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Abstract. Transformers that rely on the self-attention mechanism to
capture global dependencies have dominated in natural language mod-
elling and their use in other domains, e.g. speech processing, has shown
great potential. The impressive results obtained on these domains leads
computer vision researchers to apply transformers to visual data. How-
ever, the application of an architecture designed for sequential data is
not straightforward for data represented as 2-D matrices. This chapter
presents how Transformers were introduced in the domain of vision pro-
cessing, challenging the historical Convolutional Neural Networks based
approaches. After a brief reminder about historical methods in computer
vision, namely convolution and self-attention, the chapter focuses on the
modifications introduced in the Transformers architecture to deal with
the peculiarities of visual data, using two different strategies. In a last
part, recent work applying Transformer architecture in a multimodal
context is also presented.

Keywords: Convolutional Neural Networks · Vision Transformers · Mul-
timodal Transformer

1 Introduction

Transformers introduced by Vaswani et al. in 2017 [23] are learning models de-
signed to handle sequential data using attention mechanisms. In particular, they
allow computers to learn sequences automatically, without having been pro-
grammed specifically for this purpose. The Transformer is an instance of the
sequence-to-sequence (seq2seq) learning models, taking a sequence as input,
processing it, before returning another as output. If the Transformer uses an
attention mechanism, it still inherited the encoder-decoder pattern system from
the Recurrent Neural Networks (RNNs), the encoder being the input to the se-
quence and the decoder being the output. Each of these two blocks includes two
layers of neural networks: the so-called self-attention layer which allows to keep
the interdependence of data in a sequence, and the layer called Feed-forward
Neural Network that leads the data to the output.

Transformers, originally designed for Natural Language Processing tasks:
translation, question-answering, etc. have been successfully applied in the field of
speech processing, particularly in speech synthesis [19], as presented in [9]. The
impressive results obtained on other domains leads computer vision researchers
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to apply transformers to visual data. However, the application of an architec-
ture designed to be applied to sequential data (such as text or speech) is not
straightforward for data represented as 2-D matrix and containing spatial depen-
dencies. This difficulty becoming even greater for video data that add a temporal
dimension.

This chapter aims at presenting the adaptation of the Transformers architec-
ture, as it was developed in the Natural Language Processing domain, to visual
or multi-modal data to solve vision or multimedia tasks. A particular focus is
made on data representation for machine learning approaches, starting from the
historical Convolutional Neural Networks (CNN) and self-attention mechanism,
described in Section 2 to the Vision Transformers, proposed recently by Doso-
vitskiy et al. [8]. Finally, in the last Section, recent work applying Transformers
in a multi-modal context is presented.

In summary, the learning objectives presented in this paper are the following:

– reminisce the historical approaches for computer vision, namely convolutions
and self-attention;

– understand the adaptation of the Transformers architecture to deal with the
visual data peculiarities, using two different strategies;

– grasp the functioning principles of recent work applying Transformers archi-
tecture to multimodal tasks and data.

2 From Convolutional Neural Networks to Transformers

Computer vision is concerned with the automatic extraction, analysis and un-
derstanding of useful information from a single image or a sequence of images.
Computer vision tasks include object or event detection, object recognition,
indexing, motion estimation, image restoration, etc. The most established al-
gorithm among various deep learning models is Convolutional Neural Network
(CNN), a class of artificial neural networks that has been a dominant method
in computer vision tasks since the astonishing results reported in 2012 in [14].

2.1 Convolutional Neural Networks (CNN)

In the context of computer vision, a Convolutional Neural Network (CNN) is a
Deep Learning algorithm that can take in an input image, identify salient regions
in the image, through learnable weights and biases, and is able to differentiate one
image from the others. A convolutional neural network architecture is composed
of a stack of processing layers: the convolutional layer which processes the
data of an input channel; the pooling layer which reduces the size of the
intermediate image, performing some information compression; the correction
layer; the fully connected layer, which is a perceptron-like layer. After several
layers of convolution and max-pooling, the high level decision in the neural
network is done through fully connected layers. Finally, the loss Layer specifies
how the gap between the expected and the actual signal is penalized. It is usually
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Fig. 1: Convolution of a 3 channel image with a 3x3x3 kernel - Image from Rijul
Vohra

the last layer in the network. For more details on the architecture and functioning
of Convolutional Neural Network, see [7].

The goal of the convolutional layer is to provide a representation of the input
image. Even if an image is just a matrix of pixel values, a simple flattening of
the image as a vector would not be enough to represent complex images having
pixel dependencies throughout. Therefore, to model the spatial and temporal
dependencies in an image, convolutions were introduced to capture them through
the application of relevant filters.

Figure 1 presents the process of applying a convolution filter to an image. At
each step, a convolution takes a set of weights (a kernel, for 3D structures, or a
filter, for 2-D arrays) and multiplies them with the input channels representing
the image. Each filter multiplies the weights with different input values; the total
inputs are summed, providing a unique value for each filter position. In the case
of images with multiple channels (e.g. RGB), all the results are summed with
the bias to give a value of the Convoluted Feature Output. To cover the entire
image, the filter is applied from right to left and from top to bottom, giving the
output matrix.

The advantage of convolutions is two-folds: they can be efficiently parallelized
using GPUs and their operations impose two important spatial constraints that
facilitate the learning of visual features. Indeed, the features extracted from a
convolution layer are 1) not sensitive to the global position of a feature 2) locality
sensitive as the operation only takes into account a local region of the image.
However, the image representation obtained through convolution operations lack
a global view of the image. If they are able to extract visual features, they are
not able to model the dependencies between them.

https://medium.datadriveninvestor.com/convolutional-neural-networks-3b241a5da51e
https://medium.datadriveninvestor.com/convolutional-neural-networks-3b241a5da51e
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Fig. 2: Show, attend and tell – examples of attending to the correct object -
Image extracted from [28]

2.2 Self-attention

To overcome these limitations, recent studies [2, 3, 25, 28] have proposed to use
self-attention layers in combination with or instead of convolutional layers. The
main difference between convolutional and self-attention layers is that the com-
puted value of a pixel depends on every other pixel of the image, instead of a
K×K neighborhood grid.

Introduced by [1] for neural machine translation, attention shows the ability
to learn to focus on important subparts of the input, as explained in [6]. This
ability can also be used in computer vision where the objective of self-attention
layers is to compute attention weights so each position in the image has infor-
mation about all the other features in the same image. Self-attention layers can
either replace or be combined with convolutions, as they are able to model de-
pendencies between spatially distant features by attending to larger receptive
fields than regular convolutions.

In [28], the attention mecanism is applied on images to generate captions.
The image is first encoded by a convolutional neural network to extract features.
To do so, the authors use a lower convolutional layer instead of a fully connected
layer to allow the decoder to selectively focus on certain parts of an image by
selecting a subset of all the feature vectors. Then a Long short-term memory
(LSTM) decoder is used to generate a caption by producing one word at every
time step based on a context vector, the previous hidden state and the previously
generated words. Figure 2 presents examples of attending to the correct object
where white, in the image, indicates the attended regions, and underline, in the
text, indicates the corresponding word.

When combined with self-attention, convolution models can improve the re-
sults obtained on several vision tasks. For example, in [25], self-attention is used
for video classification and object detection with performance that can compete
or outperform with state-of-the-art approaches. Another milestone is [3], where
the authors obtain improvements on image classification and achieve state-of-the-
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art results on video action recognition when using self-attention with convolution
models. Finally, [2] augment convolutional operators with self-attention mech-
anism and show that attention augmentation leads to consistent improvements
in image classification and object detection.

However, self-attention layers can have expensive computational costs for
high resolution inputs, and can therefore be used only on small spatial dimen-
sions. Some works have already presented ways to overcome this problem, as [24],
which computes attention along the two spatial axes sequentially instead of deal-
ing directly with the whole image or [18], which uses patches of feature maps
instead of the whole spatial dimensions.

3 Transformers for Computer Vision

Instead of including self-attention within convolutional pipelines, other works
have proposed to adapt the original encoder-decoder architecture presented for
Transformers to Computer Vision tasks. In this section, works that have pro-
posed to use the transformer architecture to deal with images are described
with a focus on the way images are represented. As the original text Trans-
former takes as input a sequence of words to perform translation, classification,
or other NLP tasks, two different strategies can be used to apply this architec-
ture on image data. In the first one, the fewest possible modifications are made
to the transformer while input are modified to add information about positions
in the image. [8], [21] and [4] are using this strategy. The second strategy consists
in modifying the architecture, for example, by introducing convolutions to the
vision transformer as proposed in [26] to fit images peculiarities.

3.1 Introduction of positional encodings

The first work that modifies the Transformer design to make it operate directly
on images instead of words is the Vision transformers (ViT) proposed by Doso-
vitskiy et al. [8]. In this paper, the authors make the fewest possible modifications
to the Transformer architecture and observe to which extend the model can learn
about image structure on its own1.

Figure 3 presents the Vision Transformers architecture that divides an image
into a grid of square patches. Each patch is flattened into a single vector by
concatenating the channels of all pixels in a patch and then linearly projecting
it to the desired input dimension. To introduce information about the structure
of the input elements, the authors add learnable position embeddings to each
patch. The idea is to make the Vision Transformers learn relevant information
about image structure from the training data and encode structural information
in the position embeddings.

To gain some intuition into what the model learns, the authors propose two
figures to visualize some of its internal workings. First, they present the posi-
tion embeddings: the parameters learned by the model to encode the relative

1 https://github.com/google-research/vision_transformer.

https://github.com/google-research/vision_transformer
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Fig. 3: Vision Transformers (ViT) architecture - Image extracted from [8]

location of patches. On the right part of Figure 4, it can be seen that the vision
transformer is able to reproduce the image structure as closer patches tend to
have more similar position embeddings. Second, the authors also present the
size of attended area by head and network depth in order to evaluate to which
extend the network uses the ability to integrate information across the entire
image, even in the lowest layers, thanks to self-attention. If for depths between
10 and 20 only large attention distances are visible, meaning that only global
features are used, in the lowest layers, a large range in the mean attention dis-
tance, showing that the ability to integrate information globally, is indeed used
by the model.

Table 1 reports the results obtained for variants of the ViT transformers,
compared to previous state-of-the-art models, applied on popular image classifi-
cation benchmarks. The first comparison model used is Big Transfer (BiT) which
performs supervised transfer learning with large ResNets [13] and the second one
is Noisy Student [27] which is a large EfficientNet trained using semi-supervised
learning on ImageNet and JFT300M with the labels removed. From this ta-
ble, we can see that the smaller ViT-L model, with a 16x16 image patch size,
pre-trained on JFT-300M outperforms BiT-L, which is pre-trained on the same
dataset, on all datasets. The larger model, ViT-H (with a 14x14 image patch
size), further improves the performance, especially on ImageNet, CIFAR-100,
and the VTAB suite, that are the more challenging datasets. The ViT-L model,
with a 16x16 image patch size, pre-trained on the public ImageNet-21k dataset
performs well on most tasks too. Finally, the last line of the Table reports the
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Fig. 4: Position embeddings and size of attended area by head and network depth
- Image extracted from [8]

number of TPUv3-core-days taken to pre-train each of the models on TPUv3
hardware, that is, the number of TPU v3 cores (2 per chip) used for training
multiplied by the training time in days. From these values, it can be seen that
Vision Transformers results use fewer computing resources compared to previous
state-of-the-art CNNs.

ViT-H/14 ViT-L/16 ViT-L/16 BiT-L Noisy Student
JFT JFT I21k ResNet152x4 EfficientNet-L2

ImageNet 88.55 87.76 85.30 87.54 88.5
ImageNet ReaL 90.72 90.54 88.62 90.54 90.55
CIFAR-10 99.50 99.42 99.15 99.37
CIFAR-100 94.55 93.90 93.25 93.51
Oxford-IIIT Pets 97.56 97.32 94.67 96.62
Oxford Flowers-102 99.68 99.74 99.61 99.63
VTAB (19 tasks) 77.63 76.28 72.72 76.29

TPUv3-core-days 2.5k 0.68k 0.23k 9.9k 12.3k

Table 1: Accuracy for Vision Transformers and state of the art approaches on 7
image classification benchmarks.

If the Vision Transformers proposed in [8] reduces the need of computing
resources compared to previous state-of-the-art CNNs, while presenting excellent
results when trained with large labelled image dataset they do not generalize well
when trained on insufficient amounts of data. Furthermore, the training of these
models still involve extensive computing resources.
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In order to overcome these problems, Touvron et al. [21] propose competitive
convolution-free transformers trained on a single 8-GPU node in two to three
days that is competitive with convolutional networks. Their Data-efficient Image
Transformers (DeiT) has a similar number of parameters and uses Imagenet as
the sole training set2. To do so, the authors proposed the knowledge distillation
procedure specific for vision transformers. The idea of knowledge distillation is
to train one neural network (the student) on an output of another network (the
teacher). Such training improves the performance of the vision transformers. The
authors have tested the distillation of a transformer student by a CNNs and a
transformer teacher and surprisingly, image transformers learn more from CNNs
than from another transformer.

In the distillation procedure a new distillation token — i.e. a trainable vec-
tor, appended to the patch tokens before the first layer — is included in order to
interact with the class and patch tokens through the self-attention layers. Sim-
ilarly to the class token, the objective of the distillation token is to reproduce
the label predicted by the teacher, instead of the true label. Both the class and
distillation tokens input to the transformers are learned by back-propagation.
There are different types of distillation techniques, in [21], the authors use what
is called hard-label distillation, so the loss penalizes the student when it mis-
classifies real target and the target produced by the teacher.

To speed up the training of the system and improve its accuracy, [22] show
that it is preferable to use a lower training resolution and fine-tune the network
at the larger resolution. As the patch size stays the same when increasing the
resolution of an input image, the number of input patches does change and,
due to the architecture of transformer blocks and the class token, the model
and classifier do not need to be modified to process more tokens. However, it
is necessary to adapt the positional embeddings, because there are one for each
patch. To do so, [8] and [21] interpolate the positional encoding when changing
the resolution with a 2-D interpolation and a bicubic interpolation respectively.

Table 2 reports the accuracy obtained by DeiT models on ImageNet with
no external training data, compared with two variants of ViT with 16×16 input
patch size. It also presents the number of parameters and the throughput mea-
sured for images at resolution 224×224. This table first shows that DeiT models
have a lower parameter count than ViT models, and a faster throughput, while
having a better accuracy for images at resolution 384x384, when fine-tuned at
a larger resolution. It also presents that the transformer-specific distillation in-
creases the accuracy obtained for the three models DeiT-Ti, DeiT-S and DeiT-B.

3.2 Dynamic positional encodings

In the two previous systems, the absolute positional encodings were added to
each token in the input sequence to take into account the order of the tokens.
If these absolute positional encodings are effective, they also have a negative
impact on the flexibility of the Transformers. For example, the encodings are

2 https://github.com/facebookresearch/deit.

https://github.com/facebookresearch/deit
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Model Params Image Throughput Accuracy on
size ImageNet

ViT-B/16 86M 3842 85.9 77.9
ViT-L/16 307M 3842 27.3 76.5

DeiT-Ti 5M 2242 2536.5 72.2
DeiT-S 22M 2242 940.4 79.8
DeiT-B 86M 2242 292.3 81.8
DeiT-B↑384 86M 3842 85.9 83.1

DeiT-Ti dist 6M 2242 2529.5 74.5
DeiT-S dist 22M 2242 936.2 81.2
DeiT-B dist 87M 2242 290.9 83.4

Table 2: Accuracy and Throughput for Transformers model on ImageNet.

Fig. 5: ViT vs. CPVT architecture - Image extracted from [5]

often a vector of dimension equal to the length of the input sequence to the input
sequence, which are jointly updated with the network weights during training,
causing difficulty to handle the sequences longer than the ones in the training
data at test time. This limits the generalization of the Transformers. Moreover,
by adding unique positional encodings to each token (or each image patch), these
absolute positional encodings breaks the translation-invariance

To overcome these limitations, Chu et al. propose the Conditional Positional
Encoding Vision Transformers (CPVT) architecture, [5], that integrates posi-
tional encodings that are dynamically generated and conditioned on the local
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neighborhood of an input token3. Figure 5 presents the architecture of the Vision
Transformers, proposed by [8], with explicit 1-D learnable positional encodings
and the CPVT architecture proposed by [5] with conditional positional encod-
ing from the proposed Position Encoding Generator (PEG) plugin. Except that
the positional encodings are conditional, the authors exactly follow the Vision
Transformers and the Data-efficient Image Transformers architectures to design
their vision transformers. To condition the positional encodings on the local
neighborhood of an input token, the authors first reshape the flattened input se-
quence used in the Vision Transformers [8] back in the 2-D image space. Then, a
function is repeatedly applied to the local patch in the 2-D structure to produce
the conditional positional encodings.

Table 3 presents the accuracy obtained by the Conditional Positional Encod-
ing Vision Transformers (CPVT) [5] and the Data-efficient Image Transformers
(DeiT) [21] on ImageNet for two image sizes with direct evaluation on higher
resolutions without fine-tuning. From this Table, it can be seen that performance
degrades when DeiT models are applied to 384x384 images while CPVT model
with the proposed PEG can directly process the larger input images.

Model Params Top-1@224 Top-1@384

DeiT-Ti 6M 72.2 71.2
DeiT-S 22M 79.9 78.1
DeiT-B 86M 81.8 79.7

CPVT-Ti 6M 72.4 73.2
CPVT-S 22M 79.9 80.4
CPVT-B 86M 81.9 82.3

Table 3: Accuracy on ImageNet for 224x224 and 384×384 images, with direct
evaluation on higher resolutions without fine-tuning.

To picture what the model learns, the authors compare the attention weights
of three architectures, presented in Figure 6. In the middle of the figure, the
attention weights of DeiT with the original positional encodings, on the right,
those of DeiT after the positional encodings are removed and on the left the
weights of the CPVT model with PEG. In the middle of the figure, the attention
weights are high on the diagonal but low for the rest of the image, suggesting that
DeiT with the original positional encodings learns to attend the local neighbors
of each patch. When the positional encodings are removed (on the left), all
the patches produce similar attention weights meaning that they are not able to
attend to the patches in their neighbourhood. Finally, like the original positional
encodings, the model with PEG can also learn a similar attention pattern, which
indicates that the proposed PEG can provide the position information as well.

3 https://github.com/Meituan-AutoML/CPVT.

https://github.com/Meituan-AutoML/CPVT
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Fig. 6: Normalized attention scores from the second encoder block of DeiT, DeiT
without position encoding (DeiT w/o PE), and CPVT on the same input se-
quence - Image extracted from [5].

3.3 Convolution and transformers

To apply the Transformers, designed for NLP, to vision tasks, the three previous
architectures proposed minimal modifications. Despite the success of these mod-
els at large scale, their performances are still below similarly sized convolutional
neural network (CNN) counterparts when trained on smaller amounts of data.
This difference can be explained by the properties of convolutions. As explained
in section 2.1, convolutions are able to capture the local structure of an image,
and also achieve some degree of shift, scale, and distortion invariance. To ac-
count for the properties of convolutions, Wu et al. proposed to introduce two
convolution-based operations into the Vision Transformer architecture: Convo-
lutional Token Embedding and Convolutional Projection.

The Convolution vision Transformer (CvT), [26], introduces convolutions to
two core sections of the Vision Transformer architecture4. First, the authors
create a hierarchical structure of Transformers by partitioning the Transformers
in multiple stages. The beginning of each stage consists of a convolutional token
embedding that performs an overlapping convolution operation with stride on
a 2-D-reshaped token map, followed by layer normalization. Hence, the model
proposed captures local information and progressively decreases the sequence
length while increasing the dimension of token features across stages. This way
the model achieves spatial downsampling while increasing the number of feature
maps, as is performed in Convolutional Neural Networks. In a second step, the
linear projection prior to every self-attention block in the Transformer module is
replaced with a convolutional projection that allows the model to further capture
local spatial context and reduce semantic ambiguity in the attention mechanism.

Table 4 reports the results of the CvT architecture, compared to the ones
obtained by CNN and Vision Transformers on ImageNet. In this table, CvT-
X stands for Convolutional vision Transformer with X Transformer Blocks in
total. The authors also experiment with a wider model with a larger token di-
mension for each stage, namely CvT-W24 (W stands for Wide) to validate the

4 https://github.com/microsoft/CvT.

https://github.com/microsoft/CvT
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scaling ability of the proposed architecture. On the upper part of the Table, it
can be seen that the two convolution-based operations introduced in the Vision
Transformer architecture yield improved performance when compared to CNN
and to Vision Transformer for images with different resolutions. On the lower
part of the table, when the models are pre-trained on ImageNet22k at resolution
224 × 224, and fine-tuned on ImageNet1k at resolution of 384 × 384 (or 480 x
480 for BiT), the accuracy of the CvT models are almost on par with the ac-
curacy of Transformers and CNNs while having a much lower number of model
parameters. Finally, when more data is involved, the wide model CvT-W24 pre-
trained on ImageNet22k reaches 87.7% of accuracy surpassing the previous best
Transformer Vit-L/16.

Method type Network Params image ImageNet
size top-1

Convolutional Networks ResNet-50 [11] 25 2242 76.2
ResNet-101 [11] 45M 2242 77.4
ResNet-152 [11] 60M 2242 78.3

Transformers ViT-B/16 86M 3842 77.9
ViT-L/16 307M 3842 76.5
DeiT-S 22M 2242 79.8
DeiT-B 86M 2242 81.8

Convolutional Transformers CvT-13 20M 2242 81.6
CvT-21 32M 2242 82.5
CvT-13↑384 20M 3842 83.0
CvT-21↑384 32M 3842 83.3

Convolutional Networks22k BiT↑480 [13] 928M 4802 85.4

Transformers22k ViT-B/16↑384 86M 3842 84.0
ViT-L/16↑384 307M 3842 85.2
ViT-H/16↑384 632M 3842 85.1

Convolutional Transformers22k CvT-13↑384 20M 3842 83.3
CvT-21↑384 32M 3842 84.9
CvT-W24↑384 277M 3842 87.7

Table 4: Accuracy of CNN and Vision Transformers architectures on ImageNet.
Subscript22k indicates that the model is pre-trained on ImageNet22k, and fine-
tuned on ImageNet1k with the input size of 384×384 (except for BiT-M that is
finetuned with input size of 480×480).
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4 Transformers for multimedia data

As the Transformers architecture has been diverted from its primary use in Nat-
ural Language Processing to be applied to other modalities (audio and image),
very recent works have proposed to use the transformer architecture to solve mul-
timodal challenges. For example, Sterpu et al. have proposed to adapt their tool,
AV Align for Speech Recognition to the Transformer architecture [20]. In [16],
Radford et al. present the Contrastive Language-Image Pre-training (CLIP) sys-
tem that is able to learn image representations from scratch on a dataset of 400
million (image, text) pairs collected from the internet. Another example is the
work of Gabeur [10] that uses video and text modalities to tackle the tasks
of caption-to-video and video-to-caption retrieval (MMT). In the last section
of this chapter, two multimodal systems using Transformers architectures are
presented, CLIP and MMT.

The idea behind the Contrastive Language-Image Pre-training (CLIP) sys-
tem proposed by Radford et al. [16] is to learn about images from free-text to
recognize objects in a visual scene and solve a variety of visual tasks5. So instead
of predicting the exact words of the text accompanying each image, the authors
try to predict only which text as a whole is paired with which image. Concerning
the training part of the system, given a batch of N (image, text) pairs, CLIP
is trained to predict which of the N ×N possible (image, text) pairings across
a batch actually occurred. To do this, CLIP learns a multi-modal embedding
space by jointly training an image encoder and text encoder to maximize the
cosine similarity of the image and text embeddings of the N real pairs in the
batch while minimizing the cosine similarity of the embeddings of the N2−N
incorrect pairings. CLIP is trained from scratch without initializing the image
encoder with ImageNet weights or the text encoder with pre-trained weights.
They use only a linear projection to map from each encoder’s representation to
the multi-modal embedding space.

As CLIP is pre-trained to predict if an image and a text are paired together in
its dataset, the authors reuse this capability to perform zero-shot classification
of images. For each image dataset, they use the names of all the classes in
the dataset as the set of potential text pairings and predict the most probable
(image, text) pair according to CLIP. In a bit more details, they first compute the
feature embedding of the image and the feature embedding of the set of possible
texts with their respective encoders. The cosine similarity of these embeddings
is then calculated and normalized into a probability distribution via a softmax
operation.

The system was trained on 400M image-text pairs from the internet and
evaluated on 27 image datasets that contains different kinds of images: satellite
images, car models, medical images, city classification, etc. Figure 7 shows that
CLIP is competitive with a fully supervised linear classifier fitted on ResNet-50
features as the CLIP classifier outperforms it on 16 datasets, including Ima-
geNet. On the right of the figure, the number of labeled examples per class a

5 https://github.com/openai/CLIP.

https://github.com/openai/CLIP
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Fig. 7: CLIP performance on 27 image datasets - Image extracted from [16]

linear classifier requires to match the performance of the zero-shot classifier is
represented. Performance varies widely from still underperforming a one-shot
classifier on two datasets to matching an estimated 184 labeled examples per
class.

The second example of multi-modal transformers is the “Multi-modal trans-
former for video retrieval”6 (MMT) proposed in [10]. This system tries to solve
two tasks. In the first task of caption-to-video retrieval, it is given a query in the
form of a caption (e.g., “How to build a house”) and its goal is to retrieve the
videos best described by it (i.e., videos explaining how to build a house). The
other task is video-to-caption retrieval where it has to find among a collection of
captions the ones that best describe the query video. To solve these two tasks,
the multi-modal transformers use the self-attention mechanism to collect cross-
modal and temporal cues about events occurring in a video. The multi-modal
transformer is integrated in a cross-modal framework, which takes into account
both captions and videos, and estimates their similarity.

The video-level representation computed by the multi-modal transformer
(MMT) consists of stacked self-attention layers and fully collected layers. The
input is a set of embeddings, all of the same dimension, each of them represent-
ing the semantics of a feature, its modality, and the time in the video when the
feature was extracted. In order to learn an effective representation from differ-
ent modalities, the authors use video feature extractors called “experts”. Each
expert is a model trained for a particular task that is then used to extract fea-
tures from video. A transformer encoder produces an embedding for each of its
feature inputs, resulting in several embeddings for an expert. To obtain a unique
embedding for each expert, an aggregated embedding is defined to collect the
expert’s information. To take into account the cross-modality information, the
multi-modal transformer needs to identify which expert it is attending to. To do

6 https://github.com/gabeur/mmt.

https://github.com/gabeur/mmt
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so, the authors learn N embeddings to distinguish between embeddings of dif-
ferent experts. Finally the temporal embeddings provide temporal information
about the time in the video where each feature was extracted to the multi-modal
transformer.

The authors apply their method on three datasets: MSRVTT, ActivityNet
and LSMDC. While MSRVTT and LSMDC contain short video-caption pairs
(average video duration of 13s for MSRVTT, one-sentence captions), ActivityNet
contains much longer videos (several minutes) and each video is captioned with
multiple sentences. The authors show that the proposed system obtains state-
of-the-art results on all the three datasets.

5 Conclusion

In this chapter, the adaptation of the Transformers architecture, developed for
natural language processing tasks, to visual or multimodal data is presented. The
chapter mainly focuses on data representation and the necessary modifications
to the management of data represented in the form of a 2-D matrix. To this end,
some papers proposed to introduce positionnal embeddings, either absolute or
dynamically generated, while others integrate convolutions in the Transformers
architecture to capture local spatial context. Dealing with video data further
complicates the problem as it requires to account for the temporal dimension.
These recent applications of the Transformers architecture to these new domains
have shown great potential, outperforming previous approaches when apply on
purely visual data to reaching state-of-the-art results on multi-modal data.

In order to go further in understanding the issues related to the use of Trans-
formers in computer vision, several additional readings are recommended. Con-
cerning the specificities related to the representation of images, Dong Ping Tian
proposes an extensive overview on image feature extraction and representation
techniques in Computer Vision [15]. More details about CNNs architecture can
be found in [12] to understand both the theory behind CNNs and to gain hands-
on experience on the application of CNNs in computer vision. Finally, regarding
the internal representation structure of Vision Transformers (ViT) and CNNs,
Raghu et al. analyze the differences between the two architectures, how are
Vision Transformers solving these tasks ; are they acting like convolutional net-
works, or learning entirely different visual representations [17]?
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