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Abstract: In the field of smart mobility, Artificial Intelligence (AI) approaches are influential and
can make a highly beneficial contribution. Our project aims to develop a real-time ecological map of
road traffic. This map will allow electric vehicles (EVs) and thermal vehicles (TVs) to display the cost
of energy consumption and CO2 emissions on different road sections. In urban environments, road
traffic emissions are a significant contributor to environmental pollution, with vehicle emissions being
a major component. Addressing these impacts requires a thorough understanding of the operational
behavior of vehicles on different road infrastructures within the region. This paper presents a novel,
comprehensive dataset, the Vehicle Activity Dataset (VAD), designed to assess the emissions and
fuel consumption characteristics of vehicles about their actual operating environment. Constructed
from a large number of real-world driving scenarios, VAD incorporates emission data collected by an
industrial Portable Emission Measurement System (PEMS), road scenes captured by an RGB camera,
and the detection of different object classes within these images. The primary objective of VAD is
to provide a comprehensive understanding of the relationship between vehicle emissions and the
diverse range of objects present on the road. Experimental results in real road traffic environments
through different studies demonstrate the robustness of the developed dataset.

Keywords: Eco-routing; Vehicle Specific Power; Portable Emission Measurement; Road scenes;
Artificial Intelligence; Computer vision; Smart mobility

1. Introduction

In the era of smart mobility, the integration of technology has revolutionized the way
we understand and interact with the road scene, paving the way for eco-friendly trans-
portation solutions [1]. By harnessing the power of data emitted by vehicles, such as speed,
gas emissions, and GPS coordinates, we can gain valuable insights into road conditions,
optimize traffic flow, and promote sustainable transportation solutions. The concept of
road scene understanding encompasses the comprehensive analysis and interpretation
of the road environment [2]. It involves extracting meaningful information from various
data sources, including vehicle-generated data, to gain a holistic understanding of the
road scene. This understanding empowers cities and transportation authorities to make
informed decisions, implement effective traffic management strategies, and enhance the
overall efficiency and safety of the transportation network [3].

One crucial aspect of road scene understanding is the data emitted by the vehicles
themselves [4]. Modern vehicles are equipped with a wide range of sensors that continu-
ously collect real-time information about their surroundings. For example, GPS systems
provide precise location data, enabling the tracking and mapping of vehicle routes. This
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information can be used to monitor traffic congestion, identify accident-prone areas, and op-
timize navigation systems to provide drivers with the most efficient routes. Vehicles also
emit data about their speed, acceleration, and deceleration patterns. By analyzing these
data, traffic engineers can gain insight into traffic flow dynamics, identify bottlenecks,
and implement adaptive traffic signal control systems to improve overall traffic efficiency.
In addition, these data can be used to develop predictive models that anticipate traffic
patterns and provide early warnings of potential congestion or accidents.

Another important aspect of vehicle-generated data is the measurement of gas emis-
sions. As sustainable transport becomes an increasingly important goal, monitoring and
reducing greenhouse gas emissions is of paramount importance. By collecting real-time
data on gas emissions from individual vehicles, transport authorities can assess the envi-
ronmental impact of the transport system, identify high-emission zones, and implement
targeted measures to promote cleaner and greener mobility options.

The integration of vehicle-generated data into road scene understanding opens up
new possibilities for creating a more sustainable and efficient transport ecosystem. By har-
nessing these data, we can pave the way for eco-friendly mobility solutions, reducing
our environmental footprint, and creating a greener future for transport. As technology
continues to advance, the potential for data-driven eco-mobility innovations is becoming
increasingly promising, offering a transformative shift towards a more sustainable and
intelligent transport system.

This paper presents an innovative and comprehensive dataset, Vehicle Activity Dataset
(VAD), which combines vehicle data and road scene information, aiming to drive advance-
ments in eco-mobility and sustainable transport solutions. By integrating these two different
data sources, we provide a valuable resource for studying the complex relationship between
vehicle emissions, road conditions, and smart mobility strategies.

VAD makes a significant contribution to the field of eco-mobility by bridging the gap
between vehicle-related data and visual information, paving the way for transformative
research opportunities and the development of advanced algorithms. Through this integra-
tion, we can accurately estimate emissions, optimize traffic flow, and formulate sustainable
transport strategies to reduce the environmental impact of transport systems. The insights
derived from this dataset hold immense potential to promote a greener, cleaner, and more
efficient mobility landscape, moving us towards a more sustainable transport future.

This paper is organized as follows: Section 1 introduces this paper. In Section 2,
we review the related work, the transport sector that reduces energy consumption, CO2
emission, and eco-driving as a relatively low-cost and immediate measure to significantly
reduce fuel consumption and emissions. In Section 3, we present our vehicle activity dataset,
where we introduce a new and innovative dataset called the Vehicle Activity Dataset, which
combines vehicle data and road scene information, aiming to drive progress in eco-mobility.
The data collection, road data extraction, and data synchronization necessary for the
development of our vehicle activity dataset are described in Section 4. The experimental
results, both qualitative and quantitative, are the subject of Section 4, where we present
the results of the dataset. Finally, the conclusions and future directions are outlined in
Section 5.

2. Related Work

In recent decades, cities have faced unexpected socioeconomic crises, such as the
increase in the world’s population, urban growth, and migration from rural areas to urban
centers. More than 50% of the world’s population lives in cities [5]. By 2050, the United
Nations (UN) predicts this number to reach 70%. The rapid transition to a highly urbanized
population raises the demand for new infrastructures for cities needed to provide essential
services for citizens, i.e., healthcare, education, transport, safety, reduction of greenhouse
gas emissions, and sustainable energy and water. The significant growth of the population
in urbanized cities particularly increases the number of vehicle owners and hence impacts
both the environment and the cost of transport. The transport sector is one of the largest
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contributors to greenhouse gas (GHG) emissions and excessive consumption of energy
resources [6]. According to the European Environment Agency [7], GHG emissions from
road transport vehicles still account for around 93% of emissions from the transport sector.
In addition, the world’s total energy consumption will increase by almost 50% by 2050
according to the IEO2019 Reference case [8]. Energy consumption in the transport system
generally accounts for a share of a country’s total energy consumption. It will increase by
almost 40% by 2050 [8].

In the pursuit of mitigating energy consumption and CO2 emissions in the transport
sector, specific attention has been directed to this endeavor [9]. Eco-driving emerges as a
cost-effective and immediately implementable strategy to significantly curtail both fuel
consumption and emissions [10]. Factors such as acceleration/deceleration, driving speed,
route selection, and idling, which fall within the control of a driver during operation, play
pivotal roles in influencing fuel consumption and emissions [11,12]. Commonly employed
methods to instill eco-driving skills encompass training programs and the utilization of
in-vehicle feedback devices, and whereas immediate and substantial reductions in fuel
consumption and CO2 emissions have been observed, accompanied by a slight increase
in travel time [13], the sustained impact of these methods may diminish over time due to
ingrained driving habits developed over the years. This underscores the imperative need
to formulate quantifiable eco-driving recommendations and integrate them into vehicle
hardware to ensure consistent and uniform improvements.

Vehicle routing problems (VRPs) and their various iterations constitute a distinguished
category of network problems that have garnered significance over the years, particularly
for their pragmatic approach to addressing logistical challenges [14]. The primary objectives
within this domain revolve around minimizing operational time, cost, or both for vehicles en
route to their designated destinations. Variations in the problem have been introduced over
time through alterations in the formulation of the basic routing problem. Objectives range
widely, including the minimization of distance, travel time, fuel consumption, pollution,
and others, adapting based on the specific application [15]. Despite offering a direct
competitive advantage, these algorithms often operate on generalized methodologies
with limited situational awareness. Notably, the expertise, sentiments, and situational
adaptability of drivers are frequently excluded from these approaches.

Several strategies have been proposed to look over these problems from different
approaches including traffic and energy demand management, improving vehicle tech-
nologies, and integrating Information and Communication Technologies (ICT) [16–18].
The application of machine learning and Artificial Intelligence (AI) approaches to the
transport sector, i.e., ITS, has significantly contributed to enhancing safety, efficiency, com-
fort, and environmental impacts on this sector. ITS is becoming an area of active research
for automotive manufacturers trying to solve both economic and environmental issues
such as reducing energy consumption, CO2 emissions, traffic congestion, noise, and acci-
dents [6,16–18]. ITS supports innovative and sustainable transport management systems,
and hence, this can lead to the improvement of energy efficiency. For instance, the following
reductions were recorded in the road sector: travel time between 15% and 20%, energy
consumption by 12%, emissions of pollutants by 10%, and the number of accidents between
10% and 15% [19]. ITS has revolutionized all aspects of urban life from traffic control
to reducing resource consumption, especially energy use. Another strategy that may be
adopted to achieve energy savings and protect the environment is the electrification of the
road transport sector. In particular, replacing diesel and gasoline-powered vehicles with
electric vehicles (EVs) could be a solution to move towards green energy. Adopting these
vehicles has emerged as a trend to support the reduction of CO2 emissions and energy
efficiency targets [17,18,20–22].

Our project is part of innovative ICT solutions designed to reduce EV energy con-
sumption and TV CO2 emissions to promote smart mobility. These solutions deal with two
main services: eco-driving and eco-routing. The innovation consists of:
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1. Using AI technologies to elaborate an accurate estimation of EV energy consumption
and TV CO2 emission related to each road section taking into account the whole context
(vehicle + driver + environment) of the vehicle. 2. Modeling the EV energy consumption
and the TV CO2 emission using an original hybrid approach based on the cooperation
of deterministic and stochastic methods. 3. Using new generation e-ADAS allows the
prediction of road user behavior for better safety and eco-driving. 4. Analyzing the
road scenes for an energy/CO2 semantic segmentation. This allows going from ’idea to
proof-of-concept’.

The development of an AI-based real-time ecological map of a road traffic network
stands out as a crucial priority recognized at all institutional levels. To effectively address
this imperative, it becomes evident that the foundational element lies in the creation
and utilization of the innovative dataset previously discussed. This dataset, seamlessly
integrating vehicle-specific information with road characteristics, becomes the linchpin for
achieving an accurate and comprehensive real-time ecological map. It not only improves
the accuracy of environmental monitoring but also paves the way for informed decision-
making at both individual and institutional levels.

3. Vehicle Activity Dataset

In this part, we present a dataset called Vehicle Activity Dataset (VAD) that combines
vehicle data and road scene information, aiming to drive advancements in eco-mobility.
By integrating these two distinct sources of data, we provide a valuable resource for
studying the intricate relationship between vehicle emissions and road conditions.

Figure 1 shows the entire process of the VAD creation journey. The street scene
imagery is first carefully captured along with associated Portable Emission Measurement
System (PEMS) data. The PEMS is a pivotal tool for acquiring genuine emissions data
from vehicles. Consisting of sensors and specialized equipment, PEMS accurately gauges
the pollutants emitted by vehicles in real-world road conditions. The brain behind this
innovation is none other than the CERTAM Regional Innovation Center. PEMS not only
captures real-world emissions data but also provides comprehensive vehicle information,
including GPS coordinates and speed. An important next step is the dataset extraction
process, which carefully extracts complex road information from the collected images.
These intrinsic street insights formed the basis for subsequent synchronization efforts to
establish a harmonious alignment between the extracted images and the corresponding
PEMS data. This synchronization seamlessly connects visual context with emissions-related
information, resulting in a cohesive and meaningful dataset with enormous potential for
transformative insights and actionable results.

Figure 1. Overview of VAD construction.
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4. Experimental Results and Analysis
4.1. Data Collection

Data collection is of paramount importance in the context of studying vehicle emissions
and road scene analysis. By collecting comprehensive and accurate data, we can gain
valuable insights into the environmental impact of vehicles and their relationship with
road conditions. The integration of multiple data sources, such as emissions, vehicle speed,
and GPS coordinates (altitude, longitude, latitude) allows for a holistic understanding of the
factors influencing emissions and their spatial distribution within a road network. In our
data collection efforts, we conducted numerous experiments in the city of Rouen, France,
with ESIGELEC (Engineering High School located in Rouen) as the primary source location.
To ensure the dataset’s robustness and real-world applicability, we selected a Renault diesel
car as the vehicle for our experiments, providing a specific vehicle type for analysis, and
we selected multiple destinations, including Bosguouet, Brionne, Neubourg, and Yvetot,
representing diverse road networks and driving conditions. For each destination, we
collected data for both the outbound and return journeys, and to comprehensively assess
emissions variations based on different driving scenarios, we focused on two distinct
route types: one adhering to Google Maps’ fastest route recommendation and the other
aligned with an eco-friendly route suggestion. This approach enabled us to investigate
the emissions implications stemming from different route choices, shedding light on the
trade-off between speed and environmental impact.

By traversing multiple routes and destinations, we accounted for the heterogeneity
of road types, traffic congestion levels, and driving behaviors prevalent in the region.
This approach allowed us to capture a wide range of driving scenarios, including urban
areas, highways, and rural roads, contributing to a more comprehensive and represen-
tative dataset. The diversity of routes ensured that the dataset included different traffic
patterns, environmental factors, and road infrastructure characteristics, making it suitable
for studying eco-mobility and transport solutions in real-world settings.

The Portable Emission Measurement System played a crucial role in our data collection
process. It was installed at the rear of the vehicle as shown in Figure 2. With a frequency of
1 Hz, the PEMS system captured emissions, vehicle speed, and GPS coordinates at a high
temporal resolution. This high-frequency data collection allowed us to analyze emission
patterns and variations during different driving scenarios, providing detailed insights into
the environmental impact of vehicles in real time.

The integration of vehicle speed and GPS coordinates into our dataset further enriched
the collected data. The speed data provided valuable information on driving behavior,
including acceleration, deceleration, and average speeds. These data allowed for a com-
prehensive analysis of how speed influences emissions and traffic dynamics. The GPS
coordinates provided precise location information, enabling the mapping of emissions to
specific road segments and facilitating the identification of emission hotspots and areas
with significant environmental concerns. Table 1 presents an overview of the PEMS data in
the VAD, highlighting some examples of vehicle gas emissions and other relevant variables.

In addition to collecting vehicle emissions and data, we have also captured images
of the road scene. These images provide valuable visual information about the road
infrastructure, traffic conditions, and the environment. For image collection, we used
the Intel RealSense camera, which was mounted on the front of the vehicle to capture a
forward-facing view as shown in Figure 3.
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Figure 2. PEMS installed in our test vehicle.

Table 1. Overview of PEMS data in VAD.

Fuel Type Variables Data Size Minimum Maximum Mean STD

CO2 (g/s) 6.51 × 10−7 16.359 3.102 3.009

Diesel

CO (g/s) 3.38 × 10−10 0.368 1.3 × 10−3 0.01

O2 (g/s) 0.0002 17.398 3.818 2.389

NO (g/s) 2.74 × 10−8 0.124 0.014 0.018

NO2 (g/s) 28,972 (Rows) 2.01 × 10−8 0.0198 0.0025 0.0032

Vehicle Speed (km/h) 0 136.899 62.876 39.623

Ambient Pressure (kPa) 994 1025 1007.672 35.875

Ambient Humidity (%) 29.2 100.7 67.917 15.910

Ambient Temperature (K) 290.75 301.85 293.917 2.471

The Intel RealSense camera is a powerful RGB (Red Green Blue) camera that captures
high-resolution images with rich color information. By placing it at the front of the vehicle,
we obtained a perspective that closely resembles the driver’s view, allowing us to capture
the road scenes from a realistic standpoint. This camera provided clear and detailed images
that were instrumental in analyzing the road conditions and extracting relevant visual
features, some examples of which are shown in Figure 4.



Appl. Sci. 2024, 14, 338 7 of 17

Figure 3. Intel RealSense camera mounted on the front of the vehicle.

During the data collection process, we captured images at a frequency of 5 images per
second, with a frame rate of 5 frames per second (fps = 5), with a shape of 1920 × 1080.
This sampling rate provided a balance between capturing sufficient visual data and mini-
mizing storage requirements. The 5 fps frequency allowed us to capture a series of images
representing the temporal progression of the road scene during different driving scenarios.

Figure 4. Some examples of our collected images.
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By analyzing these images, we were able to detect and classify road infrastructure
elements such as lanes, road signs, and traffic lights. Additionally, the images also provided
visual clues about traffic flow, congestion, and environmental factors that could affect
vehicle emissions.

Table 2 provides details regarding our cycles and experiments conducted during the
data collection process.

Table 2. Information collected during experiments on various directions.

Date (DD/MM/YY) Source Destination Distance (Km) Time (Min) Number of Images PEMS Data

Eco-route 16/06/2023 ESIGELEC Bosgouet 27 28 6785 1334
16/06/2023 Bosgouet ESIGELEC 26 24 5087 1125

Fastest route 16/06/2023 ESIGELEC Bosgouet 24 27 6109 1278
16/06/2023 Bosgouet ESIGELEC 29 23 4955 1752

Eco-route 24/07/2023 ESIGELEC Yvetot 44 46 11,224 3211
24/07/2023 Yvetot ESIGELEC 46 43 11,379 2545

Fastest route 24/07/2023 ESIGELEC Yvetot 43 44 11,139 3132
24/07/2023 Yvetot ESIGELEC 42 39 10,144 2195

Eco-route 25/07/2023 ESIGELEC Saint-Saens 42 55 12,664 3819
25/07/2023 Saint-Saens ESIGELEC 43 52 12,162 3322

Fastest route 25/07/2023 ESIGELEC Saint-Saens 39 48 12,001 3052
25/07/2023 Saint-Saens ESIGELEC 39 46 11,586 2984

4.2. Road Data Extraction

The extraction of road scene information from the meticulously gathered images
assumes a pivotal role in the overarching endeavor of dataset creation. This component
is crucial because it gives us a complete picture of the current road conditions and traffic
density. The core of the process involved the application of three sophisticated You Only
Look Once (YOLO) models, strategically chosen to cover different aspects of the street scene.
Collectively, these models represent a fusion of advanced computer vision techniques and
machine learning algorithms working in tandem to extract meaningful information from
the captured visual data.

The first model’s task is to quantify the density of vehicle traffic in a street scene. It
can accurately measure the number of vehicles present so that the traffic situation can be
quantitatively assessed at different time intervals.

The second model, with a targeted focus, zeroes in on the identification of traffic
signals and pedestrian crossings, as well as zebra crossings. This feature-rich identification
process is crucial for understanding the interaction points between pedestrians and vehicles
and for identifying traffic control mechanisms.

In turn, the resulting model plays a crucial role in recognizing and decoding traffic
signs in street scenes. This includes a wide range of regulatory, warning, and information
signs and adds a layer of semantic understanding to the dataset.

4.2.1. Traffic Density Detection

Delving deeper into the field of traffic density detection, our attention is focused on
carefully quantifying the presence of vehicles in observed street scenes. This particular
regulation has resonated widely and has a major impact not only on the current state of the
road but also on the complex web of CO2 emissions closely linked to vehicle activity.

The accurate identification of cars with rear orientations relative to the camera’s per-
spective is important to this quest [23]. This prudent criterion is the result of a thorough
understanding of vehicle dynamics and their complex influence on our immediate sur-
roundings. Vehicles traveling in the same direction as us are extremely important because
they can shape our trajectory and impact the overall traffic flow.

This selection principle is guided by two rationales. Firstly, cars traveling in the same
direction as ours are inherently linked, with their motions firmly intertwined with ours.
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As a result, their existence has a substantial impact on overall traffic dynamics, necessitating
a thorough examination. Secondly, this distinction ensures that our analysis is grounded in a
practical perspective. Vehicles with opposing frontal orientations, although essential to the
overall traffic ecology, have comparatively less influence on our local operational domain.

In this pursuit, we opt to use a pre-trained YOLOv5 model [24], a well-regarded solu-
tion recognized for its proficiency. This model, having already demonstrated commendable
performance, has been trained on the comprehensive Vehicle Orientation Dataset [25].

However, our deliberate emphasis remains on a subset of these categories, specifically
centered around cars, trucks, and buses. Figure 5 illustrates the successful detection
capabilities of our model. we have established two categories termed ‘coming vehicle’,
and ‘outgoing vehicle’. This classification groups vehicles into a single class, distinguished
by their orientation relative to their trajectory. Specifically, vehicles presenting a back view
are grouped as ‘outgoing vehicles’, indicating their departure from the observer’s viewpoint.
Conversely, vehicles exhibiting a frontal view indicate their approach and are classified as
’Coming vehicles’. Our primary focus is squarely on ’outgoing vehicles’, aligning seamlessly
with our objectives because they have the potential to impact our traffic density. This
discerning approach allows us to delve into vehicular dynamics with enhanced precision,
dissecting intricate traffic patterns and their consequential environmental impacts.

(a)

(b)
Figure 5. Highlighting vehicle detection with orientation: showcasing examples from our dataset.
(a) Initial vehicles detection results with outlined bounding boxes and orientation arrows for a
comprehensive overview. (b) Detailed analysis of vehicle orientation within bounding boxes.
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4.2.2. Traffic Light Detection

This section focuses on traffic light detection, pivotal aspects that yield insights into
road conditions and pedestrian crossings along our route, employing a pre-trained YOLOv5
model sourced from GitHub [26].The model underwent training on a diverse dataset,
encompassing images featuring traffic lights and zebra crossings in various conditions
such as rainy days, normal days, and sunny days. The training spanned 50 epochs,
yielding commendable results. We harness its proven efficacy in yielding accurate results.
The model provides us with invaluable data on the status of traffic lights and the presence
of pedestrians crossing the road.

Through this analytical lens, we discern the intersection of traffic dynamics and pedes-
trian safety, bolstering our comprehensive dataset with reliable information. The YOLOv5
detection model has been configured to recognize and locate three specific classes: Zebra
Cross, Green Light, and Red Light. This advanced model excels at accurately detecting
these objects within images, enabling the accurate identification of both traffic lights, shown
in Figure 6.

(a)

(b)
Figure 6. Traffic light detection showcasing examples from our dataset. (a) Red light detected.
(b) Green light detected.

4.2.3. Traffic Signs Detection

This section looks into traffic sign detection. These unassuming markers hold immense
significance, shaping both route conditions and vehicle behavior. Their impact extends
beyond visual cues, influencing road state and emissions.
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Traffic signs act as dynamic regulators, directing motorist behavior and safety. Fur-
thermore, they impact emissions discretely through speed restrictions and operational
changes. This is not a monolithic environment; the many signs reflect the intricacies of
modern highways. From speed limits to stop signs, each sign contributes to our overall
awareness of the road.

Traffic sign detection requires interpreting visual symbols and contextual meanings.
This fusion of technology and human dynamics results in safer travel and less environ-
mental effect. We adopted a detection strategy hinging on pre-trained YOLOv3 and CNN
models [27]. This approach, introduced in 2020 and documented by two pivotal arti-
cles [28,29], has consistently yielded robust outcomes. The architecture of this approach
is shown in Figure 7. It commences with YOLOv3, proficient in detecting and identifying
traffic signs. Subsequently, a CNN model undertakes the classification of these detected
signs, attributing distinct labels to each.

Figure 7. Architectural workflow—YOLOv3 detection followed by CNN classification.

The progression of loss and mAP (Mean Average Precision) throughout the training
process, involving a total of 8000 iterations, is noteworthy. These models were trained on
the German Traffic Sign Detection Benchmark (GTSDB) dataset. This dataset, replete with
authentic road sign images, encompasses 40 different classes and a total of 50,000 images
(Stop, Yield, Speed limit, etc.).

The progression of loss and mAP (Mean Average Precision) throughout the training
process, involving a total of 8000 iterations, is noteworthy. Notably, Mean Average Precision
(mAP) is a crucial metric in object detection tasks, serving as a comprehensive measure
of a model’s accuracy in localizing objects within an image and assigning accurate labels
to them. It strikes a balance between precision, which assesses the accuracy of positive
predictions, and recall, which measures the model’s ability to identify all relevant instances.
The mAP score is determined by calculating the Average Precision (AP) for each class and
then averaging these values across all classes.

The Average Precision is calculated using Formula (1):

AP =
∑n(P(n)× precision at n)

Total number of positive predictions
(1)

where n ranges over the sorted predictions by confidence score, and P(n) is an indicator
function that equals 1 if the prediction at position n is a true positive, and 0 otherwise.

Therefore, achieving a 97% mAP on the 5700th iteration is a significant milestone. This
high mAP value indicates that the model has excelled in both accurately localizing objects
and assigning accurate labels, making it an optimal point to capture the parameters of
the model.

Subsequently, we applied this model to our gathered images, yielding commendable
results and accurate detections, as shown in the figures below. Figure 8 illustrates a subset
of the successful detections obtained from our image collection, and Table 3 shows the
number of detections gathered from our real-world test cycles.
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Table 3. Overview of detected objects.

Group Class Number of Detections

Traffic Signs

Speed Limit 757

Stop Sign 206

Animal Crossing 95

Bicycle Crossing 209

Zebra Crossing 4846

Yield Sign 982

Roundabout Sign 664

School Zone 21

Temporary Signs Road work 192

Traffic Lights Red and Green 1089

Traffic Density
Ongoing 34,891

Incoming 21,058

(a)

(b)
Figure 8. Exemplars of traffic sign detection from our dataset. (a) Detection of animal crossing sign.
(b) Detection of speed limit sign and yield sign.

Our main focus gravitates toward specific categories, notably encompassing speed lim-
its spanning 20 to 120 km/h, stop signs, animal crossings, road working zones, and school
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zones. These categories assume paramount significance due to their potential to signifi-
cantly influence road conditions and vehicular emissions. Their selection as distinctive
features stems from their capacity to tangibly impact the dynamics of the road environment
and the emission levels of vehicles navigating through them.

A notable emphasis is placed on our methodology for speed limit detection. By se-
quentially processing the image stream, we maintain the continuity of the detected speed
limit value across subsequent images. When a speed limit is identified, this numerical
value persists until a different speed limit figure is detected. For instance, as shown in
Figure 9, the model has successfully identified a speed limit of 70 km/h. This speed limit
value is then attributed to subsequent images until an alternative speed limit detection
is encountered.

Figure 9. Identifying 70km/h Speed Limit Signs in Our Dataset

For the remaining detection categories, a straightforward approach is adopted. We as-
sign a value of 1 to indicate presence and 0 to signify absence in each respective image. This
streamlined approach uniformly encapsulates the detection outcomes within the dataset.

4.3. Data Synchronization

To obtain the final format of the Vehicle Activity Dataset, a crucial step involves
the integration of both PEMS data and image data. This amalgamation necessitates a
meticulous synchronization process to align these two disparate data sources cohesively.
As explained earlier, PEMS and images are acquired at different frequencies—1 Hz for
PEMS and 5 frames per second (fps) for images. This proximity in frequency implies
an inevitable incongruity in the data counts, with the image count exceeding that of the
available PEMS data.

The methodology involves aligning the timestamp of each captured PEMS data entry.
With a fixed timestamp for each collected PEMS dataset, we determine the closest corre-
sponding image by examining the temporal proximity between the timestamps. Through
this meticulous comparison, we ensure a cohesive alignment between the PEMS data and
their corresponding image snapshot.

This synchronization process not only bridges the temporal gap between data sources
but also fortifies the integrity of our dataset, facilitating an accurate correlation between
the captured road scenes and the concurrent traffic and environmental measurements.

After completing the synchronization process, our dataset attains its ultimate format,
comprising 28,972 data rows. The dataset incorporates PEMS data detailed in Table 1,
covering emissions, ambient data and vehicle data. Additionally, it includes road data
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from Table 3, encompassing information about traffic signs, traffic lights, and traffic density.
The finalized dataset is structured as a CSV file for ease of accessibility and utilization.

To enhance our understanding of the correlation between vehicle emissions and road
data, we employ a statistical measure known as the point-biserial correlation coefficient.
This coefficient facilitates the calculation of the correlation between our continuous vehicle
gas emissions and categorical road data. The formula for the point-biserial correlation
coefficient (rpb) is given by:

rpb =
X̄1 − X̄0

sp
(2)

where X̄1 is the mean of the vehicle gas emissions for the group with existing road data (1),
X̄0 is the mean for the group with non-existing road data (0), and sp is the pooled standard
deviation defined as:

sp =

√
(n1 − 1)s2

1 + (n0 − 1)s2
0

n1 + n0 − 2
(3)

Here, n1 is the number of observations in the group with existing road data, n0 is
the number of observations in the group with non-existing road data, s1 is the standard
deviation of the vehicle gas emissions for the group with existing road data, and s0 is the
standard deviation for the group with non-existing road data. The correlation factor esti-
mates the point-biserial correlation coefficient between certain road data and the emissions
of CO, CO2, NO, and NO2 from vehicles, as illustrated in Figure 10. Notably, there is a
strong correlation observed between stop signs and speed limits with all types of vehicle
gas emissions. Traffic lights exhibit a moderate correlation with CO2, NO, and NO2, but a
weaker one with CO. On the other hand, yield signs show a low correlation with vehicle
gas emissions, with a negative correlation specifically noted with NO and NO2 emissions.

Figure 10. Analyzing the correlation between vehicle emissions and road data.

5. Conclusions

In conclusion, the development of the Vehicle Activity Dataset represents a significant
step towards creating a versatile and comprehensive resource for understanding and
optimizing traffic dynamics. The strategic fusion of vehicle data and road scene information,
with a special focus on environmentally friendly routes, reflects the project’s commitment to
a niche but crucial aspect of transport. What sets VAD apart is its adaptability, demonstrated
by the seamless integration of additional traffic signs and road scene details. This not only
meets the needs of the current project but also provides a robust foundation for future
initiatives, enhancing the versatility of the dataset. Delving into the conceptual framework
reveals a commitment to extracting diverse information that promises to increase the overall
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richness of the dataset and unlock its full potential for a variety of applications. The results
obtained show that our developed dataset could be a good tool for different approaches
in the field of eco-mobility and how to reduce and optimize energy consumption. This
dataset is now being used to train our AI algorithm for a new open-access real-time
Green Map platform dedicated to smart mobility. VAD exhibits promising potential with
diverse practical implications, extending its utility to comprehend road environments and
analyze vehicle operations. The dataset proves valuable for developing models related
to environmentally friendly route planning, investigating the relationship between road
infrastructure and vehicle emissions, optimizing traffic management, and informing road
development strategies. In essence, VAD not only tackles existing challenges but also sets
the foundation for future advancements in the field of intelligent transportation systems.

However, it is imperative to acknowledge the limitations inherent in any dataset,
including VAD. Detection models, although powerful, inherently carry a probability of error,
leading to potential inaccuracies in the recorded data. It is crucial to recognize that these
errors may result in false positives or negatives, impacting the dataset’s reliability in certain
scenarios. Additionally, the elimination of certain images during the synchronization phase
introduces a potential source of information loss, and although this may be inconsequential
at lower vehicle speeds, it becomes a critical concern at higher speeds, where the real-time
dynamics of the road environment may be compromised.
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Abbreviations
The following abbreviations are used in this manuscript:

VAD Vehicle Activity Dataset
ICT Information and Communication Technologies
ITS Intelligent Transportation Systems
EV Electric Vehicle
CNN Convolutional Neural Networks
COCO Common Objects in Context

CRIANN
Centre Régional Informatique et d’Applications Numériques de Normandie
(Regional Center for Computer Science and Digital Applications of Normandy)

UN United Nations
GHG GreenHouse Gases
VRP Vehicle Routing Problems
AI Artificial Intelligence
PEMS Portable Emissions Measurement Systems
ESRORAD Esigelec Engineering High School and Segula technologies ROad and RAilway Dataset

CERTAM
Centre Régional d’Innovation et de Transfert Technologique
(Regional Center for Innovation and Technology Transfer)

FPS Frame-Per-Second
GPS Global Positioning System
GTA Grand Theft Auto
IMU Inertial Measurement Unit

KITTI
Karlsruhe Institute of Technology & Toyota Technological Institute at Chicago
vision benchmark suite

RGB Red Green Blue
LIDAR Light Detection Furthermore, Ranging
mAP Mean Average Precision
AP Average Precision
MOT Multi-Object Tracking
NUScenes NuTonomy Scenes
SORT Simple Online and Realtime Tracking
SOTA State Of The Art
SYNTHIA SYNTHetic Collection of Imagery and Annotations
YOLO You Look Only Once
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