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We experimentally demonstrate an all-optical random
number generator based on spontaneous symmetry
breaking in a coherently-driven Kerr resonator. Ran-
dom bit sequences are generated by repeatedly tun-
ing a control parameter across a symmetry-breaking
bifurcation that enacts random selection between two
possible steady-states of the system. Experiments are
performed in a fibre ring resonator, where the two
symmetry-broken steady-states are associated with or-
thogonal polarization modes. Detrimental biases due to
system asymmetries are completely suppressed by lever-
aging a recently-discovered self-symmetrization phe-
nomenon that ensures the symmetry breaking dynamics
act as an unbiased coin toss, with a genuinely random
selection between the two available steady-states. We
optically generate bits at a rate of over 3 MHz with-
out post-processing and verify their randomness using
the National Institute of Standards and Technology and
Dieharder statistical test suites. © 2023 Optica Publishing

Group
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Coherently-driven nonlinear resonators have attracted sig-4

nificant attention over the last decade due to their potential ap-5

plications, including the generation of optical frequency combs6

[1–3], as well as the rich physics and dynamics they exhibit, in-7

volving phenomena such as dissipative solitons and complex8

phase transitions [4–6]. In this context, one universal nonlinear9

phenomenon that has stimulated particular recent interest is10

spontaneous symmetry breaking (SSB), with pioneering exper-11

imental observations reported in monolithic microresonators12

[7–9], macroscopic fibre ring resonators [10, 11], and coupled-13

cavities [12]. SSB refers to the ubiquitous process whereby a14

physical system in a symmetric state loses its symmetry in favour15

of two asymmetric states – a phenomenon that can be accessed16

by tuning a control parameter across a bifurcation point. In17

the context of systems involving a single resonator [7–11], SSB18

has been observed between two counter-propagating fields [7–19

9], as well as between co-propagating orthogonal polarization20

modes [10, 11], with the detuning between the driving laser21

and a cavity resonance (or the power of that laser) acting as the22

control parameter [8, 10]. In each case, slight power deviations23

between the two competing fields circulating in the cavity are24

magnified over consecutive roundtrips, leading to the selection25

of one of the possible asymmetric states [7, 13]. Under perfectly26

symmetric operating conditions, the selection enacted by SSB27

is completely random, alluding to the possibility of using the28

phenomenon for the generation of random numbers that are29

critical for various applications, including cryptography and30

security [14, 15]. Unfortunately, in practice, this prospect is typi-31

cally prohibited as a result of the sensitivity of SSB to residual32

asymmetries, which leads to a statistical preference towards33

one of the states, thus preventing truly random selection upon34

symmetry-breaking [10, 16].35

Remarkably, a phenomenon was recently discovered that can36

completely eliminate the impact of asymmetries on polarization37

SSB dynamics in fibre ring resonators. Specifically, it was shown38

in [17] that the implementation of a π−phase shift between two39

orthogonal polarization modes of the resonator resulted in a40

period-2 (P2) switching behaviour between two polarization41

modes in the cavity, somewhat similar to the period doubling42

regime used in bulk optical parametric oscillators [18, 19]. This43

periodic switching leads to a natural ’self-symmetrization’ of the44

system, as asymmetries are averaged out over two roundtrips.45

While the results in [17] presented convincing evidence of the46

randomness of the SSB process and highlighted the potential for47

random number generation, the system was not yet optimised48

for fast random number generation and lacked a thorough anal-49

ysis of the statistical properties of the generated bit sequence.50

Here we report on a comprehensive experimental study of51

random number generation based on SSB in a coherently-driven52

Kerr resonator under conditions of self-symmetrized operation.53

Building upon the experiment reported in [17], we construct an54

optimised setup that allows us to generate random optical bits55

at rates exceeding 3 MHz without post-processing by repeat-56

edly scanning the cavity detuning across the SSB bifurcation57

point. We judiciously demonstrate the randomness of the sys-58

tem by showing that the generated sequences pass all pertinent59

tests from the National Institute of Standards and Technology60

and Dieharder Statistical Test Suites [20, 21]. Our scheme offers61
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Fig. 1. (a) Schematic illustration of a passive, coherently-
driven Kerr resonator supporting two orthogonal polarization
modes. Only one mode is driven, and a π phase-defect sep-
arates the resonances of the two cavity modes E1 and E2. (b)
Cavity resonances for the two principal polarization modes
E1 and E2. Ein corresponds to the driving field, while δπ de-
scribes the deviation of the mode resonance separation from
π. (c) Bifurcation diagram, showing the intensities of the in-
tracavity steady-states in the circular basis. The solutions are
symmetric (|E+|2 = |E−|2) for small and large detunings, but
become asymmetric via SSB. Solid (dashed) curves represent
stable (unstable) solutions.

future potential for random number generation with GHz repeti-62

tion rates and requires no post-processing. Moreover, thanks to63

its all-optical nature, our scheme could enable random number64

generation with improved speed and energy efficiency com-65

pared to current state-of-the-art systems [19, 22, 23]. In addi-66

tion, the fact that our scheme is an all-fiber system operating67

at 1550 nm makes it an excellent candidate for integration with68

other optical devices. By demonstrating the true randomness69

of the SSB process, our results also underline the potential of70

the self-symmetrized mechanism for the realization of a novel71

coherent Ising [24–26] or Potts machine [27].72

We first briefly summarise the physics of the self-73

symmetrized SSB scheme that underpins our experiments [17].74

To this end, Fig. 1(a) shows a conceptual illustration of our SSB-75

based random number generator (RNG). The system is built76

around a passive, coherently-driven nonlinear Kerr resonator77

supporting two principal orthogonal polarization modes (E178

and E2) – defined as polarization modes that map back to them-79

selves at the end of each roundtrip. Only one of the principal80

modes is driven, and the cavity resonances corresponding to the81

two modes are offset by a phase-detuning of approximately π,82

realized via a birefringent defect (polarization controller) within83

the cavity. To understand the dynamics of the system, we con-84

sider the intracavity field evolution in the circular polarization85

basis, defining the left- and right-circular polarization compo-86

nents as E± = (E1 ± iE2)/
√

2. As a result of the π-phase shift87

between the two cavity modes, the sign of one of these compo-88

nents (e.g. E2) becomes inverted relative to the other at each89

roundtrip E2 −→ E2eiπ = −E2. This alternating effect leads to a90

periodic swapping of the circular polarization projections such91

that, at the end of each roundtrip, E+ and E− swap values. Over92

two roundtrips, each circular polarization component returns to93

their original value, and it was shown in [17] that the evolution94
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Fig. 2. Experimental setup. PPG: pulse pattern generator, PC:
polarization controller, EDFA: erbium doped fibre amplifier,
PBS: polarization beam splitter, EOM: Electro-optic modulator,
SMF: Single mode fibre.

of the components, when averaged over two roundtrips, obeys95

coupled Lugiato-Lefever -like mean-field equations, which are96

well-known to display SSB [28]. Importantly the two-roundtrip97

periodicity of the nonlinear motion leads to self-symmetrization98

that eliminates all asymmetries, leading to the components E±99

experiencing identical detuning and driving terms. This com-100

plete self-symmetrization remains robust even in the presence101

of both an imperfect π-phase shift [referred to as δπ in Fig. 1(b)]102

and an imperfectly aligned driving polarization [17].103

Figure 1(c) displays predicted steady-state intensity values104

of the E± components obtained from solely even or odd round-105

trips, with parameters similar to our experiments. Here, the in-106

tensities are plotted versus the detuning between the frequency107

of the driving laser and a closest cavity resonance of mode E1,108

normalized to half the resonance linewidth. At low detunings,109

the two polarization projections E± are exactly equal. Symmetry110

breaking occurs above a certain threshold, manifesting itself111

through the parting of the two intensities of the polarization112

modes. Once the detuning is sufficiently large, the symmetry-113

broken ’bubble’ closes, and the intensity levels become equal114

again. Thanks to the self-symmetrization that occurs as a result115

of the π-phase defect, repeated scanning of a control parameter116

[e.g. cavity detuning as in Fig. 1(c)] leads to random selection117

between the two possible states in the E± basis in a way that is118

immune to asymmetries [10]. By measuring the intensity of one119

of the circular polarization projections E± and assigning a value120

of ’1’ to high intensity measurements and ’0’ to low intensity121

measurements, the mechanism can be used for robust generation122

of random bit sequences. Our all-optical RNG is founded on123

this principle.124

Figure 2 illustrates the key components of our experimental125

setup. The cavity consists of 57 m of MetroCor single-mode fibre126

with a Kerr nonlinearity coefficient of γ = 2.5 W−1km−1. The127

fiber exhibits normal group-velocity dispersion at the driving128

wavelength of 1552 nm, thus ensuring suppression of modu-129

lation instabilities. A polarization controller [PC1 in Fig. 1] is130

used to align the driving field along one of the principal polar-131

ization modes of the cavity. A second, intra-cavity polarization132

controller [PC2 in Fig. 2] is used to introduce a phase defect of133

π between the two principal polarization modes. A 95:5 coupler134

injects the input field into the cavity, and a 99:1 coupler extracts135

a part of the circulating field, yielding a total cavity finesse of136

40. After the 99:1 coupler, we project the output field onto the137

E± basis using a polarization controller [PC3 in Fig. 2], before138

separating these two components using a polarization beam139

splitter (PBS) and measuring their intensity profiles by means of140

fast-photodetectors connected to a real-time oscilloscope.141

The resonator is coherently-driven with a train of 2-ps-142



long pulses derived from an electro-optic (EO) comb generator143

seeded with a narrow-linewidth continuous-wave (CW) laser144

at 1552 nm. The EO comb generator consist of a cascade of two145

phase and one amplitude modulator followed by a nonlinear146

pulse compression stage. The repetition rate of the EO comb is147

derived from an external RF clock synthesizer that is carefully148

adjusted to be a large integer multiple of the cavity free-spectral149

range (FSR) of 3.655 MHz. We use an additional electro-optic150

modulator driven by a pulse-pattern generator to control the151

repetition rate of the driving pulses as desired before they are152

injected into the resonator. The experiments that will follow153

used an injection repetition rate of 1.17 GHz, such that there are154

320 pulses circulating in the cavity simultaneously, separated in155

time by 0.8 ns. Each of the pulses undergoes SSB independently,156

thus allowing for an increased rate of random number genera-157

tion via time-multiplexing. In this context, we emphasize that158

even though the pulses are only 2-ps-long, they undergo SSB in159

a manner that is qualitatively similar to the SSB of the CW states160

visualised in Fig. 1(c).161

The experiments that will follow used an injection repetition162

rate of 1.17 GHz, such that there are163

In order to repeatedly scan the cavity detuning back and forth164

across the SSB bifurcation point, we first actively stabilize the165

detuning within the symmetry-breaking regime using the tech-166

nique described in [29]. We subsequently use an acousto-optic167

modulator (AOM) to sinusoidally modulate the frequency of168

the main pump beam, resulting in periodic scanning across the169

SSB bifurcation point at a frequency of 10 kHz. This causes the170

system to periodically switch between symmetric and symmetry-171

broken regimes, with each pulse randomly selecting one of the172

two possible solution states beyond the SSB bifurcation point.173

By detecting the intracavity pulse intensities following the bi-174

furcation, a sequence of random bits is obtained. The 10 kHz175

modulation frequency and 320 pulses per roundtrip result in a176

generation of random bits at a speed of 3.2 Mbit/s.177

Although based upon the same principle as the setup used178

in [17], our current configuration has been optimised to enable179

random number generation at significantly higher data rates180

than in [17]. Thanks to their much shorter duration, the electro-181

optically generated 2 ps pulses can be more closely spaced and182

more efficiently amplified, thus allowing for more efficient time-183

multiplexing and correspondingly higher data rates than the184

original experiment, which relied on 1.1-ns-long quasi-cw pulses.185

Our cavity is also five times longer than the one used in [17],186

which further increases the number of pulses that can simulta-187

neously circulate in the resonator.188

Figure 3 shows illustrative experimental results that demon-189

strate the generation of random bit sequences in our system. In190

these experiments, we recorded a long time series in real time191

on an oscilloscope as the detuning was scanned across the SSB192

bifurcation point. We then sliced the time series into individual193

segments spanning a single roundtrip: the pseudocolour plot in194

Fig. 3(a) corresponds to a horizontal concatenation of these seg-195

ments to reveal the spatio-temporal evolution of the intracavity196

intensity of the circular polarization states (with only four bits197

shown for clarity). The SSB dynamics are hidden by the period-2198

alternation that occurs in the measurement of a single circular199

polarization state, and is thus not directly visible in Fig. 3(a);200

however, when we only consider every second roundtrip, we201

clearly see the emergence of two states with differing intensity202

[Fig. 3(b,d)]. Figure 3(c,e) shows SSB results from a second ex-203

perimental realization, demonstrating the generation of a new,204

independent bit sequence.205
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Fig. 3. (a) Evolution of the intracavity temporal intensity pro-
files corresponding to one of the circular polarization states as
the detuning is scanned over consecutive roundtrips. (b)-(c)
Evolution of the intracavity temporal intensity profiles when
considering every second roundtrip for two independent real-
izations of the RNG system. (d)-(e) Temporal intensity profiles
at the final roundtrip for each realization.

To confirm the true randomness of the bit sequences gener-206

ated by our scheme, we implemented three separate statistical207

tests. First, Fig. 4(a) shows results from the National Institute208

of Standards and Technology (NIST) Statistical test Suite for209

RNGs (NIST STS-2.1.2) [20] applied to a sample of 32 million210

bits. Each test is applied to 100 samples from the entire 32211

million-bit sequence, and each of these trials returns a p-value —212

the probability of this result occurring under the null hypothesis213

of a truly random source. NIST recommends that the minimum214

proportion of trials with a p-value greater than 0.01 be at least215

96% for any given test. The bit sequences generated from our216

system pass this condition for every test [Fig. 4(b)].217

As a second test, we consider the entropy generated by the218

system. In the ideal situation, each bit has an entropy of 1, which219

implies that each generated bit simulates a perfectly random220

coin toss. Following the method outlined by Steinle et al. [19],221

we show in Fig. 4(c) the conditional entropy — a measure of the222

system’s memory — computed for our sequence of 32 millions223

bits. Each data point shows the distance from perfect entropy224

for a single trial of sample size N, while the top and orange225

lines show bounds for one bit-flip from perfect entropy and226

one standard deviation from the expected conditional Shannon227

entropy, respectively. We calculate the entropy considering both228

the conditional probability of individual bits 1 and 0, as well as229

the probabilities for the tuples 11, 10, 01, 00 (e.g. the probability230

of observing the tuple 11 given that it follows the tuple 00). We231

find that both the mean (magenta line), and the vast majority of232

the individual trials exhibit entropy values within one standard233

deviation of what is expected for an unbiased system, which234

gives us confidence that each bit generated can be used as a235

random bit without further processing [19].236

Finally, Fig. 4(d) shows the results of the Dieharder tests237

applied to our bit stream [21]. Each Dieharder test consists of 100-238

1000 trials applied to subsets of our input data. A Kolmogorov-239

Smirnov (KS) test is then applied to the p-values obtained by240

each of these tests to determine the probability of observing the241
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Fig. 4. Test results for randomness. (a) P-values generated by applying the NIST statistical tests to 100 samples of a 32 million bit
sequence. (b) proportion of trials that pass the tests with the significance level of 0.01, which should be greater than 96%. (c) Shan-
non entropy in the generated bit-stream. The top and bottom orange lines show one bit-flip away from perfect entropy, and one
standard deviation from the expected entropy generated by a random sequence, respectively. The individual points on the graph
indicate the distance from perfect entropy for a given sample size, and the color gradient highlights the density of overlapping
points. Finally, the magenta line shows the average of all individual trials. (d) P-values generated by application of the full suite of
Dieharder Statistical tests. Horizontal dashed lines show the average of the test results (0.53) and the failure threshold (0.01).

distribution of p-values in the random sampling of a uniform242

distribution. These KS p-values are plotted in Figure 4(d). The243

random distribution of p-values centred at 0.53 and only a single244

failure occurring at the 0.01 significance level over all 113 tests245

shows that we have no evidence against the null hypothesis that246

our RNG is a truly random source.247

To conclude, we have experimentally demonstrated an all-248

optical random number generator based on polarization sym-249

metry breaking in a coherently-driven passive Kerr resonator.250

We achieved bit generation rates in excess of 3 MHz without251

any post-processing, which we believe can be further increased252

by optimising the cavity design and the modulation used to253

scan across the SSB bifurcation. Preliminary analysis suggests254

that operation in a microresonator platform has the potential255

to enable bit generation rates in the GHz range. We verified256

the randomness of the generated bit sequences using several257

statistical tests. In addition to representing a new avenue for258

physical random number generation, our work suggests that259

polarization symmetry breaking could be used to realise novel260

optical Ising or Potts machines.261
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