applying the semiring operations. Another case where not only tuples but
also attribute values within tuples can be annotated with provenance information is the
handling of queries involving aggregate operations (such as min, max, sum, or average)
on attribute values [2].

Thus the merit of provenance semiring is to provide a means to answer queries
such as “Is this piece of data derivable from trusted tuples?” or “What score should
this answer receive, given initial scores of the base tuples?” [45]. As emphasized in
[20] “Most work on provenance in databases focused on finding minimal subsets of a
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dataset that witness the existence of a tuple in the result, as well as which parts of the
dataset are the tuple copied from.”

Among other applications of provenance, let us mention causality: for example,
in [18], they investigate structural causal models as a semantics for Open Provenance
Model graphs (which have a provenance interpretation in the sense of the Semantic
Web). Provenance semirings have been also considered for description logics, such as
attributes-based DL-lite [13, 16].

3 Possibilistic logic

We first present the basic possibilistic logic (and some variants) where the weights
associated to the formulas belong to a completely ordered scale. Then we review vari-
ous extensions where weights belong to partially ordered structures, especially lattices.
After which, we briefly survey applications (fusion, revision, inconsistency handling)
where “products” other than min, or polynomials are useful. Lastly, we recall how (ba-
sic) possibilistic logic can help to handling uncertainty in databases.

3.1 Basic possibilistic logic and variants

Possibilistic logic (PL) is a special form of weighted logic [25]. It starts with the idea
of associating a classical logic formula with a certainty level. A basic PL formula [32]
is a pair (p, α) made of a logical formula p associated with a certainty level α ∈ (0, 1]
(or in any bounded totally ordered scale S), viewed as a lower bound of a necessity
measure N , i.e., (p, α) is semantically understood as N(p) ≥ α.3 Formulas of the
form (p, 0), contain no information (N(p) ≥ 0 always holds), and are not considered.
Thanks to the minitivity property for conjunction that characterizes necessity measures,
i.e., N(p∧ q) = min(N(p), N(q)), a PL base, i.e., a set of PL formulas, can be always
put in an equivalent clausal form. The necessity measure N is associated by duality with
a possibility measure Π(p) = 1 − N(¬p) = maxω⊨p π(ω), where π is a possibility
distribution on interpretations.

In PL, the following inference rule is valid: (¬p∨q, α), (p∨r, β) ⊢ (q∨r,min(α, β)).
It can be shown that this weakest link resolution rule yields the greatest lower bound
that can be attached to q ∨ r. This resolution rule is used repeatedly in a refutation-
based proof procedure that is sound and complete w. r. t. the semantics of propositional
possibilistic logic [28].

The semantics of a PL base B = {(pk, αk) | k = 1, ·, n} is in terms of a possibility
distribution πB(ω) = mink=1,...,n max([pk](ω), 1 − αk) where [pk] denotes the set of
models of pk, and max([pk](ω), 1−αk) is the possibility distribution (fuzzy set) inter-
preting (pk, αk). The possibility distribution πB is the fuzzy intersection of the n such
fuzzy sets. It expresses that an interpretation ω is all the more possible as it does not
violate a formula having a higher certainty. The necessity measure associated with the
distribution πB is defined by N(p) = minω ̸⊨p 1 − πB(ω). Moreover a level of incon-
sistency inc(B) is associated to B; it is the largest weight with which the contradiction

3 Possibilistic logic can also be used for modeling preferences, then (p, α) is understood as a
goal p with priority level α.
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can be inferred from B. The set of all formulas with certainty levels strictly larger than
inc(B) is consistent.

The inference exploits a refutation method in order to reach the empty clause with
the greatest possible certainty level. The computations use the semiring (S,max,min, 0, 1).
This semiring is similar to the already encountered semiring (A,min,max, 0, P ), ex-
cept that the order in the scale is reversed. The complexity remains similar to the one of
classical logic (it is multiplied by the logarithm of the number of distinct certainty lev-
els present in the PL base we start with). Introductions, details, applications to various
artificial intelligence problems can be found in [32, 28, 33, 34].

We may wonder if a similar calculus would be possible with probabilities. Indeed
there exists a probabilistic counterpart of the resolution rule, namely, P (¬p ∨ q) ≥
α, P (p ∨ r) ≥ β ⊢ P (q ∨ r) ≥ max(0, α + β − 1) where the Frechet bound obtained
is the greatest lower bound that can be proved valid. Unfortunately, the repeated use of
this rule does not lead to an inference process that is complete [28].

Possibilistic logic can be viewed as a special case of a labelled deductive system
[38] where logical formulas are associated with various kinds of formulas or weights
belonging to some lattice structure. Basically, a PL formula is a pair made of a clas-
sical logic formula and a label that qualifies in which conditions or to what extent the
classical logic formula is regarded as certainly true.

One may think of associating “labels” other than certainty levels. It may be lower
bounds of other measures in possibility theory, such as in particular “strong possibility”
measures ∆, which are characterized by the decomposability property ∆(p ∨ q) =
min(∆(p), ∆(q)). They obey the “resolution-like” rule ∆(¬p∧q) ≥ α,∆(p∧r) ≥ β ⊨
∆(q∧ r) ≥ min(α, β). ∆(p) can be interptreted as a degree of evidential support for p,
since we have ∆(p) = minω⊨p πD(ω), where πD(ω) = maxj=1,...,m min([qj ](ω), βj)
is the possibility distribution associated with a base of ∆ constraints {∆(qj) ≥ βj | j =
1, · · · ,m} expressing that each qj is guaranteed possible at least at level βj . Another
interpretation of ∆(p) is in terms of desire [29]. Again computations in this logic uses
the semiring (S′,max,min, 0, 1) (where S′ is the scale for possibility levels).

Let us mention a construction similar to possibistic logic, but made in an additive
setting where each formula is associated with a cost (in N ∪ {+∞}). This logic asso-
ciates, to each formula of the logic base, the price to pay if this formula is violated. The
weight (cost) attached to an interpretation is the sum of the costs of the formulas in the
base violated by the interpretation; this is the starting point of penalty logic [35, 48]. It
contrasts with possibilistic logic, where weights are combined by an idempotent oper-
ation. The so-called “cost of consistency” of a formula is then defined as the minimum
of the weights of its models (which is a ranking function in the sense of Spohn [53], or
the counterpart of a possibility measure defined on N ∪ {+∞} where now 0 expresses
full possibility, and +∞ complete impossibility since it is a cost that cannot be paid).
The best model has a cost equal to 0 if the set of formulas is consistent. This logic
relies on the semiring (N ∪ {+∞},min,+,+∞, 0); by a logarithmic transformation,
one can move to the semiring ([0, 1],max, product, 0, 1) instrumental in product-based
possibilistic logic.
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3.2 Weights in partially ordered structures

Logical formulas may be also associated with labels taking values in partially ordered
structures, such as lattices. This can be motivated by different needs, as briefly reviewed
in the following.

A rather recent example, interval-based possibilistic logic, has been proposed in
[10] where classical logic formulas are associated with intervals, supposed to gather
certainty levels provided by different sources. More precisely, an interval-based possi-
bilistic knowledge base is a set of weighted formulas of the form IK = {(ϕi,Ii) : i =
1, .., n} where Ii = [αi, βi] is a closed sub-interval of ]0, 1]. The pair (ϕi,Ii), called an
interval-based weighted formula, means that the weight associated with ϕi belongs to
Ii. This interpretation of (ϕi,Ii) is different from the one used in [26], where (ϕi,Ii) is
understood as ∀αi ∈ Ii, (ϕi, αi) is true. Unlike standard possibilistic logic, an interval-
based possibilitic logic only induces a partial pre-order over the set of interval-based
weighted formulas. Let (ϕ1,I1) and (ϕ2,I2) be two interval-based formulas of the
interval-based possibilistic knowledge base, with I1 = [α1, β1] and I2 = [α2, β2]. For
reasoning from interval knowledge bases, the semiring (I[0,1], M, m, [0,0], [1,1]) is
used, where I[0,1] represents the set of all closed subintervals of ]0,1], M is defined by

M([α1, β1], [α2, β2]) = [max(α1, α2),max(β1, β2)].

Similarly, the minimum of two intervals is defined by

m([α1, β1], [α2, β2]) = [min(α1, α2),min(β1, β2)].

The corresponding partial ordering associated with the above lattice is I1 ≥ I2 if and
only if α1 ≥ α2 and β1 ≥ β2. An interesting point is that with the use of this semiring,
standard possibilistic logic reasoning has been extended to deal with interval-based
weighted formulas without inducing extra computational cost.

Timed possibilistic logic [26] has been the first proposed extension of this kind.
Logical formulas are then associated with sets of time instants where the formula is
known as being certainly true. More generally certainty may be graded as in basic pos-
sibilistic logic, and then formulas are associated with fuzzy sets of time instants where
the grade attached to a time instant is the certainty level with which the formula is true
at that time. In such a reified temporal logic it is important to make sure that the knowl-
edge base remains consistent over time. At the semantic level, it leads to an extension of
necessity (and possibility) measures now valued in a distributive lattice structure where
necessity functions are (fuzzy) set-valued. We are thus working with the commutative
semiring (ST,∪max,∩min, ∅,T) where T is the set of time instants, ST the set of S-
graded fuzzy sets over T, ∪max and ∩min denote the max- and min-based fuzzy set
union and intersection respectively.

Taking inspiration of possibilistic logic, Lafage, Lang and Sabbadin [46] have pro-
posed a logic of supporters, where each formula p is associated with a “supporter”,
that is a subset of subsets of “assumptions” that encodes a disjunction of conjunctions
whose truth “supports” the truth of p. This logic is another lattice-based generalisation
of possibilistic logic, where support measures (which play the role of necessity mea-
sures) are valued on the power set of the power set of the set of assumptions. Thus,
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this corresponds to the use of the semiring (22
H
,>,?, {}, {{}}) where H is the set of

assumptions, >,? are the lattice operations associated with the partial order between
supporters (S2 ⊑ S1 iff ∀E2 ∈ S2,∃E1 ∈ Sl s.t. E1 ⊆ E2, which intuitively means
that S1 is easier to satisfy than S2.)

Still another, simple, example of a lattice-based extension of possibilistic logic is
multi-source possibilistic logic [27], where each formula is associated with a set of dis-
tinct explicit sources that support its truth. Again, a certainty / confidence level (belong-
ing to S may be attached to each source, and then formulas are associated with fuzzy
sets of sources. This corresponds to working with the semiring (SS,∪max,∩min, ∅,S)
where S is the set of all sources.

In possibilistic logic, as well as in its extensions and variants, we deal with pairs
where formulas and weights are handled simultaneously but on their own. Still, literals
can be moved to the “weight lot”. Indeed, a formula such as (¬p∨q, α) can be rewritten
under the semantically equivalent form (q,min([p], α)), where [p] = 1 if p is true and
[p] = 0 if p is false ([p] can be viewed as the characteristic function of the set of models
of p). This latter formula now reads “q is α-certain, provided that p is true”, and can be
used in hypothetical reasoning in case no formula (p, γ) is deducible from the available
information [8, 31]. In the special case where all the certainty weights are equal to 1
and where we would start with a base made of a set of pairs associating a formula with
the set of models of an hypothetical formula, we would deal with a semiring of the
form (2I,∪,∩, ∅,I) where I is the set of interpretations induced by the language of
the hypothetical formulas.

It is also possible to move the weight inside the formula. Namely, a possibilistic
formula (p, α) is rewritten as a classical two-sorted clause p ∨ abα, where abα means
the situation is α-abnormal, and thus the clause expresses that p is true or the situation
is abnormal, while more generally (p,min(α, β)) is rewritten as the clause p ∨ abα ∨
abβ . This leads to a possibilistic-like many-sorted propositional logic, first presented
in [11], which was proposed for handling partial orderings between weights. Then a
known constraint between unknown weights such as α ≥ β is translated into a clause
¬abα∨abβ . Another slightly different approach [17] handles the unknown weights in a
purely symbolic manner, i.e., computes the level from a derived formula as a symbolic
expression. For instance, B = {(p, α), (¬p ∨ q, β), (q, γ)} ⊢ (q,max(min(α, β), γ)).
There still exists a partial order between formulas based on the partial order between
symbolic levels; this leads to a logic (for which completeness has been proven) that
comes close to the logic of supporters.

Multiple agent possibilistic logic was outlined in [4], but its underlying semantics
and completeness results have been laid bare only in [5]. A multiple agent propositional
formula is a pair (p,A), where p is a classical propositional formula of a language L

and A is a non-empty subset of agents, where A ⊆ All (All denotes the finite set
of all considered agents; note that All may not be known in extension). The intuitive
meaning of formula (p,A) is that at least all the agents in A believe that p is true.
More general formulas of the form (p, α/A) are also considered; they mean that at
least all the agents in A are certain that p is true at least at level α. In spite of the
obvious parallel with possibilistic logic (where propositions are associated with levels
expressing the strength with which the propositions are believed to be true), (p,A)
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should not be just used as another way of expressing the strength of the support in favor
of p (the larger A, the stronger the support), but rather as a piece of information linking a
proposition with a group of agents. The resolution rule is now if A∩B ̸= ∅, then (¬p∨
q, α/A), (p ∨ r, β/B) ⊢ (q ∨ r,min(α, β)/(A ∩B)). This multiple agent logic should
not be confused with multiple source logic. In the former, each agent may be viewed
as a source, but what is manipulated is thus a subset of sources taken as a whole; what
matters in multiple agent logic is the collective consistency of subsets of agents (while
the collection of the beliefs held by the whole set of agents may be inconsistent). We are
dealing here with the semiring ((S×B(LA), (max,∪), (min,∩), (0, ∅), (1, All)) where
B(LA) is the Boolean algebra induced by the subsets appearing in the formulas of the
base.

3.3 Other products and polynomials

The semantics of a possibilistic logic base is a possibility distribution over the set of
interpretations. In information fusion, the combination of possibility distributions can
be equivalently performed in terms of PL bases: The syntactic counterpart of the point-
wise combination of two possibility distributions π1 and π2 into a distribution π1 ⊛ π2

by any monotonic combination operator ⊛ such that 1⊛ 1 = 1, can be computed in the
following way: Namely, if the PL base B1 is associated with π1 and the base B2 with
π2, a PL base B1⊛2 semantically equivalent to π1 ⊛ π2 is given by [9]:
{(pi, 1− (1−αi)⊛ 1) s.t. (pi, αi) ∈ B1} ∪ {(qj , 1− 1⊛ (1− βj)) s.t. (qj , βj) ∈ B2}

∪ {(pi ∨ qj , 1− (1− αi)⊛ (1− βj)) s.t. (pi, αi) ∈ B1, (qj , βj) ∈ B2}.
where 1 − (·) is the order reversing map of the scale S. For ⊛=min,we get B1⊕2 =
B1 ∪ B2 with πB1∪B2

=min(π1, π2) as expected (conjunctive combination). For ⊛=
max (disjunctive combination), we get B1⊕2 = {(pi ∨ qj , min(αi, βj)) s.t. (pi, αi) ∈
B1, and (qj , βj) ∈ B2}. With non idempotent ⊕ operators, some reinforcement effects
may be obtained. We thus deal with the semiring (S,max,⊛, 0, 1) (if ⊛ is associative).

In [7] a plausibility relation representation, based on polynomials, has been pro-
posed. This work was done in the context of belief revision where the primary goal is to
study reversible revision mechanisms. In this representation, the interpretations, as well
as the formulas of propositional logic, are associated with plausibility values defined as
polynomials. The polynomials used are with only one variable and where coefficients
can only take two possible values 0 and 1. Let B = {0, 1} be the set of values 0 and
1 and let B[x] be the set of polynomials (with a single variable) whose coefficients be-
long to B. The terms of the polynomials p ∈ B[x] can have positive or negative degrees
and are of the form: p =

∑n
k=1 pkx

−k +
∑m

i=0 pix
i (here we abuse notations since

we accept polynomials with negative exponents). Different operators have been used
on the polynomials B[x] for the revision process. First shift operations, materialized by
multiplication by x (right shift) and multiplication by x−1 (left shift) are used to take
into account new information. Then, the maximum operator (defined with respect to
the degree of the polynomials) is used to define the polynomials associated with the in-
terpretations from the polynomial-based knowledge bases. Finally, the lexicographical
order (on the set of degrees of the polynomials terms) is used for the comparison of the
polynomials of B[x].
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3.4 Databases and possibilistic logic
It has been shown [50] that the complexity of handling uncertainty in databases is
considerably reduced if the uncertainty takes the form of certainty levels associated
to attribute values or to tuples for relational algebra queries. The case of aggregate
queries is addressed in [49]. This kind of information indeed corresponds to possi-
bilistic logic formulas. For instance, if we go back to the Example 2 of Section 2:
the information take(Sally, math) ∨ take(Sally, CS), corresponds to the possi-
bility distribution πtake(Sally,·)(math) = 1 = πtake(Sally,·)(CS), or if we prefer
π(z = 0) = π(z ̸= 0) = 1. Indeed “Sally is taking math or computer science” is
expressed by (take(Sally, math)∨ take(Sally, CS), 1) and the additional constraint
“but not both” by (¬take(Sally, math) ∨ ¬take(Sally, CS), 1).

Let us now examine the rest of Example 2. We can take for the domain of attribute
Course the set DCourse = {math, CS, biology, physics, others} that involves all
the topics mentioned in the example and leave room for others. Then the information
“Sally takes another course” (apart from “math” or “CS”) writes in possibilistic logic
(take(Sally, physics)∨take(Sally, biology)∨take(Sally, others), 1) while “Alice
takes biology if Sally takes math, and math or physics (but not both) if Sally takes
physics” writes (take(Alice, biology), [take(Sally, math)]),

(take(Alice,math) ∨ take(Alice, physics), [take(Sally, physics)]),
(¬take(Alice, math) ∨ ¬take(Alice, physics), 1),

where symbolic weights are between [ ]. We could equivalently write (take(Alice,
biology)∨¬take(Sally,math), 1) in place of (take(Alice, biology), [take(Sally,math)]),
and this applies as well to the possibilistic formula after. Thus, the conditional table rep-
resented in Table 3 translates easily in a possibilistic logic base, and obviously can be
extended to certainty levels less than 1, if needed.

Possibilistic Description Logics [43, 30] are extensions of standard Description Logic
frameworks based on possibility theory that allow query answering from uncertain on-
tologies. The so-called lightweight ontologies are interesting fragments of DLs since
they provide a good trade-off between expressive power and computational complexity.
They are particularly appropriate for applications where query answering is the most
important reasoning task. An example of a lightweight ontology language is DL-lite
which has been extended to the framework of possibility theory [6]. In the same spirit
as the standard possibilistic logic, in the logics of description possibilities, degrees of
priority or importance are assigned to the axioms of TBox (terminological knowledge
base) and to the assertions of ABox (assertional knowledge base). The same algebraic
structures of semirings, defined in the framework of possibilistic logic, have been used
in possibilistic description logics. An important point to note is that the extensions of
the description logics to the framework of possibility theory have been made without
additional computational cost. This is particularly true in the presence of inconsistent
ontologies where the computation of the assertion repair is done in polynomial time for
for both totally and partially ordered possibilistic DL-lite [6, 3].

4 Provenance and possibilistic logic - A final discussion
Provenance calculus and possibilistic logic have been motivated by different concerns:
keeping track of the origin of the tuples obtained in a query on the one hand and the
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handling of epistemic uncertainty on the other hand. Still, the evaluation of a query
in face of a database, which, using Datalog, may be turned into a particular kind of
inference problem, is not so different from the deduction from a knowledge base in
the setting of some logical representations. Indeed in both cases, evaluating a query or
trying to prove a formula can be associated to a graph describing the different paths
leading to the ouput. Moreover we have seen with the variety of the different semantics
associated with weights that similar concerns may be encountered in the two fields
of research, as for instance, in the case of access control levels, leading to the use of
isomorphic semirings.

In the provenance calculus, the product (for join) and sum (for union and projection)
operators are used. In possibilistic (propositional or DL-lite) logic, the two semirings,
based on (min, max) and (product, max), are both used. However, from a computational
point of view, the use of semiring (min, max) offers better results and in particular it
preserves the tractability of DL-lite’s query-answering (which is not the case with a
computation based on the product and maximum operators).

In both settings, the need for explanations seems to be a common, implicit concern.
Explanations may be of different kinds in possibilistic-like logics: proof leading to the
highest certainty level, best arguments supporting a conclusion, or sources involved in
it. One may also need a symbolic expression keeping track of all the paths leading to
the conclusion in order to determine what could influence its certainty.

To a large extent, database and AI are fields that have been developed separately.
However, remarkably enough, it seems there has been absolutely no mutual exchanges
between the ideas underlying provenance and epistemic uncertainty in spite of their
proximity. Perhaps that’s a pity. Besides, let us also note that some concerns such as
consistency are proper to possibilistic-like logics where it can specialize in different
forms. Besides, in case of semirings based on min and max operations, it may be useful
to refine these operations lexicographically for breaking ties, as done, e.g., in [24].

In the presence of incoherent ontologies, the propagation mechanisms of the numer-
ical or symbolic degrees of certainty attached to the assertions, based on the algebraic
structures of semirings, make it possible to determine whether an assertion is accepted
or not and whether a response to a query is considered as valid or not. In standard pos-
sibilistic logic, it is easy to provide a degree of plausibility of an answer to a query and
to evaluate the degree of inconsistency of an ontology. The task becomes difficult if
we have to give the best support for an answer. In the case of partially ordered bases,
the challenge is above all put on finding effective methods to replace the inconsistent
ontology by one of its repairs. Once a preferred repair is computed, standard mecha-
nisms are then used on the repair and thus ignore the initial annotations necessary to
justify the validity of a given conclusion. It would then be interesting to define a notion
of annotated repair which would keep enough information from the initial incoherent
ontology to be able to retrieve the origins of the derived conclusions.
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10. Salem Benferhat, Julien Hué, Sylvain Lagrue, Julien Rossit. Interval-based possibilistic
logic. Proc. 22nd Inter. Joint Conf. on Artificial Intelligence (IJCAI’11), (T. Walsh, ed.),
Barcelona, July 16-22, 750-755, 2011.

11. Salem Benferhat, Henri Prade. Encoding formulas with partially constrained weights in a
possibilistic-like many-sorted propositional logic. Proc. 19th Int. Joint Conf. on Artificial In-
telligence (IJCAI’05), (L. Pack Kaelbling, A. Saffiotti, eds.), Edinburgh, July 30 - Aug.5,
Professional Book Center, 1281-1286, 2005.

12. Stefano Bistarelli, Hélène Fargier, Ugo Montanari, Francesca Rossi, Thomas Schiex, Gérard
Verfaillie. Semiring-based CSPs and valued CSPs: Basic properties and comparison. In: Over-
Constrained Systems 1995: M. Jampel, E. C. Freuder, M. J. Maher, eds.), LNCS 1106,
Springer, 111-150, 1996

13. Camille Bourgaux, Ana Ozaki: Querying attributed DL-Lite ontologies using provenance
semirings. Proc. 33rd Conf. on Artificial Intelligence (AAAI’19), Honolulu, 2719-2726, 2019.

14. Peter Buneman, Adriane Chapman, James Cheney, Stijn Vansummeren. A provenance model
for manually curated data. Proc. Int. Provenance and Annotation Workshop (IPAW’06), (L.
Moreau, I. Foster, eds.), LNCS 4145, Springer, 162–170, 2006.

15. Peter Buneman, Sanjeev Khanna, Wang-Chiew Tan. Why and where: A characterization of
data provenance. Proc. 8th Int. Conf. on Database Theory (ICDT’01), (J. Van den Bussche, V.
Vianu, eds.), London, Jan. 4-6, LNCS 1973, Springer, 316–330, 2001.



Provenance calculus and possibilistic logic: a parallel and a discussion 13

16. Diego Calvanese, Davide Lanti, Ana Ozaki, Rafael Peñaloza, Guohui Xiao. Enriching
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