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We report on the experimental demonstration of temporal 
manipulations of dissipative polarization domain wall 
solitons in a Kerr nonlinear resonator operated in a period-
doubled configuration. Our experiments are performed in a 
coherently driven normally dispersive fiber ring cavity, in 
which polarization domains emerge in virtue of a 
spontaneous symmetry breaking phenomenon. The addition 
of a lumped birefringent defect into the cavity forces their 
polarization components to swap on a two-round-trip cycle, 
thus protecting them from the deleterious impact of the 
system’s asymmetries. We exploit these symbiotic dynamics 
in proof-of-concept buffering experiments, in which these 
dissipative structures are addressed individually and 
temporally manipulated through phase-encoded 
perturbations imprinted onto the driving beam. Our results 
provide new insights into the practical exploitation of 
spontaneous symmetry breaking mechanisms and the use of 
two-component dissipative structures for all-optical data 
storage applications. 

1. Introduction 
Domain walls (DWs) are kink-type topological structures that 
connect two homogeneous stable states of a physical system. They 
are known to occur as a result of a phase transition or spontaneous 
symmetry breaking mechanisms (SSB) and have been observed in 
numerous fields of science including ferromagnetism [1-5], Bose-
Einstein condensates [6-7], hydrodynamics [8] and nonlinear 
optics [9]. In the latter, DWs mostly rely on the vectorial nature of 
light and hence, are known as polarization domain walls (PDWs) 
[10-12]. They correspond to interlaced kink-solitons able to self-
propagate in the defocusing regime of a two-component waveguide 
and are fundamentally related to the polarization modulation 
instability phenomenon occurring in isotropic optical fibers [13-
15].  In close analogy with DWs encountered in ferromagnetic 
materials, these polarization knots segregate adjacent parts of the 
field into homogeneous domains of opposite handedness. The 
robustness of these structures has been exploited for the 

transmission of topological data in strongly defocusing regimes of 
optical fibers [16]. On the other hand, PDWs can also exist in 
dissipative optical systems. Whereas antiphase switching behaviors 
at nanosecond scales have been reported in fiber lasers through 
cross-saturation dynamics [17-19] and in vertical-cavity surface-
emitting lasers [20], dissipative PDW solitons have been recently 
observed for the first time in a coherently driven fiber Kerr 
resonator [21-22]. Their existence relies on the polarization SSB of 
the intra-cavity field, segregating two hybrid modes of opposite 
handedness by the virtue of the nonreciprocity imposed by their 
cross-phase modulation (XPM) coupling [23-28]. This bifurcation 
process can be explained as a self-amplification of small power 
fluctuations taking place between these two, degenerate, and 
incoherently coupled eigenmodes [28-29]. Recently, we have also 
shown that the inclusion into the resonator of a 𝜋𝜋-phase shift 
birefringent defect provides a topological protection of SSB against 
unwanted system asymmetries [30]. More precisely, the presence 
of a localized birefringent defect makes the light's handedness to 
swap at every cavity round-trip, giving rise to a fast polarization flip-
flopping on a two-round-trip cycle (P2). This precessing motion 
leads to a self-symmetrization of the dynamics, thus conferring to 
these P2-PDW solitons an unprecedented robustness, whilst 
enabling the realization of SSB in effective ideal conditions [30]. 
 In this new contribution, inspired by previous works reporting 
temporal manipulations of bright cavity solitons (CSs) in 
coherently-driven fiber Kerr resonators [31-36], we demonstrate 
that these dissipative P2-PDWs can be exploited as topological bits 
and are able to persist indefinitely in a fiber ring cavity.  
Furthermore, we also show that their temporal location can be 
trapped and dynamically controlled thanks to a shallow phase 
modulation imprinted on the coherent driving beam. Our results 
provide new insights into the exploitation of vectorial dissipative 
solitons in defocusing Kerr resonators as robust bit-entities for all-
optical data storage applications and more generally, pave the way 
to new opportunities for the implementation of robust spontaneous 
symmetry breaking phenomena in practical systems. 
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2. Experimental setup 
Our experimental setup is depicted in Fig. 1(a) and is rather similar 
that described in Ref. [30]. The passive Kerr resonator consists of a 
normally dispersive fiber ring cavity made of a 𝐿𝐿 = 12-m long 
segment of spun — nearly isotropic — optical fiber. The second-
order dispersion is estimated to 𝛽𝛽2 = 47 ps2 km‒1 at the pump 
wavelength, and the nonlinear Kerr coefficient is 
𝛾𝛾 = 4 W‒1 km‒1. Note that the defocusing (normal dispersion) 
regime is here a prerequisite to the formation of PDWs and 
mandatory to avoid the breakup of the circulating field due to usual 
scalar modulational instability [37-38]. Our fiber cavity presents a 
free spectral range (FSR) of 17.54 MHz and a finesse near 27 — the 
finesse is mainly limited by the splicing and the difference of core 
size between the spun fiber (5 µm) and the input coupler (10 µm). 
The resonator is coherently-driven by means of a 1552.4-nm cw-
laser (linewidth <1 kHz), whose central frequency can be locked at 
a fixed absolute detuning from a resonance thanks to a 
proportional-integral-derivative (PID) feedback loop. The cw-laser 
is intensity-modulated to generate 1.1-ns square pulses [see Fig. 
1(b)], whose repetition rate is carefully adjusted to match the FSR 
of the cavity. A phase modulation scheme is also implemented on 
the driving field to enable both excitation and temporal 
manipulation of P2-PDWs. Indeed, it is well known for bright CSs 
that the application of a phase modulation on top of the circulating 
pulses provides a change of instantaneous frequency, which in turn 
by virtue of group velocity dispersion, enables retiming 
functionalities through a temporal drift proportional to 
−𝛽𝛽2𝐿𝐿𝜙𝜙

′(𝜏𝜏), where 𝜙𝜙(𝜏𝜏)  corresponds to the phase modulation of 
the driving beam along the fast-time coordinate 𝜏𝜏 [31-33, 39-41].  
Similarly, in our normally dispersive cavity, the PDWs circulating 
along the leading edge of the phase profile will experience a 
negative delay, whereas they will experience a positive drift on the 
trailing edge. Consequently, the PDWs will be attracted to the 
nearest minima of the phase profile, which therefore corresponds 
to a stable trapping site. To demonstrate such capabilities with P2-
PDWs, a 10-GHz shallow phase modulation was imprinted to the 
driving field so as to trap the PDWs onto a 10-Gbit/s temporal 
reference grid. Additionally, an electrical phase shifter, driven by an 
arbitrary waveform generator (AWG), allows us to dynamically 
modify the temporal location of these P2-PDWs. Furthermore, 
engineered phase perturbations were generated on demand thanks 
to a pulse pattern generator (PPG) to trigger the emergence of PDW 
solitons into the cavity. The resulting driving pulse train is then 
amplified by means of an Erbium-doped fiber amplifier (EDFA) 
before optical filtering and injection into the resonator. At each 
round-trip, the driving field is superimposed on the circulating 
signal through a 90:10 fiber coupler. A 1% tap-coupler is also 
inserted inside the resonator to extract a portion of the intra-cavity 
field for polarization and temporal diagnostic measurements.  
 Polarization control of the present setup is quite sensitive and 
requires no less than three polarization controllers (PCs). First-of-
all, the polarization of the driving field is carefully adjusted at the 
input of the resonator through PC1 so as to predominately excite 
one of the principal polarization modes of the cavity 𝐸𝐸𝑥𝑥 — defined 
as polarization modes that return to their original polarization after 
one round-trip. Next, a second polarization controller (PC2) is 
mounted directly onto a short portion of the fiber cavity to 
introduce a phase birefringent defect through local mechanical 
stress. This amount of extra phase-shift is finely adjusted in such a 

way to offset the phase shift of the second orthogonal principal 
mode 𝐸𝐸𝑦𝑦 by 𝜋𝜋. Note that this quantity can be precisely tuned by 
monitoring the cavity resonances while scanning the laser 
frequency [see Fig. 1(c)].  This localized defect acts as an intra-cavity 
half-wave plate, inverting the sign of the y-component at each 
round-trip 𝐸𝐸𝑦𝑦 ⟶ 𝐸𝐸𝑦𝑦𝑒𝑒𝑖𝑖𝑖𝑖 = −𝐸𝐸𝑦𝑦, hence forcing the light's 
handedness to swap and conferring to PDWs the desired flip-
flopping period-2 dynamics [30]. Finally, at the output of the 
resonator, a third polarization controller (PC3), associated with a 
polarizing-beam-splitter (PBS), is used to project the intra-cavity 
field into different polarization basis of interest i.e., along the two 
principal modes of the cavity and along two, degenerate, hybrid 
eigenmodes of opposite handedness defined as 
𝐸𝐸± = (𝐸𝐸𝑥𝑥 ± 𝑖𝑖𝐸𝐸𝑦𝑦)/√2. These output signals are finally 
characterized in the temporal domain by means of ultra-fast 
photodetectors connected to an 80-GSa/s, 50-GHz bandwidth real-
time oscilloscope or a 70-GHz bandwidth sampling oscilloscope. 
 
 

 

Fig. 1.  (a) Experimental setup. PPG: pulse pattern generator, IM: intensity 
modulator, PM: phase modulator, ϕshift: electrical phase shifter, AWG: 
arbitrary waveform generator, PC: polarization controller, EDFA: Erbium 
doped fiber amplifier, OBPF: optical bandpass filter, Att: variable attenuator, 
PBS: polarization beam splitter, PID: proportional integral derivative system, 
PD: photodetector. (b) Input pulse profile. (c) Nonlinear resonances of the 
cavity measured for a driving power of 11 W.  

 

3. Modelling 
To model our experiments, we take advantage of a vectorial Ikeda 
map approach, which can accurately account for both the cavity 
boundary conditions and the localized nature of the 𝜋𝜋-phase shift 
birefringent defect [21]. Note that a set of coupled Lugiato-Lefever 
equations derived on a two round-trip mean-field approach has 
been also shown to accurately model the present system, especially 
its self-induced symmetrization [30]. However, here we take 
advantage of the full map model so as to investigate the polarization 
swapping dynamics on each subsequent round-trip. 
 The evolution of both hybrid modes 𝐸𝐸±(𝑡𝑡, 𝜏𝜏) of the electric field 
envelope along the mth round-trip is governed by the following set 
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of two nonlinear Schrödinger equations, incoherently coupled 
through the Kerr-induced cross-phase modulation [42]: 
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in which, z represents the propagation distance within the cavity, m 
the round-trip index and 𝜏𝜏 the fast-time expressed in a delayed 
reference frame. These equations are then completed by boundary 
conditions to describe first, the coherent superposition of the intra-
cavity field with the driving field at each round-trip, and second to 
take into account for the swapping process 𝐸𝐸± ⇌ 𝐸𝐸∓ induced by the 
𝜋𝜋-phase shift birefringent defect. 𝜃𝜃 represents the coupling 
coefficient of the input coupler, whilst 𝛼𝛼 is half of the power loss per 
cavity round-trip (𝛼𝛼 = 0.116). 𝑆𝑆𝑖𝑖𝑖𝑖 stands for the driving field, 
while 𝛿𝛿𝜒𝜒 represents its ellipticity offset (supposed to be small) with 
respect to perfect symmetric conditions  𝜋𝜋 4⁄  i.e., how much the 
driving power is imbalanced between the two hybrid modes 𝐸𝐸±. 
Finally,  𝛿𝛿0 is the phase detuning parameter of the driving field with 
respect to the nearest cavity resonance.  
 It is well known that by virtue of the nonreciprocity of the XPM 
term in Eqs. (1), this class of two-component dissipative system can 
undergo a polarization SSB of its scalar homogenous steady states 
(HSSs) in favor of two mirror-like asymmetric solutions of opposite 
ellipticity [23-25]. This behavior is illustrated in Fig. 2(a) in which 
we have reported the numerical evolution of the normalized Stokes 
parameters of the HSSs on two consecutive round-trips as a 
function of the cavity detuning and for a driving power 
corresponding to our experimental configuration |𝑆𝑆𝑖𝑖𝑖𝑖|2= 11 W. The 
Stokes parameters are classically defined as: 𝑆𝑆1 = 2𝑅𝑅𝑅𝑅(𝐸𝐸+𝐸𝐸−∗), 
𝑆𝑆2 = −2𝐼𝐼𝐼𝐼(𝐸𝐸+𝐸𝐸−∗) and 𝑆𝑆3 = |𝐸𝐸+|2 − |𝐸𝐸−|2. Under perfectly 
symmetrical conditions (𝛿𝛿𝜒𝜒 = 0) and moderate intra-cavity power, 
the degenerate eigenmodes with opposite handedness 𝐸𝐸± should 
have identical intensities i.e., the chirality of the system, defined as 
𝜁𝜁 = 𝑆𝑆3 |𝑆𝑆3|⁄  should be close to zero. This classical behavior is well 
observed in Fig. 2(a) at low cavity detuning for which the system is 
ruled by the scalar dynamics where 𝑆𝑆1 = 1, 𝑆𝑆2,3 = 0. However, for 
higher detuning i.e., 𝛿𝛿0~0.2 rad, the system exhibits vectorial 
behaviors. More specifically, the intensity of the two polarization 
components 𝐼𝐼+ and 𝐼𝐼− undergo a pitchfork bifurcation, 
characterized by two novel solutions of opposite ellipticity ± 𝑆𝑆3. 
Increasing further the cavity detuning unveils a strong chirality in 
the system dynamics with two mirror-like HSSs such that 𝑆𝑆3 ~ ± 1. 
Note that this kind of SSB phenomenon is often characterized as 
hidden symmetry, since the two asymmetric states are still mirror-
symmetric with respect to each other, though only one can be 
eventually observed at each realization [43]. However, in our 
configuration, the P2 swapping dynamic allows us to uncloak this 
hidden symmetry, revealing both asymmetric states as well as the 
full bifurcation diagram on a two-round-trip cycle. The formation of 
dissipative P2-PDWs in our Kerr resonator is then sustained in-
between these two flip-flopping solutions, for which sharp 
temporal transitions segregate the circulating field into well-
separated domains of opposite ellipticity, as illustrated in Fig. 2(b). 
 

 

Fig. 2.  (a) Numerical evolution of the Stokes parameters of the HSSs with 
respect to the phase detuning of the cavity and for a driving power of 11 W. 
(𝑆𝑆1 in red, 𝑆𝑆2 in blue and 𝑆𝑆3 in green). (b) Temporal profile of a P2-PDW 
soliton. (c-d) Chirality of the system emerging from the polarization SSB as a 
function of the driving field ellipticity and for 1000 different realizations. 
Ochre: 𝜁𝜁 = +1, black: 𝜁𝜁 = −1. (c) P1 configuration (without birefringent 
defect). (d) P2 configuration. (e-f) Corresponding average chirality with 
respect to the driving ellipticity. 

 
 
The robustness of the P2-SSB configuration can be illustrated by 
measuring its lack of randomness and average chirality in presence 
of a slight ellipticity in the driving field (𝛿𝛿𝜒𝜒 ≠ 0) i.e., an imbalance of 
pump power between both hybrid modes. This behavior is depicted 
in Figs. 2(c-d), in which we have reported for 1000 different 
numerical realizations, the chirality 𝜁𝜁 emerging from the system 
after scanning the bifurcation diagram of Fig. 2(a), respectively 
without [P1, panel (c)] and with [P2, panel (d)] the inclusion of the 
𝜋𝜋-phase shift birefringent defect. Panel (c) shows that the P1 
configuration leads to a sharp transition in-between two areas, 
clearly highlighting the extreme sensitivity of the SSB phenomenon 
with respect to an initial bias in system’s parameters. Consequently, 
the average chirality, represented in panel (e) and reflecting the 
probability of occurrence of both mirror-like solutions, arises as a 
sharp step-like transition. Indeed, the presence of an infinitesimal 
imbalance of driving power instantaneously favors one of the two 
mirror-like solutions, making practical implementations of P1-SSB 
quite challenging in a real-world imperfect environment. 
 In stark contrast, as shown in panel (d), the flipping dynamics 
associated to the P2 configuration leads to a smooth transition of 
occurrence between the two branches of the bifurcation diagram. 
In fact, both hybrid modes harvest alternatively a depression and a 
rise in their driving power, leading to an average value of 
�𝜃𝜃 2⁄ 𝑆𝑆in cos 𝛿𝛿𝜒𝜒 on a two-round-trip cycle. Therefore, as can be 
observed in panel (f), this self-symmetrization process restores an 
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equal-probability in the occurrence of both mirror-like HSSs on a 
wide range of driving ellipticity, thus making the P2 configuration 
highly promising for practical applications based on polarization 
SSB. 
 

4. Experimental generation of P2-PDWs 
In the following experimental sections, the generation and 
manipulations of P2-PDWs in our fiber cavity are carried out for a 
constant detuning value of 𝛿𝛿0 = 1.16 rad and a fixed driving peak 
power of 11 W. As already highlighted in Fig. 2(a), these system’s 
parameters place our configuration above the threshold of pitch-
fork bifurcation, thus providing a high level of contrast between the 
two HSS solutions 𝐼𝐼±. 
 Figure 3 summarizes the typical recordings of P2-PDW solitons 
circulating around our fiber ring cavity. For these measurements, 
we first excite P2-PDWs through phase perturbations of the driving 
field so as to spontaneously create localized temporal transitions 
between the upper and lower branches of the HSS bifurcation 
diagram. This phase perturbation corresponds to a π-phase jump 
imposed on the driving beam over 100 round-trips and induces a 
transient regime from which a random pattern of PDWs is then 
created. Subsequently, the 10-GHz shallow phase modulation plays 
the role of a periodic potential [31-33], which allows us to trap and 
distribute the generated PDWs along a reference temporal grid, 
whilst overcoming the slight desynchronization of the driving 
pulses with respect to the cavity FSR, thus extending the long-term 
stability of PDWs. 
 

 

Fig. 3.  (a-b) Temporal profiles of P2-PDW solitons recorded on two 
consecutive round-trips for 𝛿𝛿0 = 1.16 rad and a driving peak power of 
11 W. The two polarization components 𝐼𝐼+ and 𝐼𝐼− are reported in red and 
blue, respectively. The total intensity is depicted in green. (c-e) Pseudo-color 
plots showing the real-time evolution of the P2-PDWs pattern along 30 
consecutive round-trips; from left to right:  𝐼𝐼+ component, 𝐼𝐼− and total 
intensity. 

 
Figures 3(a-b) depicts the intensity profiles of the P2-PDW pattern 
monitored in the 𝐸𝐸± basis over two consecutive round-trips. First-
of-all, we can observe that the two polarization components exhibit 

an anti-correlated temporal behavior, splitting the circulating ns-
pulse into adjacent domains of opposite ellipticity. Next, we can 
further notice that both polarization components swap their 
temporal profiles from one round-trip to the next, hence unveiling 
the period-2 flipping dynamic imposed by the intra-cavity 𝜋𝜋-phase-
shift defect. Finally, the total intensity, also reported in panels (a-b) 
with green solid-lines, remains nearly constant, confirming the 
vectorial nature of this pattern. 
 The spinning motion of these temporal structures is even more 
striking when reporting the real-time evolution of both polarization 
components with respect to round-trip index. Indeed, the resulting 
spatio-temporal diagrams, displayed in Figs. 3(c-d), exhibit a 
perfectly anti-correlated woven structure, confirming the presence 
of stable PDW solitons in our fiber cavity. Moreover, the flip-
flopping motion is readably observable as both anti-correlated 
patterns swap at every cavity round-trip. Remarkably, the total 
intensity, shown in panel (e), remains perfectly preserved during 
the whole propagation, further confirming the polarization nature 
of these structures and their underlying swapping dynamics. 
 

5. Phase constellations of P2-PDWs 
Since P2-PDWs are in essence flip-flopping phase kink-solitons, the 
swapping dynamics highlighted above can be deeper characterized 
by performing a homodyne coherent detection of the circulating 
field. To this aim, two PDWs are first excited into the ring cavity, 
whilst their polarization components 𝐸𝐸𝑥𝑥/𝑦𝑦 are demultiplexed 
thanks to the output PBS and mixed within an 90° hybrid coupler 
associated to two balanced detectors. Each detector then provides 
a direct monitoring of the in-phase 𝐼𝐼 = 4𝑅𝑅𝑅𝑅�𝐸𝐸𝑥𝑥𝐸𝐸𝑦𝑦∗� and 
quadrature 𝑄𝑄 = 4𝐼𝐼𝐼𝐼�𝐸𝐸𝑥𝑥𝐸𝐸𝑦𝑦∗� components of the intra-cavity field, 
respectively [44]. Figure 4(a) illustrates a typical temporal trace of 
the I/Q components of the PDW pattern and clearly emphasizes the 
kink-nature of the PDW solitons with two adjacent domains of 
opposite phase. 

 
 
Fig. 4.  (a) Typical experimental I/Q coherent detection of P2-PDWs. (b) 
Pseudo-color plots showing the real-time evolution of the P2-PDWs phase 
pattern along 100 consecutive round-trips.  (c-d) Phase constellations 
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recorded along the Even (c) and Odd (d) round-trips. The magenta and cyan 
spots indicate the phase evaluated along two different fast-time location 
corresponding to both color dash-lines of panel b. These diagrams clearly 
reveal the phase nature of PDW solitons as well as the 𝜋𝜋-phase shift induced 
polarization swapping on every cavity round-trip. 
 
From these measurements, we have next extracted the phase of 
these temporal structures along consecutive round-trips and 
reported its evolution in Fig. 4(b). The resulting spatio-temporal 
diagram first confirms the kink-nature of these localized 
polarization entities and further reveals the phase swapping effect 
imposed by the lumped birefringent defect on every cavity round-
trip. This phase dynamics is even more readable when plotting the 
phase constellation corresponding to Even (Panel c) and Odd (panel 
d) round-trips for the two PDWs under-analysis. The diametrically 
opposite positions of the two cyan and magenta spots in the 
complex plane demonstrates that the relative phase in-between the 
x and y components are in quadrature for each polarization domain 
and is flipped by π at each cavity round-trip. 
 

6. Long-term stability of P2-PDWs 
To assess the robustness of the P2-PDW entities against fluctuations 
and asymmetries, we have performed a long-term measurement of 
their temporal and polarization properties over a very large 
number of round-trips. To this aim, we excite a single P2-PDW in the 
cavity that splits the intra-cavity field in two well-defined regions of 
orthogonal polarizations. Figure 5(a) displays the concatenation of 
the intensity profiles recorded for each polarization component 𝐼𝐼+ 
and 𝐼𝐼− as a function of the cumulative distance run through the 
resonator. Note that for sake of clarity, only odd round-trips are 
represented to conceal the polarization swapping effect. As can be 
seen, these P2-PDWs reveal an extreme longevity, especially when 
compared to the first observation of dissipative PDWs reported in 
ref. [22]. Indeed, while this earlier observation of dissipative PDWs 
has been performed on a 30s laboratory timescale, here the self-
symmetrized P2-PDWs are able to persist in our resonator for more 
than 30 minutes (mainly limited by the long-term thermal drift of 
the cavity). This 30-minute duration represents an equivalent 
transmission of more than twice the Earth-Sun distance, evidencing 
a major step of improvement for practical applications. 
 In addition, we have depicted in Fig. 5(b) a temporal zoom on 
the transition area of the P2-PDW separating the two domains of 
polarization. The rise-time is found to be 13 ps, which is mainly due 
to the limited bandwidth of our detection setup  
(70 GHz). Nevertheless, it has been found in good agreement with 
numerical predictions, when these latter are convoluted with the 
photodetector’s response (open circles). Additionally, Fig. 5(c) 
displays the corresponding experimental optical spectrum as a 
green solid line, and is compared with the numerical predictions (in 
purple). Despite a slight asymmetry in the experimental spectrum, 
attributed to the pump profile and weak desynchronization of the 
ns-driving pulses, the agreement still appears very good. We can 
also notice the presence of small bumps localized on both edges of 
the spectrum, characteristic of the shock front dynamics of the 
pumped pulse in defocusing regime [45]. 
 

 
Fig. 5. (a) Space-time-intensity diagram showing the experimental 
evolution of both intra-cavity polarization components 𝐼𝐼± of a single P2-
PDW soliton as a function of propagation distance run in the resonator and 
expressed in equivalent of Earth-Sun distances (149.6 M of kms). Note that 
only odd-roundtrips are represented for clearness purpose. As in previous 
results, 𝛿𝛿0 = 1.16 rad and the driving power is 11 W. Temporal traces of 𝐼𝐼+ 
and 𝐼𝐼− at first round-trip are also depicted with red and blue solid lines, 
respectively. (b) Experimental temporal profile of the kink-transition 
between the two polarization domains recorded thanks to a 70-GHz 
bandwidth photodetector (solid lines). Numerical predictions of Eqs. (1) are 
also indicated with circles after convolution with the photodetector’s 
frequency response. (c) Experimental measurement of the optical spectrum 
of P2-PDWs (green solid line) and corresponding numerical simulations 
(purple line). 
 
 

7. Writing operation of P2-PDWs  
To demonstrate the potential of these P2-PDWs for all-optical data 
storage applications, we have evaluated their capacity and 
robustness against specific manipulations (writing and temporal 
tweezing) by means of engineered phase perturbations applied to 
the driving beam. To this aim, we first describe the writing 
operation of a particular sequence of P2-PDWs 
corresponding to the 5-bit ASCII code of the acronym “DW”: 
0010010111. The resonator is first prepared in its symmetry 
broken HSSs by setting the phase detuning value to 𝛿𝛿0 = 1.16 rad 
and driving power to 11 W. Meanwhile, the 10-GHz shallow phase 
modulation is continuously applied on the driving beam to provide 
a temporal reference grid for this all-optical buffer. Subsequently, a 
synchronized phase-encoded “DW” kick-perturbation, 
corresponding to a bit-sequence of localized phase-shifts of π/2 
applied over 500 consecutive round-trips, is locally added on the 
driving beam to excite the P2-PDWs sequence along the 
corresponding bit-slots. Figures 6(a-b) summarize the whole 
writing operation as a function of laboratory time for both 
polarization components. At the starting point of the experiment 
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(0 sec), the cavity is well initialized in its symmetry broken HSSs — 
all the energy is mostly contained in the 𝐸𝐸+ hybrid mode. 
Subsequently, the writing process takes place just beyond 10 sec, 
with the accurate emergence of the “DW” P2-PDWs pattern. In 
similar fashion to Figs. 3(c-d), we can notice the perfect anti-
correlation between both polarization components, meaning that 
the P2-PDWs are efficiently generated. The data sequence then 
propagates along the fiber ring for additional 30 sec, corresponding 
to millions of cavity photon life-times. Finally, the shallow phase 
modulation is turned off after 40 sec to reset the optical buffer in 
virtue of the natural desynchronization of the driving pulse train 
with respect to the cavity FSR. Note that consecutive 
writing/erasing operations have been also successfully performed 
(not shown here) following the same procedure and that the 
erasing or more generally a modification of the pattern can be 
achieved through an additional phase perturbation applied on the 
holding beam. This proof-of-principle experiment confirms the 
ability of P2-PDWs to be addressed individually as bit-entities in an 
all-optical buffer. 
 

 

Fig. 6. (a-b) Experimental evolution of polarization components 𝐼𝐼+ and 𝐼𝐼− 
with respect to laboratory time recorded during the writing operation of a 
P2-PDWs sequence. Only even round-trips are reported. (c) Numerical 
simulations of writing process based on phase perturbation. The graph 
displays the power of both polarization components as a function of 
consecutive round-trips. For clarity, the power of each component is also 
reported on even round-trips with red and blue solid lines. The green 
dashed-line indicates the local perturbation. (d) Same as panel (c) but for 
polarization-based writing operation.  

 
 
However, it is important to stress that the phase perturbation 
method involved in this experiment is not 100% efficient, and can 
lead to the emergence of additional and inaccurate P2-PDWs 
structures in the final data sequence. To further address this point, 
we have compared numerically in Figs. 6(c-d) two methods of 
switching operation based respectively, on phase- and polarization-
perturbations. Figure 6(c) depicts the power evolution of both 
polarization components when a localized 𝜋𝜋 2⁄ -phase perturbation 
is applied on the driving field over 20 consecutive round-trips 
(green vertical dashed-line). We first notice the swapping P2 
dynamics occurring at every cavity round-trip. Therefore, for sake 
of clarity, we have also highlighted the power evolution of both 
polarization components on even round-trips (red and blue solid 
lines). Just beyond the phase perturbation, a transient regime takes 
place during nearly 100 of round-trips before the final switching of 

both polarization components occurs with the emergence of a new 
anti-phase stationary regime. We can thus presume that this 
transient behavior, sometimes erratic, as well as potential 
interactions with neighboring bits, could eventually lead to 
erroneous writing operations. Note that applying this phase 
perturbation every second round-trip (synchronized on the P2 
periodicity) does not provide better performances. A more reliable 
technique can however be exploited based on specific polarization 
perturbations. Figure 6(d) illustrates such a scenario in which a 
localized polarization perturbation is applied on the driving beam 
along 20 consecutive round-trips. This perturbation consists of a 
local change of ellipticity (𝛿𝛿𝜒𝜒 ≃ 𝜋𝜋 4⁄ ) in the driving beam leading to 
a strong depression along the 𝐼𝐼+ component i.e., a rise of intensity 
along the 𝐼𝐼− mode. It is also important to note that this perturbation 
has to be applied on a two-round-trip cycle to efficiently modify the 
two polarization components in phase with the P2 dynamics. We 
can then observe the efficient polarization switching of both 
components with almost no transient regime. These numerical 
results demonstrate the potential of polarization-based 
perturbations for efficient P2-PDW writing operations but the 
experimental realization remains beyond the scope of this paper. 
 

8. Temporal tweezing of P2-PDWs 
The second series of experiments deal with the temporal 
manipulations of P2-PDWs. For this purpose, we exploit an 
electrical phase shifter, driven by an AWG to dynamically 
reconfigure the temporal-grid imposed by the 10-GHz shallow 
phase modulation. More precisely, as in retiming functionalities and 
CSs buffering experiments [31-33], the PDWs are here forced to 
follow the spatio-temporal motion imposed by the gradient of this 
modulation and change their location according to the local minima 
of the phase profile. Note that this temporal trapping location is the 
opposite of that observed for bright CSs which, operating in 
anomalous dispersion regime, are respectively trapped to the peak 
of the phase modulation. 
 For this proof-of-principle, we first write a dual bright/dark 
vectorial structure composed of two P2-PDWs thanks to a 100-ps 
localized phase perturbation imprinted on the driving field. After a 
short transient regime, a 100-ps polarization domain emerges in 
the center of the ns-pulse, trapped to the 10-GHz temporal-grid. 
Figure 7(a) depicts the temporal profile of this resulting vectorial 
entity. A bright pulse is generated along the 𝐼𝐼+ component (red solid 
line), and appears enclosed within a dark localized structure in the 
𝐼𝐼− component (blue solid line), forming a short and well-confined 
polarization domain. As expected, the total intensity in green, still 
remains nearly constant. 
 Figures 7(b-d) illustrate a typical spatio-temporal 
manipulation of P2-PDWs as a function of laboratory time. For these 
measurements, the phase-shifter imposes a snaking motion at a 
frequency close to 1 kHz and a displacement amplitude of 200 ps. 
We can clearly observe the efficient temporal tweezing of these P2-
PDWs without major impairments. Indeed, the two polarization 
components [panels (b-c)] exactly follow the slow-time trajectory 
imposed by the phase-shifter, remaining perfectly synchronized 
and anticorrelated. Moreover, the total intensity [panel (d)] does 
not reveal any sign of this temporal manipulation, thus confirming 
that this motion stems from a pure polarization dynamic. 
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 To go beyond this basic proof-of-principle, we have next 
programmed more complex trajectories into the AWG. Two 
examples are reported in Figs. 7(e) and 7(f) in a form of “mum” and 
“bright soliton” motions. For clarity, only the bright structure, 
corresponding to the polarization component 𝐼𝐼+ is displayed. As in 
the previous results, the P2-PDWs appear perfectly trapped by the 
phase modulation and strictly follow the trajectory imposed by the 
phase potential. These different temporal manipulations further 
demonstrate the robustness and the potential of these new 
vectorial dissipative solitons for all-optical data storage 
applications. 
 

 

Fig. 7. (a) Intensity profile of the P2-PDWs involved in the temporal tweezing 
experiment, 𝛿𝛿0 = 1.16 rad and the driving power is 11 W. The two 
polarization components 𝐼𝐼+ and 𝐼𝐼− are depicted in red and blue, the total 
intensity in green. (b-d) Spatio-temporal diagrams showing the evolution of 
the temporal profile of the P2-PDWs as a function of laboratory time when a 
sinusoidal snaking motion is applied onto the 10-GHz shallow phase 
modulation.  (b) 𝐼𝐼+ component displayed on even round-trips. (c) 𝐼𝐼− 
component. (d) Total intensity. (e) Space-time-intensity diagram reporting 
the evolution of the 𝐼𝐼+ component on even round-trips when a “mum”-
shaped temporal trajectory is applied onto the 10-GHz shallow phase 
modulation. (f) Same as panel (e) for a “bright soliton”-shaped temporal 
motion. 

 

9. Conclusion 
In conclusion, we have reported on the experimental 
demonstration of temporal manipulations of period-2 dissipative 
polarization domain wall solitons (P2-PDWs) stored in a normally 
dispersive fiber Kerr resonator. These localized structures originate 
from the polarization instability of the scalar homogeneous steady 
state due to a spontaneous symmetry breaking mechanism 
mediated by the nonreciprocity of cross-phase modulation 
occurring between two hybrid eigenmodes of opposite 
handedness. Moreover, these vectorial entities benefit from a self-
protection against system’s asymmetries by virtue of a precessing 
motion imposed by a 𝜋𝜋-phase shift birefringent defect inserted 
directly into the cavity, which makes the two polarization 
components to swap at every cavity round-trip. 

 The excitation and persistence of P2-PDW patterns have been 
experimentally evidenced in a 12-m long fiber ring cavity with ultra-
long storage performances, obtained without any specific 
precautions, thus evidencing the key role played by the P2 
averaging dynamics. Thanks to engineered phase-perturbations, 
we also showed that these P2-PDWs can be individually addressed 
and temporally manipulated as bit-entities in proof-of-concept 
buffering experiments. Our results confirm that dissipative 
localized structures circulating within Kerr resonators are 
promising candidates for the development of stable all-optical 
memories. More generally, this work provides fundamental insights 
into the exploitation of ultra-robust spontaneous symmetry 
breaking phenomena for practical applications, such as random 
number generation [46-48], optical data storage [34, 49], all-optical 
logic gates [50] as well as coherent Ising or Potts machines [51-53]. 
Finally, our work points the way to new original studies dealing 
with the design of non-homogenous Kerr resonators and complex 
manipulations of the intra-cavity field [54-62]. 
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