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2CENOLI, Université libre de Bruxelles (U.L.B.),
CP 231, Campus Plaine, B-1050 Brussels, Belgium

3Department of Physics, University of Auckland, Auckland 1010, New Zealand
4The Dodd-Walls Centre for Photonic and Quantum Technologies, New Zealand

5Department of Physics and Arnold Sommerfeld Center for Theoretical Physics (ASC),
Ludwig-Maximilians-Universität München, Theresienstr. 37, D-80333 München, Germany

6Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, D-80799 München, Germany
7Laboratoire Interdisciplinaire Carnot de Bourgogne,
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The engineering of synthetic dimensions allows for the construction of fictitious 
lattice structures by coupling the discrete degrees of freedom of a physical system, 
such as the quantized modes of an electromagnetic cavity or the internal states of an 
atom. This method enables the study of static and dynamical Bloch band properties 
in the absence of a real periodic lattice structure. So far, the vast majority of im-
plementations have focused on linear and conservative processes, with the potentially 
rich physics and opportunities offered by nonlinearities and dissipation (openness of the 
system) remaining largely unexplored. Here, we theoretically and experimentally 
investigate the complex interplay between Bloch band transport, nonlinearity and dis-
sipation, exploring how a synthetic dimension realised in the frequency space of a 
coherently-driven optical resonator influences the dynamics of nonlinear waves of the 
system. In particular, we observe and study nonlinear dissipative Bloch oscillations 
occurring along the synthetic frequency dimension, sustained by localized dissipative 
structures (solitons) that persist endlessly in the resonator. The unique properties of the 
coherently-driven dissipative soliton states can extend the effective size of the synthetic 
dimension far beyond that achieved in the linear regime, as well as enable long-lived 
Bloch oscillations and high-resolution probing of the underlying band struc-ture. Besides 
representing the first experimental study of the interplay between Bloch oscillations and 
dissipative solitons, our work establishes Kerr resonators as an ideal platform for the 
study of nonlinear dynamics in long-scale synthetic dimensions, with promising 
applications in topological photonics.

Accelerating a quantum particle on an ideal periodic 
lattice potential leads to oscillatory motion, instead of a 
net drift. This counter-intuitive phenomenon, known as 
Bloch oscillations (BOs), has been observed in vari-ous 
contexts ranging from solid-state experiments [1] to 
synthetic lattice systems involving matters waves [2] or 
light [3–5]. Besides enabling direct observations of BOs 
(and other phenomena [6–8]), the efficient control and 
agility characteristic of synthetic lattices offer a route for 
judiciously exploring how effects such as nonlinearities, 
dissipation, and Bloch-band properties influence the os-
cillation dynamics. Quite generically, the existence of 
long-lived BOs (correlated to a persistent scan of the full 
Brillouin zone) is endangered by dissipation [9] and in-
stabilities associated with nonlinearities [3, 10–13]. Even 
though methods have been proposed to prevent such in-
stabilities [14, 15], the observation of long-lived BOs is 
still lacking in the realm of nonlinear waves. Further-
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more, the impact of dissipative effects (e.g. loss and gain 
of energy) on the BOs of nonlinear waves has remained 
largely unexplored [16]. Here, we address these funda-
mental questions by demonstrating that long-lived BOs 
can exist in a driven-dissipative and nonlinear environ-
ment via the formation of localized dissipative structures 
(soliton).

Beyond fundamental questions regarding their exis-
tence and stability, BOs constitute a practical probe for 
revealing the band structure of synthetic lattice systems. 
For instance, driving BOs on a one-dimensional lattice 
directly reflects the bandwidth, the Brillouin zone and the 
effective mass of the underlying band structure [2]. 
Moreover, BOs can be used to extract the geometry and 
topology of engineered topological systems, such as the 
quantized Zak phase of 1D chiral systems [17]. These 
BOs-based probes can be extended to 2D engineered sys-
tems to extract the Berry curvature [18–20], quantized 
Wilson loops [21–23] or the winding numbers of Floquet 
phases [20]. As such, exploring the specific features of BOs 
in the presence of nonlinearity and dissipative effects is 
crucial to elucidating the properties of novel synthetic
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Fig. 1. Concept. a, Schematic illustration of the experimental implementation, consisting of a coherently-driven
optical ring resonator with a Kerr-type nonlinearity that incorporates an electro-optic phase modulator (EOM) to
realise coupling between different cavity modes. The EOM engenders hopping between resonator modes separated
by an integer number of the cavity free-spectral range (FSR), thus yielding a tight-binding lattice in the synthetic
(frequency) space. An erbium-doped fibre amplifier (EDF) is also inserted into the cavity to compensate for the
losses induced by the EOM. b, In the nonlinear regime, a temporal CS is generated within the resonator. The
soliton is associated with a broad coherent optical frequency comb, thus extending the size of the synthetic
frequency lattice with numerous equally-spaced sites. The corresponding band energy and intensity profile of the CS
along the Brillouin zone are illustrated in the top-right inset. c-e, A constant force F can be introduced along the
synthetic frequency dimension by detuning the frequency of the intra-cavity EOM from an integer multiple of the
cavity FSR, thus forcing the CS to undergo transport along the synthetic lattice; as the effective force F increases,
the soliton’s transport changes from synchronisation to ideal Bloch oscillations.

systems where such effects play a key role.

Designing real (physical) periodic structures for pho-
tons and matter waves constitutes a natural path towards 
the realisation of synthetic lattices and quantum simula-
tors [7, 8]. Interestingly, an alternative method has re-
cently emerged by which motion is engineered along a 
synthetic dimension formed through coupling of the dis-
crete degrees of freedom of a system [24]. First envisioned 
for creating photonic lattices with high dimensionality via 
complex networks [25], and then widely exploited in 
ultracold gases [26–30], the concept of synthetic dimen-
sions has more recently entered the realm of photonics 
using diverse optical platforms [31–37]. In particular, 
pioneering experiments [5, 34] have shown that differ-ent 
frequency modes of an electromagnetic cavity can be used 
to represent an array of fictitious lattice sites, with motion 
along this lattice generated by an electro-optical 
modulator (EOM) inserted inside the cavity [see Fig. 1a]. 
Such a setting was recently exploited to re-alise artificial 
gauge fields for light [38–40] and to reveal topological 
windings of non-hermitian bands [41]. How-ever, these 
experiments have so far focused on operating regimes that 
are linear and predominantly conservative (albeit with 
some dissipative effects acting as unwanted 
perturbations). Under such conditions, group-velocity 
dispersion (and other experimental constraints) strongly 
limit the extent of the synthetic array. But of course, the 
particular (fibre-optic) cavity configurations used in

recent experiments [34, 42] can also be operated under 
conditions where a strong optical (Kerr-type) nonlinear-
ity introduces non-local coupling between the fictitious 
lattice sites [31, 35, 37]. This observation raises imme-
diate (as of yet unrealised) opportunities for systemati-
cally exploring how nonlinearities and dissipative effects 
can influence BOs. More generally, the possibility of con-
trollably combining synthetic lattices with nonlinearities 
could open the door to nonlinear topological physics [43–
47], with BOs offering a versatile tool for probing the 
systems’ properties.

Concurrently, the nonlinear dynamics of coherently-
driven Kerr-type resonators have been extensively stud-
ied in the absence of an intra-cavity EOM (and hence 
without a synthetic frequency dimension) [48–59]. It is 
well-established that such dissipative systems can host a 
number of universal nonlinear phenomena [48–50, 56], 
amongst which the emergence of localized structures 
known as temporal cavity solitons (CSs) has attracted 
particular attention. First observed in an optical fibre ring 
resonator [51], temporal CSs are fundamentally un-
derpinned by a double-balance between linear dispersive 
spreading and nonlinearity, as well as energy loss and gain 
(via an external coherent drive) of the resonator. Sub-
sequently, CSs have been extensively studied in the con-
text of monolithic microresonators, where they have been 
shown to be associated with the formation of broad and 
coherent optical frequency combs [54, 60–62]. Interest-
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ingly, whilst CSs and resonator-based synthetic dimen-
sions have been studied in similar platforms, there is lit-
tle overlap between the two domains of research [37, 63]. 
This is somewhat surprising since the intrinsic features of 
CSs yield all the ingredients essential to exploit the full 
potential of synthetic frequency dimensions, i.e. a short, 
robust temporal structure capable of scanning the whole 
Brillouin zone with high resolution, and a broad, coher-
ent, equally-spaced comb spectrum which allows one to 
significantly extend the number of modes than can be 
coupled in the synthetic frequency dimension – a combi-
nation of properties that is not straightforward to attain 
in linear or conservative systems [5, 34, 64]. It is only very 
recently that a theoretical study explored how dissi-pative 
CSs behave in the presence of an intra-cavity EOM 
implementing a synthetic frequency dimension [65]. How-
ever, the difficulty to include an intra-cavity EOM while 
maintaining low intra-cavity losses, a prerequisite for CS 
existence, has so far prevented experimental investiga-
tions.

Here, by leveraging a recently-developed active cav-ity 
scheme [58] to compensate for the losses incurred by an 
intra-cavity EOM, we experimentally explore the 
nonlinear dynamics of dissipative Kerr CSs in a synthetic 
frequency dimension, thus bridging the gap between the 
realms of synthetic photonic lattices and nonlinear Kerr 
resonators. In addition to exploring the predictions of ref. 
[65], we implement an effective force along the synthetic 
lattice and demonstrate that CSs can undergo long-lived 
BOs whose specific features can be substantially 
influenced by the presence of dissipation and nonlinearity. 
Our results establish Kerr resonators as an ideal platform 
to explore Bloch band transport in open nonlinear 
dissipative systems that are driven out of equilibrium, 
with potential implications for opti-cal frequency combs 
and topological photonics [8, 24, 44].

Principle and theoretical description
We begin by describing the analogy (and the limitations 
of the analogy) between a quantum particle on a periodic 
lattice and a coherently-driven Kerr resonator [34, 51]. To 
this end, we consider a ring resonator with an intra-cavity 
EOM that imparts a sinusoidal phase modulation (with 
amplitude JEOM) on the field circulating inside the 
resonator, with the modulation frequency fEOM set close 
to an integer multiple of the resonance frequency spac-ing 
of the cavity (the free-spectral range, FSR): fEOM = m × 
FSR + ∆f , with m ∈ N and ∆f � FSR [Fig. 1a].
As described in [32], the EOM permits an excitation in the 
nth cavity mode to effectively hop into nearby modes n ± 
m along the frequency axis, thus mimicking a tight-
binding model of a quantum particle moving along a one-
dimensional lattice. Therefore, under conditions of negli-
gible nonlinearity (low intra-cavity power), weak disper-
sion, and balance between loss and driving, this optical 
system can be described by a linear Schrödinger equation 
(with ~ = 1) associated with the following conservative

tight-binding Hamiltonian [Methods]:

Ĥ = −J
∑
n

(|n〉〈n− 1|+ |n〉〈n+ 1|) + (Fd)
∑
n

n |n〉〈n|

(1)

= −
∫
|τ〉〈τ | {2J cos(d(τ − F t))} dτ, (2)

where the states are labelled such that |n±1〉 correspond 
to the cavity modes n ± m coupled by the EOM. The first 
term of Eq. (1) describes hopping between neigh-bouring 
sites |n〉 → |n ± 1〉 of the lattice with hop-ping amplitude 
J = JEOM × FSR/2, whereas the second term describes 
the action of an additional constant force F = ∆f/fEOM ≈ 
∆f/(m × FSR) along the lattice, with d = 2π × m × FSR 
≡ Ωm an effective inter-site distance (typically, m = 100 
and FSR ≈ 3 MHz in the experi-ments described below in 
Fig. 2). Equation (2) corre-sponds to the dual-space 
representation of the Hamilto-nian: the “momentum” 
coordinate τ belongs to the first Brillouin zone [−π/d, π/d] 
and can be understood as the fast-time coordinate along a 
single cavity roundtrip. (In contrast, t corresponds to a 
slow-time variable describ-ing the evolution of the intra-
cavity field over consecutive roundtrips [51].) Note also 
that in Eq. (2), the action of the force enters through a 
time-dependent gauge poten-tial defined by F t.

When F = 0, one identifies the dispersion relation 
E(τ)=−2J cos(dτ), which reveals the existence of a band 
structure [top-right inset of Fig. 1b, in blue]. Activating 
the force, F 6=0, generates a constant drift along the mo-
mentum (τ) space, hence leading to transport: a local-ized 
wave-packet experiences an oscillating band velocity dE/
dτ , causing the packet to oscillate back and forth along 
the synthetic frequency lattice, i.e., undergo BOs. In this 
ideal linear framework, the oscillatory motion is 
characterised by a Bloch period TBO and an oscillation 
amplitude ABO in the synthetic (frequency) space given 
by [2] :

TBO =
2π

Fd
, ABO =

2J

F
. (3)

The Schrödinger equation associated with Eq. (1)
is useful in revealing the analogy between a quantum
particle on a periodic lattice and an optical resonator
with an intra-cavity EOM. But to permit an accurate
description of the system under general conditions, the
equation must be rigorously augmented with terms that
take into account the full effects of nonlinearity, group-
velocity dispersion, driving, and dissipation. This yields
a driven-dissipative nonlinear Schrödinger equation, also
known as Lugiato-Lefever equation (LLE) [48, 66], that
is generalised here to account for the intra-cavity phase
modulation [see Eq.(6) in Methods]. CSs correspond
to steady-state (invariant along t) solutions of the LLE
that are localized along the fast-time (τ) coordinate
and characterised by a broad comb-like spectrum in the
frequency (ω) domain [Fig. 1b]. In what follows, we
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will present the first experiments that probe their be-
haviour when JEOM 6= 0, unveiling Bloch band transport 
phenomena whose precise features are shaped by the 
interplay of nonlinearity and dissipation [see Figs. 1c–e].

Dissipative solitons on a synthetic band structure 
Our experiment consists of a 64-m-long ring resonator 
(yielding an FSR of 3.12 MHz) that is mainly built from 
standard single-mode optical fibre [Fig. 1a and Meth-ods]. 
The resonator is coherently-driven at 1550 nm using 
nanosecond, flat-top laser pulses that are synchronised to 
the FSR of the cavity; the driving pulses are derived from 
a narrow-linewidth continuous wave laser and launched 
into the resonator via a 99/1 coupler.

The synthetic frequency dimension is realised by an 
intra-cavity EOM that is driven with a radio-frequency 
signal whose amplitude (JEOM) and frequency (fEOM) can 
be freely adjusted. Because the EOM introduces 
considerable losses, which hinders the accumulation of 
intra-cavity power levels sufficient for the observation of 
nonlinear effects, an erbium-doped fibre amplifier (EDF) 
is inserted into the cavity. This amplifier partially com-
pensates for the loss due to the EOM [58], thus preserving 
low effective loss [Methods].

The band structure associated with the synthetic fre-
quency dimension can be probed by scanning the mean 
phase detuning, δ0, between the driving laser and a cav-
ity resonance – achieved experimentally by sweeping the 
frequency of the laser that drives the resonator – whilst si-
multaneously measuring the evolution of the intra-cavity 
intensity profile along the fast-time domain. Plotting the 
intracavity intensity on a 2D diagram with the fast-time 
coordinate τ as the x-axis and δ0 as the y-axis then re-veals 
the band (see ref. [34] and Methods). Figure 2a shows 
results from such experiments when the EOM fre-quency 
is perfectly synchronised with an integer multiple of the 
FSR (∆f = 0 ⇒ F = 0).

Similarly to when operating in the linear regime [34], 
the phase modulation induced by the intra-cavity EOM 
engenders a dynamical modification of the cavity reso-
nance condition along the fast-time domain, thus bend-
ing the resonator’s response along the dual space. The 
dashed curve in Fig. 2a shows that the linear band struc-
ture defined through δ0 = JEOM cos(Ωmτ) qualitatively 
follows the observed response, but with deviations due to 
the additional effect of nonlinearity [65]. A more con-
spicuous contrast with the linear theory is the emergence 
of a localized structure in dual space as δ0 increases be-
yond the top of the band. This structure corresponds to a 
CS, emerging spontaneously as the mean detuning δ0 is 
swept across a resonance [see Supplementary Infor-
mation Section E]. Note that the emergence of this CS at 
the top of the band does not correspond to the band 
soliton coherent structure introduced in ref. [65], which 
originates from a front pinning effect and thus does not 
appear relevant for studying transport phenomena.

To gain more insight, Fig. 2c shows results from nu-
merical simulations of the generalised LLE with param-

eters corresponding to the experimental configuration of 
Fig. 2a [Methods]. The simulations also show clearly the 
bending of the resonator’s response, as well as the emer-
gence of the CS at the top of the band structure. But in 
addition, the simulations also reveal that the band it-self 
exhibits complex internal structures, being composed of 
highly-localized wave-packets that fluctuate as δ0 in-
creases. This internal structure stems from a Turing-type 
modulation instability (MI) that is enabled by the 
anomalous dispersion of the resonator and breaks the lo-
cally quasi-homogeneous intra-cavity field into fast fluc-
tuating wave-packets [48–50]. Because the threshold con-
dition of the instability depends upon the cavity detun-
ing (that itself depends upon fast-time due to the intra-
cavity EOM), this instability remains localized to within 
the band [55, 65].

The picosecond-scale internal structure of the band (as 
well as the precise profile of the CS) is not directly 
resolved in our experiments [Fig. 2a] due to the finite 12-
GHz-bandwidth of our time-domain detection system 
[Methods]. However, measurements made along the syn-
thetic (frequency) space completely corroborate the sim-
ulation results. Figure 2d shows the optical spectrum of 
the intra-cavity field measured across a range of cavity 
detunings where simulations predict band-MI to manifest 
itself. These measurements reveal a wave-packet width in 
the synthetic (frequency) space of about 200 GHz, com-
mensurate with the simulated picosecond-scale features in 
the dual (fast-time) space.

Figure 2e shows two measured optical spectra ob-tained 
either in the nonlinear CS regime (red curve) or below the 
CS formation threshold (linear regime, in drak grey). The 
CS state is obtained for a driving power Pin = 280 mW 
and a cavity detuning δ0 = 0.64 rad, and is compared to 
the linear state (Pin = 1 mW, δ0 = 0 rad). The CS 
spectrum has a sech-squared profile with a 3-dB 
bandwidth of 0.125 THz, corresponding to a 2.6-ps wave-
packet in duration [inset in Fig. 2e]. Because the CS 
circulates without distortion around the resonator, its 
spectrum consists of sharp discrete lines (a frequency 
comb) that are equally-spaced by the resonator FSR. This 
equi-spacing of the CS’s spectral lines can be attributed to 
the cancellation of group-velocity dispersion by the 
solitons’ nonlinearity, and is in stark contrast with the 
linear resonator modes that are not equally-spaced due to 
dispersion – a fact that fundamentally limits the extent of 
synthetic arrays attainable under linear operation 
conditions [67], see also the Supplementary Information 
Section B. Compounded by its broad spectral width, with 
more than 128,000 lines above the −20 dB level, the CS 
state can thus be seen to substantially extend the number 
of frequency modes (synthetic lattice sites) that are 
coupled through the intra-cavity modulator, especially 
when compared with the linear state, which only displays 
30 frequency modes above the noise floor.
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Fig. 2. Synthetic band spectroscopy in the nonlinear regime. a, Experimental measurements, showing the 
resonator response in the dual (fast-time) space when the mean detuning δ0 is changed with F = 0,
Ωm = 2π × 0.3 GHz, JEOM = 0.6 rad and Pin = 280 mW (for other parameters, see Methods). b, Evolution of the average 
intra-cavity power corresponding to panel a, showing a “step” feature characteristic of CS formation [52]. c, Simulation 
results corresponding to the experiments shown in a. The dashed curves in a and c depict the linear band structure δ0 = 
JEOM cos(Ωmτ) associated with the tight-binding Hamiltonian described by Eq. (1), and

tR = FSR−1 is the time it takes for light at the driving frequency to complete one roundtrip. d, Concatenation of optical 
spectra measured for different cavity detunings as indicated, showing the characteristic signatures of modulational 
instability. e, CS spectrum measured for Pin = 280 mW and a detuning δ0 = 0.64 rad (red solid line) and compared to the 
linear state with no CS present (Pin = 1 mW, δ0 = 0 rad, dark grey). The dashed-lines indicate numerical predictions 
obtained from the LLE (see the modelling section in Methods), while the inset shows the corresponding simulated 
temporal profile of the CS. Note that only the envelope of the spectra are shown for the CS and simulations for clarity 
purpose.

Bloch oscillations of cavity solitons
To the best of our knowledge, the results shown in Fig. 2
represent the first experimental observation of dissipa-
tive solitons in the presence of a synthetic frequency
dimension. In addition to confirming the salient the-
oretical descriptions of ref. [65], these results present
CSs as a promising, high-resolution tool for the study
of Bloch band transport in the presence of nonlinear-
ity and dissipation. To probe for such transport, we
experimentally introduce an effective force F along the
synthetic frequency dimension by slightly detuning the
EOM frequency from a harmonic of the cavity FSR
(∆f 6= 0 ⇒ F 6= 0). We then use an ultrafast dis-
persive Fourier transform scheme [68, 69] to record the
roundtrip-by-roundtrip evolution of the intra-cavity op-
tical spectrum in a regime where a single CS circulates

the cavity [see Methods].

Figures 3a–d display typical trajectories measured in 
the synthetic (frequency) space for different effective force 
F . Here the pseudo-color plots show a concatena-tion of 
CS optical spectra measured on a roundtrip-by-roundtrip 
basis as the soliton circulates around the ring, hence 
illustrating the motion of a wave-packet along the 
synthetic lattice. These measurements immediately re-
veal two qualitatively different regimes. First, for small 
effective force F [Fig. 3a], the CS experiences a fast 
transient motion along the synthetic frequency dimen-
sion (occurring typically over a few hundred roundtrips 
and not captured here due to experimental constraints), 
but eventually comes to a halt at a fixed (synthetic) po-
sition (close to 50 GHz in Fig. 3a) that is offset from the 
soliton’s initial location – when F = 0, corresponding
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Fig. 3. Bloch oscillations of dissipative solitons. a-d, Concatenation of experimentally measured CS optical 
spectra as a function of time for different levels of effective force F and modulation amplitude JEOM (as indicated). Each 
measurement was obtained with Pin = 280 mW, Ωm = 2π × 9.7 GHz, and δ0 = 1.5 rad (for other parameters, see 
Methods). The white dash-dotted line in a shows the theoretical prediction of the synchronisation-induced CS frequency 
offset deduced from the nonlinear theory Eq. (4), while the dashed curves in b-d show oscillations corresponding to 
linear and conservative ideal BOs with period and amplitude given by Eqs. (3) (see also main text). Pink dash-dotted 
line and pink dot in panel e show respectively, the theoretical prediction of Eqs. (4) and experimental result deduced 
from a, highlighting the frequency offset undergone by the CS in the synchronisation regime. Red circles in e and f 
respectively show measured amplitude and period of CS oscillations in the synthetic frequency space as a function of the 
effective force F , while the blue and red curves show theoretical predictions from the ideal linear BOs [Eqs. (3), blue 
curve] and nonlinear [Eqs. (4), red curve] theories. Note that the error-bars related to the uncertainties of measurements 
of the amplitude and period of BOs are contained in the size of the red dots depicted in Figs. 3e and 3f.

to the carrier frequency of the driving field, centered at 0 
GHz. This behaviour is a manifestation of nonlinear 
synchronisation: the modulation induced by the EOM 
pins the CS, shifting its mean frequency so as to can-cel 
the temporal desynchronisation between the two (see refs. 
[53, 59, 70, 71] for related CS synchronisation in-volving 
different mechanisms). Note that the absence of spectral 
oscillations in this weak force regime has been further 
confirmed experimentally by means of comple-mentary 
measurements based on an offset filtering tech-nique [see 
Supplementary Information Section F].

In stark contrast, for large effective forces F [Fig. 3b–d], 
the pinning induced by the modulation is insufficient to 
cancel the external desynchronisation, resulting in the CS 
exhibiting oscillations in the synthetic (frequency) space. 
Physically corresponding to periodic red- and

blue-shifting of the solitons’ frequency, these oscillations 
are analogous to BOs occurring along the systems’ 
synthetic dimension. Indeed, the dashed curves in Figs. 
3b–d show the sinusoidal trajectories with ampli-tude and 
period corresponding to the ideal BOs given by Eqs. (3). 
As can be seen, these theoretical predictions are in 
excellent agreement with the experimental mea-
surements, confirming that the oscillations experienced by 
the dissipative CSs for large effective force F can be 
likened to BOs.

To better understand the transition between the two 
qualitatively distinct dynamical regimes observed in Figs. 
3a–d, we performed experiments over a wide range of 
effective forces F . Results from these experiments are 
summarised as red circles in Figs. 3e and f, where
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we respectively depict the amplitude and period of the 
oscillations experienced by the solitons in the synthetic 
(frequency) space. Note that the data in the synchro-
nization regime of Fig. 3e represent constant frequency 
shift and not an oscillation amplitude. These measure-
ments clearly reveal how the CSs transition from synchro-
nisation to oscillations as the effective force F increases, 
and also how the oscillation characteristics tend towards 
those predicted by the linear and conservative BOs the-
ory [Eqs. (3), blue curve].

All of the experimental results presented in Fig. 3 are 
in excellent agreement with predictions from the LLE 
[Methods]. Indeed, the red curves in Figs. 3e and f show 
oscillation characteristics extracted from a nonlinear the-
ory derived by applying a Lagrangian perturbative ap-
proach to the CS solutions (see refs. [72, 73] and Supple-
mentary Information Section A). This framework yields 
the following generalised transport equations in the syn-
thetic (frequency) space and the dual (fast-time) domain:

tR
d〈ω〉
dt

= −Λe〈ω〉+ JEOMΩm sin(Ωm〈τ〉),

tR
d〈τ〉
dt

= tRF + β2Lc〈ω〉, (4)

where 〈ω〉 and 〈τ〉 represent the CS’s centre of mass along 
the frequency and fast-time coordinates, respectively, Lc is 
the resonator circumference, tR = FSR−1, Λe is the ef-
fective resonator dissipation expressed as a proportion of 
intensity lost each roundtrip, and β2 is the group-velocity 
dispersion coefficient of the resonator waveguide.

Additional insights can be obtained by analysing the 
equations in the limits where F is small and large, re-
spectively. In the first limit (F ∼ 0), the frequency vari-
able 〈ω〉 evolves slowly, being slaved to the adiabatically 
changing temporal variable 〈τ〉. This allows to approxi-
mate d〈ω〉/dt = 0, yielding the following Adler-like syn-
chronisation equation [59, 74, 75] for the temporal vari-
able 〈τ〉 (see also Supplementary Information Section A):

tR
d〈τ〉
dt

= FtR + β2Lc
JEOMΩm

Λe
sin(Ωm〈τ〉). (5)

It should be clear that a fixed point exists for 〈τ〉 pro-
vided that |F | < |Fc| = |β2LcJEOMΩm/(ΛetR)|, in which 
case the CS will be synchronised to the modulation in-
duced by the EOM, and the soliton’s mean frequency 
correspondingly pinned to a constant value.

In the opposite limit, |F |tR � |β2Lc〈ω〉|, we have 〈τ〉 ≈ 
F t. If additionally |F | � Λe/(2πm), the solution to the 
CSs position in the synthetic (frequency) space can be 
written as 〈ω(t)〉 ≈ −JEOMΩm/(2πmF ) cos(ΩmF t+φ0) 
where φ0 is a con-stant phase offset, revealing the 
expected BO pe-riod TBO = 2π/(ΩmF ) and amplitude A 
= JEOMΩm/(2πmF ) = 2J/F in agreement with Eq. (3).

The analysis above shows that the generalised trans-
port equations (4) well capture the nonlinear soliton 
behaviour for small and large effective force F , and

that in the latter limit, the oscillations display charac-
teristics expected for BOs. These equations also reveal 
the physical mechanism that causes the oscillation 
characteristics to deviate from ideal BOs in the regime 
of intermediate force F : the cavity dissipation damp-
ens the oscillations in the synthetic space, leading to 
an amplitude that is reduced from the conservative limit.

Discussion
We have reported on the generation and manipulation of 
dissipative solitons in a synthetic frequency dimension. 
Our experiments were performed in a coherently-driven 
Kerr-type resonator that incorporates an EOM so as to 
introduce a synthetic 1D (tight-binding) lattice along the 
frequency axis. We then demonstrated that dissipa-tive 
Kerr CSs can spontaneously emerge in the resonator when 
probing the systems’ band structure. By detun-ing the 
EOM frequency from an integer multiple of the cavity 
FSR, we implemented an effective force along the 
synthetic frequency dimension, exploiting the CS state –a 
natural attractor of the system – for the study of Bloch 
transport in the presence of nonlinearity and dissipation. 
Our experiments show that, depending on the magnitude 
of the effective force, the CSs can undergo synchroni-
sation or oscillation, with the oscillation characteristics 
tending towards those attributed to ideal long-lived BOs 
in the large-force limit, a phenomenon that cannot be 
realized in the absence of CSs (in this system), funda-
mentally restricted to steady-state dynamics [64].
Compared to resonator-based systems operating in the 

linear regime, the unique characteristics of CSs enable to 
substantially extend the size of the synthetic 1D tight-
binding lattice. Furthermore, the solitons can be used as a 
highly-localized tool to probe the system’s Bloch band 
structure with unprecedented resolution: whilst direct 
band structure spectroscopy (see Fig. 2a and ref. [34]) can 
only resolve band features larger than the photo-detector 
response time, the amplitude of CS BOs – which directly 
reflect the band structure – is inversely proportional to 
the width of the Brillouin zone, thus becoming more and 
more discernible as the band features become smaller. In 
this context, it is worth noting that the width of the 
Brillouin zone explored by the CSs in Fig. 3 is an order of 
magnitude smaller than that of the band probed in Fig. 2, 
and three orders of magnitude smaller than those studied 
in ref. [34].
Several extensions of our present work can be envisioned. 
For example, CSs could permit to study the impact of 
nonlinearity and dissipation (and more generally, the 
openness of the system) in high-dimensional synthetic 
frequency crystals, implemented by driving the intra-
cavity EOM with multiple-tones RF signals [34]. Non-
Hermitian lattices in the frequency space could be also 
engineered through simultaneous amplitude and phase 
modulations of the Kerr resonator [41]. Finally, more 
complex synthetic structures with non-trivial topologies 
could be generated by using multiple coupled or multi-
component, modulated cavities [36, 38, 76–78], whereas
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on-chip systems could be engineered by leveraging state-
of-the-art photonic integration [39, 64, 67, 79]. To con-
clude, our work establishes that synthetic dimension en-
gineering in Kerr-type optical resonators can be used to 
study how nonlinearity and dissipation affect Bloch band 
transport, whilst simultaneously permitting new avenues 
for the manipulation of dissipative CSs with potential 
applications in optical frequency comb generation and 
nonlinear topological photonics [44].

Methods

Modelling
Accurate modelling of the Kerr cavity dynamics requires that 
the linear Schrödinger equation associated with Eq. (1) is rig-
orously augmented with terms that take into account the full 
effects of nonlinearity, group-velocity dispersion, driving, and 
dissipation. This yields the so-called Lugiato-Lefever equa-tion 
(LLE) [48, 66], generalised to account for the intra-cavity 
phase modulation [65]:

itR
∂A

∂t
− β2Lc

2

∂2A

∂τ2
+ γLc|A|2A = (6)

− iΛe

2
A+ i

√
θPin + [δ0 − JEOM cos(Ωm(τ − Ft))]A.

Here, A(t, τ ) describes the envelope of the intra-cavity electric 
field in the dual (fast-time) space, Lc is the resonator circum-
ference, and tR = FSR−1 is the roundtrip time at the driving 
wavelength. β2 and γ are respectively the group-velocity dis-
persion and the nonlinear Kerr coefficient of the resonator 
waveguide, Λe denotes the effective cavity loss that take into 
account the intra-cavity gain of the optical amplifier [58], θ and 
Pin correspond respectively to the input coupler ratio and 
coherent driving power, and δ0 is the mean-value of the phase 
detuning between the driving field and a cavity resonance. 
Note that the LLE is written in a reference frame moving at 
the group-velocity of light at the driving wavelength. In the 
presence of a desynchronisation between the EOM frequency 
and an integer multiple of the cavity FSR (∆f 6= 0 ⇒ F 6= 0), 
the modulation imparted by the EOM drifts in this reference 
frame. On the other hand, by shifting the reference frame such 
that τ → τ − F t, we obtain a modified LLE where the 
modulation is stationary:

itR
∂A

∂t
− itRF

∂A

∂τ
− β2Lc

2

∂2A

∂τ2
+ γLc|A|2A = (7)

− iΛe

2
A+ i

√
θPin + [δ0 − JEOM cos(Ωmτ)]A.

By retaining only the first two terms (the last term) on the left-
hand side (right-hand side) of Eq. (7) and applying the Fourier 
transformation, one obtains the linear Schrödinger equation 
associated with Eq. (1) [see Supplementary Infor-mation 
Section A].

The simulation results shown in Fig. 2 were obtained by 
numerically integrating Eq. (7) using the split-step Fourier 
method with parameters corresponding to the experiments: Lc 

= 64 m, γ = 10−3 W−1.m−1, β2 = −20 × 10−27 s2.m−1, Λe = 
0.05, θ = 0.1, Pin = 0.28 W, JEOM = 0.6 rad, fEOM = 0.3 GHz. 
The simulations shown in Fig. 2e used a hyperbolic secant 
initial condition and with the mean detuning fixed at δ0 = 0.64 
rad. The simulations shown in Fig. 2c were obtained

with a noisy initial condition and with the mean phase detun-
ing δ0 linearly increasing at a rate of 66.5 mrad/roundtrip, and 
by replacing the effective loss Λe in the right-hand side of
Eq. (7), by ([(Λ − G0)/(1 + P −sat

1〈|A|2〉)] to take into account 
for the intracavity amplifier saturation, where 〈|A|2〉 is the 
average intracavity power, G0 = 0.47 is the unsaturated am-
plification factor, Psat = 280 mW is the amplifier saturation 
power, and Λ = 3.2 dB is the intrinsic cavity loss [58].

Experimental set-up
The resonator schematically displayed in Fig. 1a is made of ∼ 
63 m of standard telecommunication single-mode fibre 
(SMF-28) spliced to a 75 cm-long segment of erbium doped 
fibre (EDF, Liekki® ER16-8/125), leading to a cavity FSR of 
3.12 MHz (see also Supplementary Information Section C). 
The amplifying section provides the optical gain required to 
partially compensate for the cavity roundtrip losses (close to 
3.2 dB). The length of the amplifying section has been care-
fully adjusted following the method described in ref. [58]. The 
erbium doped fibre is surrounded by two wavelength divi-sion 
multiplexers (WDMs) to combine the 1480-nm backward 
pump with the intra-cavity signal, and to reject the residual 
non-absorbed pump power. When the EDF is removed from 
the resonator, the total losses of the cavity have been eval-
uated to 3.2 dB, which corresponds to a resonance linewidth of 
390 kHz (intrinsic finesse F = 8, Q factor of 750 × 106). With 
the EDF, the effective finesse is Fe = 125 (Q factor of 7.8 × 
109) and the linewidth is about 25 kHz. A 99/1 tap-coupler is 
used to inject the coherent driving beam into the cavity, while 
part of the intra-cavity power is extracted for analysis thanks 
to a 90/10 coupler. Before the input coupler, a polarisation 
controller is used to align the polarisation state of the driving 
beam along one of the two principal eigenmodes of the cavity. 
The synthetic dimension is implemented in the fre-quency 
domain using a commercial phase modulator (EOM, 
bandwidth: 12 GHz), inserted directly into the ring resonator. 
The EOM is driven by a radio-frequency (RF) signal gen-
erator whose amplitude (JEOM, experimentally limited to 0.6 
rad) and frequency (fEOM) can be freely adjusted. In ad-dition, 
an intra-cavity polarisation controller limits the EOM 
polarisation-dependent losses. The resonator is coherently-
driven by means of a sub-100-Hz linewidth continuous wave 
(cw) laser, slightly tunable and centred at 1550.12 nm. At this 
driving wavelength, the overall resonator displays anomalous 
group velocity dispersion – a requisite for CS existence. The 
cw-laser is modulated by means of a Mach-Zehnder amplitude 
modulator (bandwidth: 12 GHz, extinction ratio: 30 dB), 
driven by a pulse pattern generator synchronised with the 
cavity FSR, so as to generate a train of 1.2-ns square pulses. 
The resulting flat-top pulse train is then amplified with a 
commercial erbium doped fibre amplifier (EDFA) before injec-
tion into the ring resonator. We probe the band structure by 
slowly increasing the driving laser wavelength and recording 
the power at the output of the 90/10 coupler with a 200 kHz 
photodiode (Figure 2b) or with a 12 GHz detection system 
(Figure 2a), as described below. The cavity can be stabilised at 
any detuning δ0 by means of a counter-propagating and 
frequency shifted control signal [80]. This signal is generated 
by extracting 5% of the driving cw-laser and sending it to a 
tunable opto-acoustic frequency-shifter (110 ± 5 MHz). The 
resulting low power control signal (0.1 mW) is then injected 
into the cavity on the same polarisation state as the main 
signal thanks to an optical circulator combined to a polar-
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isation controller. The cavity detuning is stabilised through
feedback on the driving cw-laser wavelength so as to maintain
a constant intra-cavity average power for the control signal.
The feedback signal is generated by a proportional-integral-
derivative (PID) controller, driven by a 200 kHz photodiode.
We then map the detuning to the frequency of the control
signal by fitting the cavity transmission in the linear regime.
Finally, at the output of the system, the intra-cavity field is
characterised both in the temporal and spectral domains by
means of a 45 GHz photodiode connected to a 12 GHz real-
time oscilloscope (20 Gsample.s−1) and an optical spectrum
analyser, respectively.

Bloch Oscillations
The CS evolution along the synthetic space is recorded
roundtrip-by-roundtrip by performing a dispersive
Fourier transformation (DFT) [68, 69]. Using two
50 km-long spools of standard single-mode fibre [SMF-28, β2 = 
−20 × 10−27 s2.m−1], our real-time spectrum measurements 
reach a resolution of 12 GHz [5], which imposes an upper limit 
for the desynchronization force used in our experiments to 
around F = 1.25 × 10−5 so as to efficiently resolve the spectral 
BOs. To cope with propagation losses (10 dB/spool), each 
spool is surrounded by two WDMs (1450/1550 nm) to perform 
(co-propagating) Raman amplification. The 1450 nm Raman 
pump power, before being split in two, is set to 1.4 W. Before 
the DFT, to avoid the detrimental interferences occurring 
between the CS and its associated cw background, a nonlinear 
optical loop mirror (NOLM) has been implemented to remove 
the cw component. The NOLM is made of a fibre loop closed on 
a 50/50 coupler and includes a variable optical attenuator 
(VOA), 200 m of dispersion compensating fibre (DCF, 
nonlinearity coefficient γDCF = 3 W−1.km−1) and a 
polarisation controller. When the VOA is set to 5%, the 
NOLM transmission reaches almost one for a CS of 50 W peak 
power, whereas its cw background is attenuated by 20 dB [81]. 
A commercial EDFA is used at the input of the NOLM to 
increase the CS peak power above 50 W. As the amplitude of 
CS-BOs depends on the EOM frequency, the latter is set close 
to Ωm = 2π × 9.7 GHz to be sufficiently above the DFT 
resolution (12 GHz). Finally, BOs of CSs are recorded while 
slowly scanning the cavity detuning in the vicinity of δ0 = 1.5 
rad; this scan is so slow that the detuning can be considered 
constant over the duration of the measurements shown in Fig. 
3. Note also that the initial phase shifts observed in Figs. 3b-d 
are purely arbitrary as they only correspond to the different 
starting points of the recording process. A complete 
experimental set-up is given in the Supplementary 
Information, Section C.

Note added: We note that Bloch oscillations were recently 
detected along a synthetic dimension of atomic harmonic trap 
states [82].
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