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INTRODUCTION

In this section, the geometry as well as the physical parameters are given. Then the model introduced in [START_REF] Bourel | Modeling of shallow aquifers in interaction with overland water[END_REF] coupling the fast and slow components of the flow in shallow aquifer is recalled.

GEOMETRY, PHYSICAL PARAMETERS AND BOUNDARY CONDITIONS

For the three-dimensional description, we denote by x := (x, z), x = (x 1 , x 2 ) ∈ R 2 , z ∈ R, the usual coordinates. Moreover, we respectively denote by ∇ and ∇• the classical gradient and divergence operator for functions defined on R 3 . We introduce also the notation ∇ ′ and ∇ ′ • defined for functions f : R d → R and g : R d → R d with d ∈ {2, 3} by

∇ ′ f = ∂ 1 f ∂ 2 f , ∇ ′ • g = ∂ 1 g 1 + ∂ 2 g 2 .
Geometry. The aquifer is represented by a three-dimensional cylindrical domain Ω ⊂ R n , n ≥ 2. The set Ω 2d ⊂ R n-1 is the orthogonal projection of Ω on R n-1 . Functions h bot and h soil describe respectively the lower and upper topography of Ω. The upper and lower surfaces are thus defined by the graph of functions h bot = h bot (x) and h soil = h soil (x), x ∈ Ω 2d . We assume that h soil (x) > h bot (x), ∀x ∈ Ω 2d .

(1.1)

More precisely the domain is given by:

Ω = (x, z) ∈ Ω 2d × R, z ∈ h bot (x), h soil (x) . (1.2) 
We always denote by⃗ ν the outward unit normal and ⃗ e 3 is the unitary vertical vector pointing up. We decompose the boundary ∂Ω of Ω in three zones (bottom, top and vertical) ∂Ω = Γ bot ⊔ Γ soil ⊔ Γ ver , with Γ bot := (x, z) ∈ Ω, z = h bot (x) , Γ soil := (x, z) ∈ Ω, z = h soil (x) Γ ver := (x, z) ∈ Ω, x ∈ ∂Ω 2d . (1.3)

The description of the flow is divided into two sub-regions of Ω (possibly time-dependent) in each of which the flow exhibits different behaviour. We denote by h the depth of the free interface separating the saturated and unsaturated parts of the aquifer. The definition of these zones is based on the function h = h(t , x), which is an unknown in our problem. We then introduce, for a given function h = h(t , x) such that h bot ≤ h ≤ h soil :

Ω - t := (x, z) ∈ Ω, z < h(x, t ) and Ω t := (x, z) ∈ Ω, z > h(x, t ) , (1.4) 
and

Γ t := (x, z) ∈ Ω, z = h(x, t ) . (1.5)
Richards hypothesis. The Richards model is moreover based on the assumption that the air pressure in the subsurface is equal to the atmospheric pressure, thus is not an unknown of the problem. It is assumed that the moisture content and the relative conductivity of the soil are functions of the fluid pressure P , denoted respectively by θ = θ(P ) and κ = κ(P ). The saturation pressure P s (which is a fixed real number) is introduced. The fully-saturated part of the soil corresponds to the region {x, P (•, x) > P s }, while the partially-saturated part is {x, P d < P (•, x) ≤ P s }. The dry part is defined by the set {x, P (•, x) ≤ P d }. The moisture content is such that

θ =    φ (saturated zone) if P (•, x) > P s , θ(P ) (with θ 0 ≤ θ(P ) ≤ φ and θ ′ (P )>0) if P d < P (•, x) ≤ P s , θ 0 (dry zone) if P (•, x) ≤ P d , (1.6) 
where θ 0 > 0 corresponds to a residual moisture content that is positive. The associated relative hydraulic mobility is then defined by

κ(P ) =    1 (saturated zone) if P (•, x) > P s , κ(P ) (with 0 ≤ κ(P ) ≤ 1 and κ ′ (P ) > 0) if P d < P (•, x) ≤ P s , 0 (dry zone) if P (•, x) ≤ P d .
(1.7)

Permeability tensor K 0 . The soil transmission properties are characterised by the porosity function φ and the permeability tensor K 0 (x, z). The matrix K 0 is a 3 × 3 symmetric positive definite tensor describing the conductivity of the saturated soil at the position (x, z) ∈ Ω. We introduce

K xx ∈ M 22 (R), K zz ∈ R * and K xz ∈ M 21 (R) such that K 0 = K xx K xz K T xz K zz . (1.8)
Soil Compressibility. The effects of the rock compressibility are neglected in the model, the porosity of the medium φ does not depend on the pressure variations. We also assume that the soil is homogeneous and therefore associated with a constant φ > 0.

Boundary conditions. In order to take into account flows from or to the overland, we consider a general Robin condition on the boundary Γ soil :

α P + β v •⃗ ν = F for (t , x, z) ∈ (0, T ) × Γ soil , (1.9)
where v is the fluid velocity, (α, β) ∈ R 2 and F is a source term. On the other hand, an impermeable bedrock is considered at the bottom of the aquifer Γ bot . For the sake of simplicity, we also consider such an impermeable layer at the lateral boundary Γ ver :

v •⃗ ν = 0 for (t , x, z) ∈ (0, T ) × Γ bot ∪ Γ ver .
(1.10) 3d-Richards problem. Before presenting the model studied in this article, we recall the 3d-Richards equations that are classically used to describe the water flow in aquifers:

                   ∂ t θ(P ) + ∇ • v = 0 in (0, T ) × Ω v = -κ(P ) K 0 1 ρg ∇P + e 3 in (0, T ) × Ω α P + β v •⃗ ν = F on (0, T ) × Γ soil v •⃗ ν = 0 on (0, T ) × (Γ bot ∪ Γ ver ) P (0, x, z) = P init (x, z) for (x, z) ∈ Ω (1.11)
where ρ > 0 is the density of water and g > 0 is the acceleration of gravity.

3d-Richards problem for weakly compressible fluid. We end this section with a reminder of a variant of the 3d-Richards equations where the fluid is assumed to be weakly compressible. The parameter α p characterises this compressibility and then we have

               ∂ t θ(P ) + θα P ∂ t P + ∇ • v = 0 in (0, T ) × Ω, v = -κ(P ) K 0 ∇ P ρ 0 g + z in (0, T ) × Ω, P (0, x, z) = P init (x, z) for (x, z) ∈ Ω.
+initial and boundary conditions.

(1.12)

A justification of this model can be found in [START_REF] Al Nazer | Mathematical analysis of a Dupuit-Richards model[END_REF].

AN APPROXIMATED MODEL COUPLING THE FAST AND SLOW COMPONENTS OF THE FLOW IN SHALLOW AQUIFERS

Averaged conductivity. We introduce

S 0 = K xx - 1 K zz K xz (K T xz ) and M 0 = S 0 0 0 0 . (1.13)
The 2 × 2 tensor S 0 is the Schur complement of the block K zz in the tensor K 0 . It will act as an effective permeability tensor. We also introduce the averaged conductivity tensor K defined in (0, T ) × Ω 2d for any function

H = H (t , x) by K (H )(t , x) = h soil (x) h bot (x) κ ρ g (H (t , x) -z) S 0 (x, z) d z.
(1.14)

• In Ω t , the following 1d-Richards equation holds

           ∂ t θ(P ) + ∂ z q • e 3 = 0 in (0, T ) × Ω t , α P + β q • e 3 = F in (0, T ) × Γ soil , P t , x, h(t , x) = ρ g (H -h) in (0, T ) × Ω 2d , P (0, x, z) = P init (x, z) in Ω 0 , (1.15)
where q is defined below thanks to (1.20). • In Ω - t , the water pressure P satisfies

P (t , x, z) = ρ g H (t , x) -z for t ∈ [0, T [ , (x, z) ∈ Ω - t .
(1.16)

• The hydraulic head H is a solution in Ω 2d to the following problem:

       -∇ ′ • ( K ∇ ′ H ) = -(q • e 3 )| + Γ + h in ]0, T [×Ω 2d , K (H ) ∇ ′ H •⃗ ν = 0 in ]0, T [×∂Ω 2d H (0, x) = H 0 (x) for x ∈ Ω 2d (1.17)
where (q • e 3 )| Γ + h denotes the trace of q • e 3 on Γ t from above. • The level z = h below which we consider the vertical flow to be instantaneous is set so that

h(t , x) = max min H (t , x) - P s ρ g , h max (x) , h bot (x) in ]0, T [×Ω 2d .
(1.18)

• The water velocity v is defined by

v = q + w in ]0, T [×Ω, (1.19) 
where auxiliary velocities are given in ]0, T [×Ω by

q = -κ(P ) K zz 1 ρ g ∂ z P + 1 e 3 , w = -κ ρ g (H -z) M 0 ∇H . (1.20)
This model is an alternative to the 3d-Richards problem for describing the flow in shallow aquifers over a wide range of time scales (see [START_REF] Bourel | Modeling of shallow aquifers in interaction with overland water[END_REF]). The main interest is that this model is easier to handle numerically than the 3d-Richards model. Indeed, as (1.15)-(1.20) is the coupling of a 2d problem with many 1d vertical Richards problems, an important time saving in the numerical computation is observed (see [START_REF] Bourel | Modeling of shallow aquifers in interaction with overland water[END_REF]). On the other hand, this model behaves like the 3d-Richards model for any time scale when the ratio ε of the depth to the horizontal length of the aquifer is small. More precisely, it is shown in [START_REF] Bourel | Modeling of shallow aquifers in interaction with overland water[END_REF] that the 3d-Richards problem and (1.15)-(1.20) admit exactly the same effective problems when ε tends to 0 and whatever is the time scale considered. These effective problems are recalled in the Appendix (see (3.14)-(3.18)).

The model (1.15)-(1.20) is a model with physical variables (it is not an effective model) which couples the two flows characterised by the effective models in the short and long time scales (see (3.14)-(3.18)). The first one is a vertical 1d-Richards problem in the upper part of the aquifer and is associated with the velocity q. It mimics the behaviour of the flow in the case of short time scale. The second one is a 2d horizontal problem assuming an instantaneous vertical flow in the lower part of the aquifer. The associated velocity is w and it mimics the behaviour of the flow in the long time scale case.

A NEW MODEL, MORE ADAPTED TO THE THEORETICAL STUDY

As mentioned before, the problem (1.14)-(1.20) is difficult to study in its present form. The strategy is to propose a new model that is physically very close to (1.14)-(1.20), but for which the theoretical study is feasible. A generalisation of (1.15)-(1.20) is presented so that:

• a non-vanishing horizontal conductivity is allowed in the upper part of the aquifer.

• a low compressibility of the fluid in the aquifer is taken into account.

It is possible to understand this new model as being an approximation of (1.15)-(1.20) in which the compressibility parameter appears only as a mathematical trick to simplify the study. Nevertheless, this model itself has a physical meaning as it approximates the original 3d-Richards equation in the same way as the problem (1.15)-(1.20) do (with an additional hypothesis in the short-time scale). This justification is given in the Appendix, see Proposition 3.1.

So, we present and justify here a generalization of problem (1.15)-(1.20) in the compressible framework of (1.12) and in the case where the horizontal conductivity is assumed to be nonzero in the upper part of the aquifer Ω t . This horizontal component of the flow in Ω t is characterised by the 2 × 2 symmetric positive definite tensor N 0 . We also introduce

B 0 = N 0 0 0 K zz , G 0 = N 0 0 0 0 , A 0 = S 0 -N 0 0 0 0 . (2.1)
The fluid compressibility parameter, denoted α P > 0, is assumed to satisfies α P ≪ 1. We recall that this is the framework for which the compressible 3d-Richards equations (1.12) were obtained (see [START_REF] Al Nazer | Mathematical analysis of a Dupuit-Richards model[END_REF]). The generalised problem, denoted M 0 in the following, is given by equations (2.2)-(2.8) below:

• The water velocity v is defined in Ω by

v = q + w for t ∈]0, T [ , (x, z) ∈ Ω, (2.2) 
and for t ∈]0, T [, (x, z) ∈ Ω, the auxiliary velocities are given by

q = -κ(P ) B 0 1 ρ g ∇P + e 3 , w = -κ ρ g (H -z) A 0 ∇H . ( 2.3) 
• In Ω t (t ), the following 3d-Richards equation holds

                 ∂ t θ(P ) + α P θ(P )∂ t P + ∇ • q = 0 for t ∈]0, T [, (x, z) ∈ Ω t α P + β q •⃗ ν = F in ]0, T [×Γ soil q •⃗ ν = 0 in ]0, T [×Γ ver P t , x, h(t , x) = ρ g H (t , x) -h(t , x) for (t , x) ∈]0, T [×Ω 2d P (0, x, z) = P init (x, z) for (x, z) ∈ Ω t (0).
(2.4)

• In Ω - t (t ), the water pressure P satisfies

P (t , x, z) = ρ g H (t , x) -z for t ∈ [0, T [ , (x, z) ∈ Ω - t (t ).
(2.5)

• The hydraulic head H is a solution in Ω 2d to the following problem:

       ρg α P (h -h bot )∂ t H -∇ ′ • J (H ) ∇ ′ H = -(q • (e 3 -∇h))| Γ + h in ]0, T [×Ω 2d J (H ) ∇ ′ H •⃗ ν = 0 in ]0, T [×∂Ω 2d H (0, x) = H init (x) for x ∈ Ω 2d , (2.6) 
where q • (e 3 -∇h) | Γ + h denotes a normal trace of q on Γ t from above. Moreover the averaged conductivity is defined by

J (H )(t , x) = K (H (t , x)) - h soil (x) h(t ,x) κ ρ g (H (t , x) -z) N 0 (x, z) d z, (2.7)
and the level z = h below which the vertical flow is considered to be instantaneous is fixed so that h(t , x) = max min H (t , x) -P s ρ g , h max (x) , h bot (x) .

(2.8)

We assume that N 0 is small enough to have J and B 0 positive definite.

THE COUPLED MODEL APPROXIMATES THE 3D-RICHARDS MODEL

The aim of this section is to justify that the model (2.2)-(2.8) is an approximation of the 3d-Richards model (1.12) in shallow aquifers. The idea is to follow the strategy of [START_REF] Bourel | Modeling of shallow aquifers in interaction with overland water[END_REF] which consists in characterising the effective problems associated respectively with (1.12) and (2.2)-(2.8) when the ratio characteristic depth/characteristic length of the shallow aquifer tends to zero. We state in Proposition (3.1) that these effective problems, given in (3.14)-(3.18), coincide * over a wide range of time scales.

In the following we use many of the notations from [START_REF] Bourel | Modeling of shallow aquifers in interaction with overland water[END_REF].

DIMENSIONLESS 3D-RICHARDS AND COUPLED PROBLEMS

We consider a dimensionless domain Ω 2d ⊂ R 2 , two functions h soil , and h bot from Ω 2d to R with h bot < h soil and a dimensionless real number T > 0. The reference 3d domain is

Ω = (x, z) ∈ Ω 2d × R, z ∈ h bot (x), h soil (x) .
As in (1.3), its boundary is decomposed into Γ bot , Γ soil , and Γ ver . We consider the positive reference numbers L x , L z , and T . The physical variables (x, z, t ) and domains are dilations of the reference one:

x = L x x, z = L z z, t = T t /T , Ω 2d = L x Ω 2d , h soil (x) = L z h soil (x), h bot (x) = L z h bot (x).
The associated reference normal reads

⃗ ν(x, z) =          e 3 -(L z /L x )∇ ′ h soil (x) (L 2 z /L 2 x )|∇ ′ h soil (x)| 2 + 1 -1/2 on Γ soil (L z /L x )∇ ′ h bot (x) -e 3 (L 2 z /L 2 x )|∇ ′ h bot (x)| 2 + 1 -1/2 on Γ bot ⃗ ν(x, z) on Γ ver . The rescaled unknowns are v (t , x, z) = v(t , x, z), q(t , x, z) = u(t , x, z), w (t , x, z) = w(t , x, z), L z P (t , x, z) = P (t , x, z), L z H (t , x) = H (t , x).
As in (1.4), we introduce the subdomains Ω t and Ω t . They are characterised by the function h defined by L z h(t , x) = h(t , x).

We choose to consider saturation and relative conductivity functions that are independent of scale variation and are of order one:

θ(L z P ) = θ(P ), κ(L z P ) = κ(P ). (3.1)
* under some hypothesis

For the conductivity tensors, we set K 0 (x, z) = K 0 (x, z) and the same for tensors S 0 , N 0 , B 0 , G 0 , (3.2)

K (H )(t , x) = L z h soil (x) h bot (x) κ ρ g (H (t , x) -z) S 0 d z. (3.3) J (H )(t , x) = K (H )(t , x) -L z h soil (x) h(x) κ ρ g (H (t , x) -z) N 0 d z. (3.4)
Finally, the reference source term is defined by F (t , x) = F (t , x).

Dimensionless compressible Richards problem. The aquifer is assumed to be large and shallow, that is the quantity L z /L x is small. We choose a constant depth of order L z = 1 and a large horizontal dimension L x = 1/ε for ε ≪ 1. On the other hand, we consider the three different time scales T /T = ε γ for γ ∈ {0, 1, 2}.

The conservation of mass equation in (1.12) reads, for γ ∈ {0, 1, 2},

ε γ ∂ t θ(P )+α p ε γ s(P )∂ t P + ε∇ x • (v ) + ∂ z v • e 3 = 0 in ]0, T [×Ω. (3.5)
The Darcy's law and boundary conditions do not depend on γ and are given by

                   v = -κ(P ) K 0 ε ρg ∇ ′ P + 1 ρg ∂ z P + 1 e 3 in ]0, T [×Ω, α P ε 2 ∥∇ ′ h soil ∥ 2 + 1 1/2 + β v • e 3 -ε ∇ ′ h soil = ε 2 ∥∇ x h soil ∥ 2 + 1 1/2 F on ]0, T [×Γ soil , v •⃗ ν = 0 on ]0, T [×Γ ver , v • ε∇ ′ h bot -e 3 = 0 on ]0, T [×Γ bot . (3.6) 
Dimensionless coupled model. We consider the same parameters ε ≪ 1 and γ ∈ {0, 1, 2}. The scaled version of the problem (2.2)-(2.8) is:

• the compressible Richards equations in the transition zone

                 ε γ ∂ t θ(P )+α p ε γ s(P )∂ t P + ∂ z q • e 3 + ε∇ ′ • q = 0 α P ε 2 ∥∇ ′ h soil ∥ 2 + 1 1/2 + β q • e 3 -ε ∇ ′ h soil = ε 2 ∥∇ ′ h soil ∥ 2 + 1 1/2 F on ]0, T [×Γ soil , q •⃗ ν = 0 on ]0, T [×Γ ver P t , x, h(t , x) = ρ g H (t , x) -h(t , x) in ]0, T [×Ω 2d , P (0, x, z) = P init (x, z) in Ω t (0), (3.7 
) where the first equation holds for t ∈]0, T [ and (x, z) ∈ Ω t (t ),

• the Dupuit-type pressure in the water table

P (t , x, z) = ρ g H (t , x) -z for t ∈ [0, T [ , (x, z) ∈ Ω - t (t ), (3.8) 
• the 2d-horizontal hydraulic head problem

ε γ h soil h bot φ ∂ t s(P )+α P s(P ) ∂ t P d z -ε 2 ∇ ′ • J (H ) ∇ ′ H = -q • (e 3 -ε∇h soil ) | Γ soil -ε∇ ′ • h soil h q in ]0, T [×Ω 2d , (3.9) 
• associated with the boundary conditions

J (H )∇ ′ H •⃗ ν = 0 in ]0, T [×∂Ω 2d , H (0, x) = H init (x) in Ω 2d , (3.10) 
• the definition of the interface between the two different types of flows, for (t ,

x) ∈ [0, T [×Ω 2d , h(t , x) = max min H (t , x) - P s ρ g , h max (x) , h bot (x) (3.11)
• and velocities

         v = q + w in ]0, T [×Ω, q = -κ(P ) K zz 1 ρ g ∂ z P + 1 e 3 -ε κ(P ) ρ g G 0 ∇P , in ]0, T [×Ω. w = -ε κ ρ g (H -z) A 0 ∇H in ]0, T [×Ω.
(3.12)

Asymptotic expansion. For all ε > 0 and γ ∈ {0, 1, 2}, let P γ ε be the pressure solution of (3.5)-(3.6) and Q γ ε be that of (3.7)-(3.12). We consider the following formal asymptotics:

P γ ε = P γ 0 + ε P γ 1 + ε 2 P γ 2 + . . . , Q γ ε = Q γ 0 + εQ γ 1 + ε 2 Q γ 2 + . . (3.13)
Effective problems will characterise the zero order terms in the above extensions. We give them in the following part for short (γ = 0), intermediate (γ = 1), and long (γ = 2) time scales.

EFFECTIVE PROBLEMS

Let us introduce the following effective problems:

• Related to the short time scale (T = T ),

             φ ∂ t s(P 0 ) + α p s(P 0 )∂ t P 0 + ∂ z u 0 = 0 in ]0, T [×Ω u 0 = -κ(P 0 ) K zz 1 ρg ∂ z P 0 + 1 in ]0, T [×Ω α P 0 + β u 0 = F 0 on ]0, T [×Γ soil u 0 = 0 on ]0, T [×Γ bot (3.14)
• Related to the non-short time scales (T = ε -1 T or T = ε -2 T ),

P 0 (t , x, z) = ρ g H 0 (t , x) -z in ]0, T [×Ω v 0 = 0 in ]0, T [×Ω (3.15)
• related to the non-short time scales

(T = ε -1 T or T = ε -2 T ) if α ̸ = 0, H 0 (t , x) = F 0 (t , x) α ρ g + h soil (t , x) in ]0, T [×Ω 2d (3.16)
• related to the intermediate time scale (T = ε -1 T ) if α = 0 (and then β ̸ = 0),

ρ g h soil h bot φ s ′ (P 0 )+α P s(P 0 ) d z ∂ t H 0 = - F 1 β in ]0, T [×Ω 2d
(3.17)

• related to the long time scale (T = ε -2 T ) if α = 0 (and then β ̸ = 0)

     h soil h bot φ ∂ t s(P 0 )+α P s(P 0 )∂ t P 0 d z -∇ ′ • K (H 0 ) ∇ ′ H 0 = - F 2 β in ]0, T [×Ω 2d K (H 0 ) ∇ ′ H 0 •⃗ ν = 0 on ]0, T [×Γ ver (3.18)
We note that the last equations correspond to those obtained in [START_REF] Bourel | Modeling of shallow aquifers in interaction with overland water[END_REF], the only difference being the presence of the compressibility coefficient α p in (3.14), (3.17) and (3.18). In particular, these equations do not depend on the tensor N 0 .

MAIN CONVERGENCE RESULT

Let γ ∈ {0, 1, 2}. We denote P 

F 0 = F 1 = 0 if α = 0.
The first result of this Proposition is the characterisation of the dominant behaviour of the flow in shallow aquifers (described by 3d-Richards model). More precisely we obtain three types of dominant flow, depending on the time scale considered. This result extends that of [START_REF] Bourel | Modeling of shallow aquifers in interaction with overland water[END_REF] by considering the compressible situation α p ≥ 0 and a non-vanishing tensor N 0 in the upper part of the aquifer.

The second result is that coupled problem (2.2)-(2.8) is a good approximation of the compressible 3d-Richards model in shallow aquifers and over a wide range of time scales. This result is independent of tensor N 0 and of the compressibility parameter α p . More specifically, we note that on short time scale the additional hypothesis α p = 0 is required.

PROOF OF PROPOSITION 3.1 FOR RICHARDS PROBLEM

Regarding the Richards problem, the only difference between (1.11) (considered in [START_REF] Bourel | Modeling of shallow aquifers in interaction with overland water[END_REF]) and (1.12) is the presence of the possibly non-vanishing compressibility constant α p . The proof in this case follows exactly the same steps as that in [START_REF] Bourel | Modeling of shallow aquifers in interaction with overland water[END_REF].

The proof given in [START_REF] Bourel | Modeling of shallow aquifers in interaction with overland water[END_REF] should be adapted to include in (3.5) the new term α p ε γ s(P )∂ t P for γ ∈ {1, 2}. As γ > 0, the term α p ε γ s(P )∂ t P has no influence on the characterisation of the 0order pressure P 0 . Equations (3.15), (3.16) are then obtained in the same way as in [START_REF] Bourel | Modeling of shallow aquifers in interaction with overland water[END_REF]. The rest of the proof follows the same strategy and leads to (3.17) and (3.18) in which the contribution of the compressibility term is taken into account.

PROOF OF PROPOSITION 3.1 FOR THE COUPLED PROBLEM

Concerning the claim (i) of Proposition 3.1 for the coupled problem, we assume α p = 0. The only difference between (3.7)-(3.12) and (1.11) (considered in [START_REF] Bourel | Modeling of shallow aquifers in interaction with overland water[END_REF]) is then the non-zero tensor N 0 , which appears in the tensors G 0 and A 0 in (3.12) (see also (2.1)). In the short time scale, only the main order terms associated to ε 0 contribute to the characterisation of u 0 . The new term ε κ(P ) ρ g G 0 ∇P then has no influence and (3.14) follows. For the claims (ii) and (iii), we recover the situation of [START_REF] Bourel | Modeling of shallow aquifers in interaction with overland water[END_REF] with the additional terms associated with possibly non-zero α 0 and N 0 . As for the Richards problem (3.6), the presence of the term α p ε γ s(P )∂ t P in (3.7) and (3.9) does not affect the pressure profile (3.15). It also contributes in (3.17) and (3.18) by adding the term α P s(P 0 )∂ t P 0 . It remains to deal with the non zero tensor N 0 . Substituting asymptotics (3.13) into the second equation of (3.12) and by identifying the powers of ε we get q 0 = -κ(P 0 ) K zz 1 ρ g ∂ z P 0 + 1 e 3 , q 1 = -K zz κ(P 0 ) ρ g ∂ z P 1 e 3 -κ ′ (P 0 )K zz P 1 1 ρ g ∂ z P 0 + 1 e 3 -κ(P 0 ) ρ g G 0 ∇P 0 .

Because of (3.15) it follows q 0 = 0 and q 1 = -K zz κ(P 0 )

ρ g ∂ z P 1 e 3 -κ(P 0 ) ρ g G 0 ∇P 0 . Then, by definition of G 0 ,

∇ ′ • h soil h q 1 = -∇ ′ • h soil h κ(P 0 ) ρ g N 0 ∇ ′ P 0 = -∇ ′ • h soil h κ(P 0 )N 0 ∇ ′ H 0 .
This yields, taking into account Definition (2.7)

∇ ′ • h soil h q 1 = -∇ ′ • K (H 0 ) -J (H 0 ) ∇ ′ H 0 .
Equations (3.17) and (3.18) are finally derived from (3.9) regardless of the choice of N 0 .

□
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 1122 the pressure solution of 3d-Richards problem (3.5)-(3.6) and Q γ ε that of coupled model (3.7)-(3.12). We have the following result. Proposition 3.1. We assume that (3.13) holds true. The main-order terms of the fluid pressure are characterised by (i) P 0 0 satisfies (3.14) and Q 0 0 satisfies (3.14) under the additional assumption α p = 0. (ii) P satisfy (3.15) and (3.16) if α ̸ = 0, and (3.15) and (3.17) with the compatibility condition F 0 = 0 if α = 0. (iii) P satisfy (3.15) and (3.16) if α ̸ = 0, and (3.15) and (3.18) with the compatibility condition