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Introduction

Over the past decade, the use of online learning has evolved rapidly and its use has been pushed even further with the latest covid-19 pandemic. The aim is to maintain the continuity of the learning process, wherever and whenever it takes place. However, this learning mode presents many challenges among which the high failure rate. In order to solve this issue, Performance Prediction Systems (PPS) based on classifiers are used to predict accurately and at the earliest at-risk of failure learners. These systems are based on both real-time learning data stream and Machine Learning (ML) models.

To assess the effectiveness of PPS predictions, common ML metrics such as accuracy, recall and precision are used. However, despite the importance of the temporal dimension when assessing such systems, none of the traditional metrics measures the precocity of the correct predictions or reflects the stability of predictions over time. The vast majority of existing research works [START_REF] Bañeres | An early warning system to detect at-risk students in online higher education[END_REF][START_REF] Karalar | Predicting students at risk of academic failure using ensemble model during pandemic in a distance learning system[END_REF][START_REF] Adnan | Predicting at-risk students at different percentages of course length for early intervention using machine learning models[END_REF][START_REF] Lee | The machine learningbased dropout early warning system for improving the performance of dropout prediction[END_REF][START_REF] Akc ¸apınar | Using learning analytics to develop early-warning system for atrisk students[END_REF] neglect the temporal dimension and only assess prediction precision statically. Indeed, the use of time-dependent metrics to study systems performance over time is more developed in other research fields [START_REF] Wang | Outcomeoriented predictive process monitoring with attentionbased bidirectional lstm neural networks[END_REF][START_REF] Nath | An early classification approach for improving structural rotor fault diagnosis[END_REF][START_REF] Schäfer | Teaser: early and accurate time series classification[END_REF][START_REF] Guidotti | Assessing the stability of interpretable models[END_REF]. In return in the field of education, our previous work [START_REF] Ben Soussia | Assess performance prediction systems (beyond precision indicators[END_REF] is the only research work that considers the use of new timedependent metrics including earliness and stability. The metrics have been proposed to assess the PPS's ability to predict correctly at the earliest, as well as its stability over time. On the one hand, the classifier's earliness is defined as the first point in time when it correctly predicts the class label. While the earliness outcome is being improved, the results of ML precision metrics such as accuracy must remain high enough to provide accurate predictions. As a result, we proposed an Earliness-Accuracy Score (EAS) that expresses the inverse proportionality of accuracy and earliness through the harmonic mean measure. On the other hand, the stability is the average of the longest sequences of successive correct predictions over a time interval.

Our previous work did, however, have some limitations, one of which was the definition of earliness. Only the first earliness point is taken into account; this is a strong assumption because the model may be inaccurate at near future prediction points. Further-more, the relationship between stability and earliness was never investigated, as it was with earliness and accuracy. We believe that changes in system stability over time can have an effect on the earliness. Thus, to analyze the relationship between time-dependent metrics including stability and earliness, a score should be defined.

In this paper, we propose revising the algorithm for computing earliness [START_REF] Ben Soussia | Assess performance prediction systems (beyond precision indicators[END_REF] so that it returns multiple earliness points in time rather than a single one. Furthermore, we propose using an Earliness-Stability Score (ESS) to investigate the relationship between the earliness of a classifier and its stability. The ESS is used to examine the tradeoff between only time-dependent metrics. The aim is to compare its use to the EAS measure proposed in [START_REF] Ben Soussia | Assess performance prediction systems (beyond precision indicators[END_REF]. The definition of stability is kept similar to the one proposed in (Ben [START_REF] Ben Soussia | Assess performance prediction systems (beyond precision indicators[END_REF]. In order to validate the importance of these time-dependant metrics as well as the tradeoff measures, we applied them to assess four different PPS based on learning traces of k-12 learners enrolled in an online physics chemistry module within a French distance learning center (CNED 1 ).

To summarize, the contributions of this work are as follows:

• An algorithm that computes a set of earliness points over a time interval.

• An earliness stability score is used to determine the earliness point corresponding to a PPS as precisely as possible.

• Comparison between the use of the ESS and EAS when identifying an earliness point for a PPS.

• All the defined metrics are applied to assess four different PPS using real learning traces of k-12 learners.

The rest of the paper is organized as follows: Section 2 presents the related work. Section 3 presents the time-dependent metrics to assess PPS in terms of earliness and stability. In Section 4 and Section 5, we present respectively an overview of the case study and the experimental results. Section 6 presents the conclusion and the future work.

Related work

The use of PPS for early detection of at-risk of failure learners is gaining momentum. To assess the performance of these systems, static ML precision metrics are commonly used. The authors in (Bañeres 1 Centre National d'Enseignement à Distance et al., 2020) proposed a model to predict the likelihood to fail a course. The predictive performance of this model is evaluated using the accuracy metric. In [START_REF] Karalar | Predicting students at risk of academic failure using ensemble model during pandemic in a distance learning system[END_REF], the authors proposed a classifier to identify students at-risk of failure during the last pandemic. During the performance evaluation process, only the specificity measure has been used. In [START_REF] Adnan | Predicting at-risk students at different percentages of course length for early intervention using machine learning models[END_REF], the authors compared the performance of different ML models in analyzing the problems faced by at-risk learners in online university. The selection of the best model between those trained was based on the accuracy, precision, recall, support and f-score metrics.

On the one hand, early detection of at-risk learners is of great importance as it allows teachers to intervene effectively. To this end, many research works focused on determining the suitable time of a good and early prediction. In [START_REF] Hlosta | Ouroboros: early identification of at-risk students without models based on legacy data[END_REF][START_REF] Wolff | Developing predictive models for early detection of at-risk students on distance learning modules[END_REF], there are evidences on the importance of the first assessment in detecting at-risk learners and predicting their final outcomes. Further, in (Figueroa-Cañas and Sancho-Vinuesa, 2020), the authors proved the importance of the continuity of learning during at least the first half of a course. However, none of these works considers the evolution of prediction over time or proposes a way to measure the earliness of correct predictions. Researchers in other fields, such as process mining and signal processing, are more aware of the temporal dimension's importance and are proposing definitions and measures for computing earliness. In [START_REF] Santos | A literature survey of early time series classification and deep learning[END_REF], the authors defined early classification as the problem of attempting to make a classification decision with as few observations of a time series as possible while sacrificing as little accuracy as possible. To evaluate the performance of an outcome-oriented predictive process monitoring, the authors in [START_REF] Wang | Outcomeoriented predictive process monitoring with attentionbased bidirectional lstm neural networks[END_REF] used the accuracy measure and the earliness metric defined as the smallest on-going case length where a classifier achieves a specified accuracy threshold. In [START_REF] Nath | An early classification approach for improving structural rotor fault diagnosis[END_REF], the authors presented a structural rotor faults diagnosis framework with an early classification strategy. As the decision policy is crucial to the proposed paradigm, the earliness has been measured. The earliness of testing refers to the number of data points utilized for class prediction. Therefore, the earliness of a classifier, in this context, is the average percentage of predicted length to full length of testing. In [START_REF] Schäfer | Teaser: early and accurate time series classification[END_REF], the authors proposed a time series classifier for early classification of electronic signals. To assess the performance of this model, they considered the importance of both accuracy and earliness defined as the mean number of data points after which a label is assigned.

On the other hand, stability is another important factor to consider when dealing with time-evolving predictions. In fact, the stability of predictions has been addressed in several contexts,in the literature. A common definition of the stability term is always related to the small changes in the model's output when changing the training set [START_REF] Philipp | Measuring the stability of results from supervised statistical learning[END_REF]. In [START_REF] Guidotti | Assessing the stability of interpretable models[END_REF], the authors proposed a framework for assessing the interpretability of ML models based on multiple metrics, such as stability, which is defined as the deviation of the measure distribution over models learned from different samples of the population.

To the best of our knowledge, [START_REF] Ben Soussia | Assess performance prediction systems (beyond precision indicators[END_REF] is the only research work in which the authors defined both earliness and stability to assess classifiers that predict students performance. However, the work presents some limitations, one of which was the definition of earliness. It is defined as the first point in time at which the classifier correctly predicts the class label, which is a strong assumption, as the model may be inaccurate at near future prediction points.

To summarize, the use of time-dependent metrics as well as the study of the trade-off between all of them are more considered in other researching fields [START_REF] Wang | Outcomeoriented predictive process monitoring with attentionbased bidirectional lstm neural networks[END_REF][START_REF] Nath | An early classification approach for improving structural rotor fault diagnosis[END_REF][START_REF] Schäfer | Teaser: early and accurate time series classification[END_REF][START_REF] Guidotti | Assessing the stability of interpretable models[END_REF] rather than in the education one [START_REF] Ben Soussia | Assess performance prediction systems (beyond precision indicators[END_REF].

The goal of this work is to update the existing earliness algorithm [START_REF] Ben Soussia | Assess performance prediction systems (beyond precision indicators[END_REF] and to study the trade-off between the existing precision metrics and the proposed time-dependent metrics. The aim is to compare the usefulness of the ESS and EAS when identifying an earliness point for a PPS.

Time-dependent metrics

This section begins with a formal introduction to the problem of early-accurate prediction of a time series classifier (Section 3.1). Then, it introduces the timedependant indicators: earliness (Section 3.2) and stability (Section 3.3). This section concludes with a presentation of the trade-off measures computed between only time-dependent metrics (Section 5.2.2) or between accuracy and time-dependent metrics (Section 3.4.1).

Problem Formalization

The goal is to accurately predict at-risk learners enrolled in an online program as early as possible. This challenge can be viewed as a time-series classification problem, in which students are assigned to different classes based on their performance over time.

Assume that Y = {C 1 ,C 2 , ..,C m } is the set of class labels. Let S = {s 1 , s 2 , .., s n } be the set of learners in the test dataset D test and T = {t 1 ,t 2 , ..,t k } the set of prediction times. At each t k ∈ T , each learner S p ∈ S is represented by a vector X p k = { f 1 , f 2 , .., f z ,C j } where f i ∈ R are the learning activity features of S p and C j ∈ Y is the class to which the learner belongs.

The aim is to find the earliest point in time when the class is correctly predicted and the classifier maintains a stable and accurate prediction. To do so, we propose to continuously monitor the classifier's prediction results over the prediction times and investigates its earliness and stability. An example, of a regular tracking of classification results is presented in the Figure 1. Each of the three learners {s 1 , s 2 , s 3 } is assigned to a class among {C 1 ,C 2 ,C 3 } over a time interval T = {t 1 ,t 2 ,t 3 ,t 4 ,t 5 } (e.g t i can be a week). This example is used as a reference to show how each metric is calculated.

Earliness

The main purpose of using the PPS in education is to identify at-risk learners as early as possible so that tutors can intervene effectively with them. An instructional intervention has a positive impact on the learner's journey when it is provided at the right time. Thus, given the dynamic learning behaviour of learners, it would be very interesting to evaluate the performance of the PPS in terms of earliness. [START_REF] Ben Soussia | Assess performance prediction systems (beyond precision indicators[END_REF] defines the earliness as the first prediction time when a class label is correctly predicted and proposes an Algorithm that returns this time-point for each class label. This is a strong assumption, as the model may be inaccurate at near future prediction points. Thus, it is important to study several earliness points over time in order to accurately identify the correct earliness value.

In this section, we introduce an Algorithm that extracts all of the earliness time points of correct predictions for each class. We divided the algorithm into two sub-algorithms to make it easier to understand.

The Algorithm 1, Earliness per student, returns a list E C of x time values for each learner, which corresponds to the successive earliest correct predictions within a given class. This algorithm takes as input the learner s p , the class label C, x that denotes the number of earliness points to return and the test dataset D test . The Algorithm 1 starts by assigning the empty set to the variable E (Line 1), which is the sequence of x earliest correct prediction time points. At (Line 2), the Algorithm initializes the variable j, which is student never been in the class C 16: end if an iteration counter. If the student s p was assigned to the class label C at least once (Line 3), the algorithm determines the t 0 that corresponds to the first time s p is labeled as C (Line 4). Otherwise, the algorithm returns an empty list (Line 14 -line 15). The algorithm employs a variable t s to denote the starting point in time to search for the j th time of a correct prediction. t s is initialized to t 0 (Line 5). While the calculated number of earliness points differs from x (Line 6), the algorithm continues its search. It determines the time t j when s p is predicted correctly in C, starting from t s (Line 7). Then the correct prediction time given by e j is computed (Line 8). The algorithm updates the list E that contains the earliest correct prediction times (Line 9). The variables j and t s are updated respectively in (Line 10) and (Line 11). In fact, the next search begins with the current found prediction time point (t j ) increased by one. When the search is completed, the list of the x earliest prediction time points L ← / 0

: E C 1: E ← / 0 2: j ← 0 3: if (assigned(s p ,C) ==True) then 4: t 0 ← First Labeled(s p ,C) 5: t s ← t 0 6: while j < x do 7: t j ← First Predicted(s p ,C,t s ) 8: e j ← t j -t 0 + 1 9: E ← update(E,
3:

count L ← 0 4:
for each s p in S do 5:

l p ← Algorithm1(s p ,C j , x, D test ) 6: L ← update(L, l p ) 7: count L ← count L + 1 8:
end for 9:

for (i = 1 and i ≤ x) do 10:

early iC j ← 0 11:

for each l in L do 12:

early iC j ← early iC j + l[i]

13:

end for 14:

early iC j tot ← early iC j /count L 15:

E Y ← put(C j , early iC j tot )

16:

end for 17: end for is saved in E C (Line 13).

The second Algorithm 2 named Earliness Total(S, Y , x, D test ) returns a list of the x earliest times of correct predictions, for the whole S, for each class C j in Y . Each time value i of this list is the average of all the i time values returned by each student in S.

The Algorithm 2 takes as input the list of students (S), the set of class labels (Y ), the number of earliness time points to measure (x) and the test dataset (D test ). This Algorithm starts by iterating over the class labels (C j in Y ) (Line 1). Inside of this for loop, the Algorithm assigns the empty set to the variable L (Line 2). This variable contains all the lists of the x earliest correct predictions of all students in S. At (Line 3), the Algorithm initializes the variable count L which refers to the size of the variable L. Then, the Algorithm iterates over the students in S (Line 4). We call the Algorithm Earliness(s p , C j , x, D test ) (described by 1) and which result is assigned to the variable l p (Line 5). Then, L is updated (Line 6) and count L is incremented by 1 (Line 7). Once L is built, the Algorithm iterates over a for loop which iteration counter i is between 1 and x (Line 9). The Algorithm initializes the variable early iC j which contains the sum of all time values (Line 10). At (Line 11), the Algorithm iterates over the lists in L. Then, the value of each l in L at index i is added to early iC j (Line 12). The value of earliness point number i of the class label C j given by the variable early iC j tot is determined at (Line 14). The result of early iC j tot is saved in the variable E Y along with the class label C j (Line 15).

As an example of calculation of earliness, we refer to the Figure 1. The set S is composed of three students S 1 , S 2 and S 3 . At each t i , a student belongs to a class label (l i ) and has a predicted label (p i ). Assume t i represents a week, and we need to calculate x = 2 points of earliness with respect to class C 2 . The correct predictions are with a red frame. The S 3 learner is not considered, since she/he was never assigned to C 2 . Applying the first Algorithm 1 :

• the first two earliness points for S 1 are : 2, 3

• the first two earliness points for S 2 are : 3,4 Applying the second Algorithm 2 : For C 2 , the averages corresponding to the first two earliness points are: (2 + 3)/2 = 2.5 and (3 + 4)/2 = 3.5. The output of the Algorithm 2 is (C 2 , 2.5, 3.5).

Temporal Stability

Assessing the performance of PPS using temporal rather than accuracy metrics is an interesting line of research. Indeed, temporal measures highlight the evolution and continuity of learning and thus of prediction over time.

As learner's learning behaviour and performance can change dynamically over time, the performance of a classifier can be unstable and oscillating. As shown in the Figure 1, Students s 1 and s 2 were assigned to at least two different class labels during the prediction period, due to changes in their learning behaviours.

Temporal stability, especially in the field of education, is rarely mentioned in the state of the art as an indicator characterising the ability of a PPS to maintain the same correct prediction results during a predefined time interval. Like [START_REF] Ben Soussia | Assess performance prediction systems (beyond precision indicators[END_REF], we define the temporal stability as the average of the longest sequences of successive correct predictions over a time interval [t 1 ,t 2 ] where t 1 < t 2 .

In the frame of this work, we define the temporal stability as the average of the longest sequences of successive correct predictions over time starting from t 1 , which is the first prediction time and ending up at an earliness time point t 2 . For each corresponding earliness point, the temporal stability indicator is computed based on Equation 1:

Stability e = ∑ n p=1 |h(s p )| |D| (1) 
Where h : S → T n is a function that associates to each student in D ⊆ D test the longest sequence of successive correct predictions starting from t 1 to a time point t 2 . This equation allows to compute the stability on each class label among Y or on the whole dataset D ⊆ D test . However, as in [START_REF] Ben Soussia | Assess performance prediction systems (beyond precision indicators[END_REF], we believe that the stability is more relevant and interpretable when calculated on the test set (D = D test ).

Trade-off study

This section begins by presenting the trade-off between accuracy as a ML metric and earliness as a time-dependent metric. Then, it presents the compromise between the proposed time-dependent metrics including earliness and stability.

Earliness-Accuracy compromise : the EA-Score

For a PPS, the earlier the predictions are correct, the better the system is. However, while improving the earliness indicator outcomes, the results of ML precision indicators including the accuracy have to remain high enough to provide stakeholders with as accurate predictions as possible. For this aim, we propose to follow, along with the earliness metric, the Harmonic Mean (HM), which is a measure of central tendency and used when an average ratio is needed.

The HM highlights the reverse proportionality between two variables. This measure has been already used in [START_REF] Schäfer | Teaser: early and accurate time series classification[END_REF] to investigate the relation between accuracy and earliness for early classification of electronic signals. Like them, we used the same HM measure but in a completely different domain which is education. In this context, HM determines the relationship between each earliness point and the accuracy of the system at this time. To the best of our knowledge, the HM has never been used in the education domain to express the ability of PPS to provide accurate predictions at the earliest. The application of the HM measure is as follows:

EAS = 2 * (1 -earliness e ) * accuracy (1 -earliness e ) + accuracy (2) 
The higher HM e is, the more the system is qualified to be able to provide accurate early predictions.

Earliness-Stability compromise: the ES-Score

Learning and prediction of learners' final outcomes are both time-evolving; hence, the importance of stability and earliness indicators in assessing the performance of a PPS over time. As learning data become more and more available over the school year, the accuracy is enhanced and the system gains in stability.

At first glance, one may think that both accuracy and stability increase side by side over time. However, in (Ben Soussia et al., 2022), we proved that this is not always the case and we showed that accuracy and stability curves may slightly diverge from each other and may not be proportional over time. This can be explained by going over the main definitions of accuracy and stability. The first corresponds to the fraction of correct predictions made out of all predictions. It makes no difference whether the correct predictions follow each other or not. The stability metric, on the other hand, describes the system's ability to maintain the longest correct sequence of predictions over a given time interval. Thus, a fixed value of the accuracy in time, may reflect a poor stability of the system. Therefore, as the predictions may oscillate over time, it is insufficient to measure the earliness of the correct prediction independently of the stability of the system.

The balance between the measurements of both the earliness and stability of a PPS allows the identification of the adequate earliness time point that guarantees both the accurate predictions and the stability of the future results.

To this end, we propose an Earliness-Stability Score (ESS) that illustrates the trade-off between the earliness of predictions and the temporal stability of the PPS. The ESS is computed using the Equation 3 :

ESS = 2 * (1 -earliness) * stability (1 -earliness) + stability (3) 
This score seeks to identify the earliest time of correct predictions from which the system's performance remains stable through the subsequent prediction times. The stability here is the longest sequence of successive correct predictions starting from t 1 to an earliness time point t e .

Proof of Concept: comparison of four PPS

In order to validate the efficiency of our timedependent metrics, we used them to compare the performance of four educational PPS. This section presents the case study and introduces the evaluated PPS.

Case study

The case study of this work is the k-12 learners enrolled in the physics-chemistry module during the school year 2017-2018 within the French largest distance education center (CNED). This center offers multiple fully distance courses to numerous, heterogeneous and physically dispersed learners. The learning in CNED is quite specific as the registration remains open during the school year. Subsequently, the start activity t 0 of each learner depends on his registration time.

The goal is the regular tracking of the learners performance to identify at the earliest those at-risk of failure. Thus, the time granularity for our context is the week t i ∈ T , thus we follow a weekly prediction approach. The used dataset is composed of learning traces of 647 learners enrolled in the physicschemistry module during 37 weeks. Learners of this dataset are classified into three classes based on their grades average:

Y = {C 1 ,C 2 ,C 3 }
• Success (C 1 ) : when the grades average is strictly superior to 12.

• Medium Risk (C 2 ) : when the grades average is between 8 and 12.

• High Risk (C 3 ) : when the grades average is strictly inferior to 8.

Each week, each learner is represented by a vector composed of learning features and a class label. These features refer to different learning indicators including performance, engagement, regularity and reactivity [START_REF] Ben Soussia | An in-depth methodology to predict at-risk learners[END_REF].

The measures of earliness and stability are monitored for 37 weeks. The earliness algorithm described in Section 3.2 allows the measurement of multiple successive earliness points in time. In this work, for each class label, we identify all the earliness points and their corresponding stability and accuracy values in order to compute the ESS and EAS.

Description of PPS

We apply the definitions of the proposed metrics to compare four different PPS (PPS 1 , PPS 2 , PPS 3 , PPS 4 ). The first two systems (PPS 1 , PPS 2 ) are based on the Random Forest (RF) model, while the last two (PPS 3 , PPS 4 ) use the Artificial Neural Network (ANN) model.

PPS 1 and PPS 3 use all the learning features including performance, engagement, regularity and reactivity, in addition to demographic data to make weekly basis predictions. While, PPS 2 and PPS 4 use only the engagement features to define at-risk of failure students.

Another difference between the evaluated PPS is in the way the class is assigned by time. For PPS 1 and PPS 2 , the class label of each learner is fixed and is based on the final grades average. Each learner belongs to one class label during the whole prediction times. Whereas, for PPS 3 and PPS 4 , the class label is dynamic and may change from one prediction time to another based on the student performance. For example, a student may be in the successful class for 3 successive weeks, but in the 4th week he/she may be assigned to a different class label due to fluctuations in performance. The model must therefore capture these changes from one week to another to predict correctly the student's class label.

Experimental Results

This section begins by presenting the variations of the accuracy and stability measures over the 37 prediction weeks (Section 5.1). The EAS and ESS are then used to discuss the trade-offs between earlinessaccuracy and earliness-stability (Section 5.2.1 and 5.2.2). Then, we conclude this section with a general discussion of the main findings (Section 5.3).

Accuracy vs Stability

The Figure 2 shows the accuracy evolution of the four systems through the prediction weeks. The accuracy of all systems is increasing over time.

PPS 1 and PPS 3 , that use all the learning features, show a better performance than respectively PPS 2 and PPS 4 that use only engagement features. PPS 1 starts with an accuracy of ≈ 70% and ends up with an accuracy of ≈ 95%. PPS 3 reaches an accuracy of almost 100% by the week 8.

The overall performance accuracy of both PPS 2 and PPS 4 is still quite good. PPS 4 starts with an accuracy of ≈ 90%. From week 1 to 6, the accuracy of this later decreases and it then increases to reach a max value of ≈ 73%. Although, the accuracy of PPS 2 is not poor and it reaches a maximum of ≈ 73%, the evolution of its curve is stagnant and does not present remarkable variations through the prediction weeks. However, it is slightly decreasing by the end of prediction times.

The Figure . 3 shows the stability evolution of the Both systems PPS 3 and PPS 4 start with high stability values ( ≈ 100% and ≈ 92% respectively). This can be explained by the dominance of the class C 3 , since at the beginning all learners are assigned to this class by default. However, these high values decrease rapidly over the following weeks. For PPS 3 , around the week 4, it starts to correctly assign each learner to the suitable class among C 1 , C 2 and C 3 . Then, from week 5, the stability of PPS 3 increases continuously and reaches a rate of ≈ 96% at the last prediction time. For PPS 4 , the shape of the curve is identical to this of PPS 3 with a downward shift. Until week 13, the overall stability decreases, then from week 14, it starts to increase again to reach ≈ 57%. We notice either a partial or a total drop in stability for the systems PPS 2 , PPS 3 and PPS 4 . Although the stability of PPS 1 has never decreased over time, PPS 3 remains the most stable.

Yet, stability and accuracy are proportional when the later one is continuously increasing over time. However, if the accuracy stagnates or decreases, the stability of the system drops significantly. For example as shown in Figure 2, the PPS 2 presents an accuracy that reaches 73% over time. However, the corresponding stability of the same system decreases as time passes (see Figure 3).

The system accuracy does not truly reflect the stability of system predictions over time. Thus, we believe that stability is an important metric to consider in addition to accuracy when evaluating PPS' ability to predict correctly over time. 

Trade-off measures analysis

The Figure 4 and 5 present respectively the results of the EAS and ESS for all the four systems and per each class label. The x-axis of these figures corresponds to the earliness points. Each earliness point contains a time value that can be different from one class label to another. For example, for PPS 3 , for the point with axis x=1, the earliness time values for C 1 , C 2 and C 3 are respectively, week 1, week 2 and week 1. The yaxis corresponds to the EAS/ESS rates. As shown in Figures 4 and5, for PPS 2 and PPS 4 , the class labels C 3 and C 2 respectively were never detected over the prediction weeks.

According to both definitions of EAS and ESS in Sections 3.4.1 and 3.4.2, the higher these metrics are, the better the system is.

Achieving an EAS or an ESS values of 100% is not always possible as it corresponds to an ideal PPS. For this reason, we must establish a threshold value to identify the system's most appropriate earliness point. For this work, we set 70% as an acceptable and ESS value.

For each of these metrics, setting this threshold allows the identification of the first earliness point from which the system is accurate and stable and the correct predictions are early. This point is then used as an initial point to monitor the EAS and ESS on the remaining earliness points. In other terms, we examine whether the EAS and ESS values remain above the predefined threshold over time.

While monitoring the remaining EAS/ESS values, we can distinguish three different situations :

1. situation 1 (S1) : the metrics values remain greater or equal to the fixed threshold over the rest of earliness points. In this case, the earliness point of the system corresponds to the first earliness point.

2. situation 2 (S2) : the metric values decrease compared to the fixed threshold over the rest of the earliness points. In this case, the PPS is not accurate / stable enough. And, we have two observations concerning the accuracy / stability of the system: if the EAS/ESS value drops directly after the initial earliness points, the PPS is not accurate/stable and we can not conclude about its earliness. Else, if the EAS/ESS values remain greater or equal to the threshold over successive earliness points, then the system is partially accurate/stable.

situation 3 (S3) :

The EAS/ESS values never reach the threshold. In this case, the system is not accurate/stable and does not provide early correct predictions as required.

In the following sections, we describe in details the results of these measures.

Earliness-Accuracy Score

In this section, we present the results of EAS corresponding to each of the situations mentioned above:

• (S1) : as shown in Figure 4, for the PPS 3 , for each of the class labels C 1 , C 2 and C 3 , the first earliness point that corresponds to an EAS≥70% is the point with axis x=1. The rest of the EAS values remain greater than 70%. Thus, this first point (x=1) represent the earliness point for the three class labels.

• (S2) : for PPS 1 , the first earliness point for the class label C 3 where the EAS value is greater than 70% is the point with axis x=1. The EAS values remain above 70% until x=4, at which point they begin decreasing over the remaining earliness points. For PPS 4 , for the first earliness point for the class label C 1 where the EAS is greater than 70% is the point with axis x=1. The EAS values remain above 70% until x=3. In this case the conclusion on the earliness points of the system is not obvious, we need to check the ESS results (See Section 5.2.2).

• (S3) : for PPS 2 , the EAS values of the class label C 2 are all lower than 70%. In this case, this result can be confirmed more with the ESS.

Earliness Stability Score

In this section, we present the results of ESS corresponding to each of the situations mentioned above:

• (S1) : for example, as shown in Figure 5, for the PPS 3 , for each of the class labels C 1 , C 2 and C 3 , the first earliness point that corresponds to an ESS • (S2) : for example, for PPS 4 , the first earliness point for the class label C 1 , where the ESS is greater than 70% is the point with axis x=1. The ESS values remain above 70% until x=3, at which point they begin to decrease over the remaining earliness points. Similarly for the PPS 1 , the ESS values remain greater than the threshold till the point x=5. Then, it decreases. In this case, we think that it would be interesting to study the ESS per time interval (e.g. a term). Indeed, the data become progressively available over time and may present some differences in terms of class labels representation. Thus, this may affect the stability of the system and consequently the ESS values.

• (S3) : for example, for PPS 2 , the ESS values of the class label C 2 are all lower than 70%.

To summarise, according to the fixed threshold of EAS and ESS, both PPS 1 and PPS 3 are the most accurate and stable since they provide early correct predictions. PPS 3 is even more efficient as all the EAS and ESS values for all the class labels are greater than the threshold.

Comparison between EAS and ESS : EAS and ESS are complementary metrics and their use allows the identification of the most appropriate earliness point. However, the use of ESS is more pertinent. Indeed, even if both metrics intersect at the first earliness point, the monitoring of the following earliness points results may show that EAS can be higher than ESS. This observation is more remarkable with less performing systems such as PPS 2 and PPS 4 . For example, for PPS 4 , for the class label C 3 , the 6 first earliness points have EAS values greater than 70%. However, for this same class, only the five first earliness points have ESS values greater than 70%.

Discussion

In summary, the experimental study yielded the following results:

Stability and accuracy are proportional when the system's accuracy increases or decreases over time. However, when the accuracy stagnates or varies slightly, the system's stability is decreasing rather than stagnating. As a result, the use of ESS and EAS is complementary and allows for a better definition of the point of earliness in time by studying the relationship between earliness and accuracy on the one hand and earliness and stability on the other.

In general, a good EAS or ESS value tends to be around 100%, which, according to the definitions of EAS and ESS, corresponds to an earliness of 0 (the PPS is able to predict correctly from the first time), an accuracy of 100% and a stability of 100%. However, achieving this level of value for a PPS is nearly impossible. As a result, in order to identify the earliness point in time, we established a threshold for ESS and EAS. There is no rule for determining the appropriate threshold, but it can be set based on the needs of the end user.

When the accuracy varies slightly or almost stagnates over time and the stability decreases, the use of EAS to identify an early point in time is not enough. In such situation, the use of ESS allowed to conclude about the earliness point in time. In general, we found that both ESS and EAS may identify the same initial earliness point in time. However, when monitoring the evolution of their values over the rest of the earliness points, we found that for some of the studied PPS, the EAS values are higher than the threshold at some earliness points. However, the ESS values on those same earliness points are less than the threshold. This is explained by referring to the definitions of accuracy and temporal stability. As with stability, accuracy does not reflect actual system performance when it comes to its ability to maintain correct successive predictions over time. Thus, we conclude that ESS is more pertinent as a metric than EAS to characterise the PPS in terms of earliness and stability.

Conclusion

In this paper, we proposed time-dependent metrics including earliness and stability, with the objective of assessing PPS over time. The definitions of both concepts are provided as well as the way to compute them. In addition, we investigated the relations between the different temporal metrics and the precision ones in order to identify the key earliness points in the prediction process.

In order to validate the importance of these timedependant metrics as well as the trade-off measures, we applied them to assess four different PPS based on learning traces of k-12 learners enrolled in an online physics chemistry module within the CNED.

The experimental results allowed us to conclude that the ESS is more useful than the ESA for identifying the earliness point and monitoring system stability over a set of earliness points in time.

In the current study, the time-dependent metrics and proposed trade-off measures are only applied to PPS based on classifiers that are used to identify students at risk of failing as early as possible. As a future work, we plan to use these metrics to evaluate classifiers in domains other than education. Furthermore, we intend to adapt the proposed metrics for use with various analytical methods, such as regressors.
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 2 Figure 2: PPS 1 VS PPS 2 VS PPS 3 VS PPS 4 in terms of accuracyfour systems throughout the prediction week. The stability of PPS 1 increases slightly over time. It is at ≈ 70% and ≈ 76% respectively at the first and last prediction weeks. While the stability of PPS 2 is decreasing over the weeks. It starts with a value of ≈ 64% and ends with ≈ 59%.Both systems PPS 3 and PPS 4 start with high stability values ( ≈ 100% and ≈ 92% respectively). This can be explained by the dominance of the class C 3 , since at the beginning all learners are assigned to this class by default. However, these high values decrease rapidly over the following weeks. For PPS 3 , around the week 4, it starts to correctly assign each learner to the suitable class among C 1 , C 2 and C 3 . Then, from week 5, the stability of PPS 3 increases continuously and reaches a rate of ≈ 96% at the last prediction time. For PPS 4 , the shape of the curve is identical to this of PPS 3 with a downward shift. Until week 13, the overall stability decreases, then from week 14, it starts to increase again to reach ≈ 57%. We notice either a partial or a total drop in stability for the systems PPS 2 , PPS 3 and PPS 4 . Although the stability of PPS 1 has never decreased over time, PPS 3 remains the most stable.Yet, stability and accuracy are proportional when the later one is continuously increasing over time. However, if the accuracy stagnates or decreases, the stability of the system drops significantly. For example as shown in Figure2, the PPS 2 presents an accuracy that reaches 73% over time. However, the corresponding stability of the same system decreases as time passes (see Figure3).The system accuracy does not truly reflect the stability of system predictions over time. Thus, we believe that stability is an important metric to consider in addition to accuracy when evaluating PPS' ability to predict correctly over time.
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 4 Figure 4: EAS rates per class label for all the systems
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