Keywords: 30 2, 7, 2 Isomonodromic deformations, 32 2, 8 Extension of solutions, Proof of Theorem 1, 24, 34

2 1.2 The constriction manifold: limit points

To my dear teacher Yu.S.Ilyashenko on the occasion of his 80-th birthday Abstract B. Josephson (Nobel Prize, 1973) predicted a tunnelling effect for a system of two superconductors separated by a narrow dielectric (such a system is called Josephson junction): existence of a supercurrent through it and equations governing it. The overdamped Josephson junction is modeled by a family of differential equations on 2-torus depending on 3 parameters: B (abscissa), A (ordinate), ω (frequency). We study its rotation number ρ(B, A; ω) as a function of parameters. The three-dimensional phase-lock areas are the level sets L r := {ρ = r} ⊂ R 3 with non-empty interiors; they exist for r ∈ Z (Buchstaber, Karpov, Tertychnyi). For every fixed ω > 0 and r ∈ Z the planar slice L r ∩(R 2 B,A ×{ω}) is a garland of domains going vertically to infinity and separated by points; those separating points for which A = 0 are called constrictions. In a joint paper by Yu.Bibilo and the author, it was shown that 1) at each constriction the rescaled abscissa := B ω is integer and = ρ; 2) the family Constr of constrictions with given ∈ Z is an analytic submanifold in (R 2 + ) a,s , a = ω -1 , s = A ω . In the present paper we show that 1) the limit points of Constr are β ,k = (0, s ,k ), where s ,k are the positive zeros of the -th Bessel function J (s); 2) to each β ,k accumulates exactly one its component C ,k (constriction curve), and it lands at β ,k regularly. Known numerical phase-lock area pictures show that high components of interior of each phase-lock area L r look similar. In his paper with Bibilo, the author introduced a candidate to the self-similarity map between neighbor components: the Poincaré map of the dynamical isomonodromic foliation governed by Painlevé 3 equation. Whenever well-defined, it preserves the rotation number function. We show that the Poincaré map is well-defined on a neighborhood of the plane {a = 0} ⊂ R 2 ,a × (R + ) s , and it sends each constriction curve germ (C ,k , β ,k ) to (C ,k+1 , β ,k+1 ).

Introduction and main results

Model of Josephson junction. Introduction and brief description of main results

The tunnelling effect predicted by B.Josephson in 1962 [START_REF] Josephson | Possible new effects in superconductive tunnelling[END_REF] (Nobel Prize 1973) deals with a Josephson junction: a system of two superconductors separated by a narrow dielectric. It states existence of a supercurrent through it and yields equations governing it (discovered by Josephson). It was confirmed experimentally by P.W.Anderson and J.M.Rowell in 1963 [START_REF] Anderson | Probable observation of the Josephson tunnel effect[END_REF].

The model of the so-called overdamped Josephson junction, see [START_REF] Stewart | Current-voltage characteristics of Josephson junctions[END_REF][START_REF] Mccumber | Effect of ac impedance on dc voltage-current characteristics of superconductor weak-link junctions[END_REF][START_REF] Levinson | Quantum noise in a current-biased Josephson junction[END_REF][START_REF] Schmidt | Introduction to physics of superconductors[END_REF], [7, p. 306], [40, pp. 337-340], [41, p.193], [42, p. 88] is described by the family of nonlinear differential equations dφ dt = -sin φ + B + A cos ωt, ω > 0, B ≥ 0.

(1.1)

Here φ is the difference of phases (arguments) of the complex-valued wave functions describing the quantum mechanic states of the two superconductors. Its derivative is equal to the voltage up to known constant factor. Equations (1.1) also arise in several models in physics, mechanics and geometry, e.g., in planimeters, see [START_REF] Foote | Geometry of the Prytz Planimeter[END_REF][START_REF] Foote | bicycle tire tracks, hatchet planimeters, and a 100-year-old conjecture[END_REF].

The variable and parameter changes

τ := ωt, θ := φ + π 2 , := B ω , a = 1 ω , s := A ω , (1.2) 
transform (1.1) to a non-autonomous ordinary differential equation on the two-torus T 2 = S1 × S 1 with coordinates (θ, τ ) ∈ R 2 /2πZ 2 : dθ dτ = a cos θ + + s cos τ.

(1.

3)

The graphs of its solutions are the orbits of the vector field θ = a cos θ + + s cos τ τ = 1 (1.4) on T 2 . The rotation number of its flow, see [3, p. 104], is a function ρ(B, A) of parameters 1 : ρ(B, A; ω) = lim k→+∞ θ(2πk) 2πk .

Here θ(τ ) is a general R-valued solution of the first equation in (1.4) whose parameter is the initial condition for τ = 0. Recall that the rotation number exists and is independent on the choice of the initial condition, see [3, p.104].

The parameter B is called abscissa, A is called the ordinate, ω is called frequency. Recall the following well-known definition.

Definition 1.1 (cf. [25, definition 1.1]) The r-th planar phase-lock area is the level set

L r (ω) = {(B, A) ∈ R 2 | ρ(B, A; ω) = r} ⊂ R 2 B,A ,
provided that it has a non-empty interior.

The planar phase-lock areas were studied by V.M.Buchstaber, O.V.Karpov, S.I.Tertychnyi, Yu.P.Bibilo, the author et al, see [START_REF] Bibilo | On families of constrictions in model of overdamped Josephson junction and Painlevé 3 equation[END_REF][START_REF] Bibilo | On family of constrictions in model of overdamped Josephson junction[END_REF], [START_REF] Buchstaber | On determinants of modified Bessel functions and entire solutions of double confluent Heun equations[END_REF]- [START_REF] Buchstaber | Holomorphic solutions of the double confluent Heun equation associated with the RSJ model of the Josephson junction[END_REF], [START_REF] Glutsyuk | On the adjacency quantization in an equation modeling the Josephson effect[END_REF]- [START_REF] Glutsyuk | On spectral curves and complexified boundaries of phase-lock areas in a model of Josephson junction[END_REF], [START_REF] Ilyashenko | Lectures of the summer school "Dynamical systems[END_REF][START_REF] Ilyashenko | Phase-lock effect for equations modeling resistively shunted Josephson junctions and for their perturbations[END_REF][START_REF] Kleptsyn | Josephson effect and slow-fast systems[END_REF][START_REF] Klimenko | Asymptotic properties of Arnold tongues and Josephson effect[END_REF], [START_REF] Tertychnyi | Long-term behavior of solutions of the equation φ + sin φ = f with periodic f and the modeling of dynamics of overdamped Josephson junctions[END_REF][START_REF] Tertychnyi | The modeling of a Josephson junction and Heun polynomials[END_REF] and references therein. The following results are known and proved mathematically: 1) Planar phase-lock areas exist only for integer rotation number values (the rotation number quantization effect discovered and proved by V.M.Buchstaber, O.V.Karpov and S.I.Tertychnyi in [START_REF] Buchstaber | The rotation number quantization effect[END_REF], later also proved in [START_REF] Ilyashenko | Lectures of the summer school "Dynamical systems[END_REF][START_REF] Ilyashenko | Phase-lock effect for equations modeling resistively shunted Josephson junctions and for their perturbations[END_REF]).

2) The boundary of each L r (ω) consists of two analytic curves, which are the graphs of two functions B = G r,α (A), α = 0, π, (see [START_REF] Buchstaber | The system on torus modeling the dynamics of Josephson junction[END_REF]; this fact was later explained by A.V.Klimenko via symmetry, see [START_REF] Klimenko | Asymptotic properties of Arnold tongues and Josephson effect[END_REF]).

3) The latter functions have Bessel asymptotics

G r,0 (A) = rω -J r (-A ω ) + O( ln |A| A ) G r,π (A) = rω + J r (-A ω ) + O( ln |A| A )
, as A → ∞ (1.5)

(observed and proved on physics level in [START_REF] Shapiro | Effect of microwaves on Josephson currents in superconducting tunneling[END_REF], see also [40, p. 338], [7, section 11.1], [START_REF] Buchstaber | Peculiarities of dynamics of a Josephson junction shifted by a sinusoidal SHF current[END_REF]; proved mathematically in [START_REF] Klimenko | Asymptotic properties of Arnold tongues and Josephson effect[END_REF]); J r is the r-th Bessel function. 4) Each planar phase-lock area is a garland of infinitely many bounded domains going to infinity in the vertical direction. In this chain each two subsequent domains are separated by one point. This was proved in [START_REF] Klimenko | Asymptotic properties of Arnold tongues and Josephson effect[END_REF] using the above statement 3). Those separation points that lie on the horizontal B-axis, namely A = 0, were calculated explicitly, and we call them the growth points, see [18, corollary 3]. The other separation points, which lie outside the horizontal B-axis, are called the constrictions.

5) For every r ∈ Z and ω > 0 the r-th planar phase-lock area L r (ω) is symmetric to the -r-th one with respect to the vertical A-axis.

6) Every planar phase-lock area is symmetric with respect to the horizontal B-axis. See Figures 123below. [START_REF] Barone | Physics and Applications of the Josephson Effect[END_REF] In each planar phase-lock area L r (ω) all its constrictions lie in the same vertical line Λ r := {B = rω}, see [8, theorem 1.4].

8) Each constriction X ∈ L r (ω) is positive: the intersection of the interior of the area L r (ω) with the vertical line Λ r contains a punctured neighborhood of the point X in Λ r , see [8, theorem 1.7]. 9) For every fixed ∈ Z the set of constrictions (B, A; ω) with abscissa B = ω (i.e., constrictions in L (ω)), with variable (A, ω), is a onedimensional analytic submanifold in (R 2 + ) A,ω [8, theorem 1.12]. We will denote it Constr and represent it in the coordinates (a, s): For a survey of other results on model (1.1) of overdamped Josephson junction and related topics see paper [START_REF] Bibilo | On families of constrictions in model of overdamped Josephson junction and Painlevé 3 equation[END_REF] and its bibliography. Definition 1.2 A constriction curve is a connected component of the above constriction submanifold Constr ⊂ (R 2 + ) a,s . The corresponding curve in the parameters (B, A; ω), B = ω = a , A = s a , ω = a -1 ) (which is a family of constrictions lying in L (ω)) will be also called a constriction curve.

a := 1 ω , s := A ω , Constr := {(a, s) ∈ R 2 + | a , s a ; a -1 is a constriction} ⊂ (R 2 + ) a,s .
It would be interesting to study the three-dimensional phase-lock areas: those level sets

L r = {(B, A; ω) ∈ R 2 B,A × (R + ) ω | ρ(B, A; ω) = r} for which Int(L r ) = ∅.
Remark 1.3 The Buchstaber-Karpov-Tertychnyi rotation number quantization effect also holds for the above three-dimensional areas L r : they exist only for integer values of the rotation number r. This follows immediately from their analogous result and its proof in two dimensions [START_REF] Buchstaber | The rotation number quantization effect[END_REF]. One has where L r (ω) are the planar phase-lock areas for given ω. The boundary ∂L r is the union of graphs {B = g r,α (A, ω)}, of functions g r,α , α ∈ {0, π}, analytic on R × R + , whose restrictions to each line ω = const coincide with the corresponding functions G r,α . The proof of this fact repeats the proof of the analogous statement for planar phase-lock areas, see [START_REF] Buchstaber | The system on torus modeling the dynamics of Josephson junction[END_REF][START_REF] Klimenko | Asymptotic properties of Arnold tongues and Josephson effect[END_REF]. Thus,

L r = ∪ ω>0 (L r (ω) × {ω}), (1.6) 
Int(L r ) = ∪ ω>0 Int(L r (ω)) × {ω}. (1.7) 
This implies that the interior of each three-dimensional phase-lock area L r is a union of domains separated by constriction curves or the growth point curves {A = 0, B = ± √ r 2 ω 2 + 1}.

Problem 1.4 Describe the asymptotic behavior of the constriction curves.

It follows from [8, lemma 4.14 and arguments on pp. 5459-5460] that the constriction submanifold Constr accumulates to no point of the a-axis.

One of the main results of the present paper is Theorem 1.17 (Subsection 1.2). It states that the limit set of the constriction submanifold Constr is the infinite sequence of the points β ,k = (0, s ,k ) of the s-axis, where s ,1 , s ,2 , . . . are the positive zeros of the Bessel function J ; exactly one constriction curve, denoted by C ,k , accumulates to each β ,k (which is its unique limit point); each C ,k has unique limit point β ,k , and it lands at β ,k regularly. Using Theorem 1.17, we deduce the following theorem.

Theorem 1.5 The interior of each three-dimensional phase-lock area has infinitely many components.

Conjecture 1.6 Each constriction curve lands at some β ,k , i.e., coincides with some C ,k . Conjecture 1.7 [8, conjecture 6.8] Each constriction curve is bijectively analytically projected onto the a-axis (R + ) a (or equivalently, onto (R + ) ω ). The corresponding conjectural arrangement of constriction curves and components of the phase-lock areas L is presented at Fig. 4a).

Definition 1.8 A constriction curve different from C ,k (if any) is called a queer constriction curve.
We prove Proposition 1.18 (Subsection 1.2), which states that a constriction curve is queer, if and only if the restriction to it of the coordinate a is unbounded on both its sides. This will show that Conjecture 1.7 would imply Conjecture 1.6.

We deduce Corollary 1.20 (of Proposition 1.18), which states that for every queer constriction curve C in L (if any) there exists a connected component of the interior Int(L ) that is adjacent to C and is adjancent to no curve C ,k . This shows that Conjecture 1.6 is equivalent to the statement saying that each component of Int(L r ) is adjacent to some C ,k . Remark 1.9 Conjecture 1.7 implies that as ω varies, in the corresponding planar phase-lock areas L r (ω) constrictions can neither be born, nor disappear, as ω crosses a value ω 0 for which the boundary curves of L r (ω 0 ) are tangent to each other at a constriction. Conjectural picture of the threedimensional phase-lock areas and conjecturally impossible picture, with a queer constriction curve and the corresponding component of Int(L r ) (called a queer component), are presented at Fig. 4a) and 4b) respectively. Figure 4: Three-dimensional phase-lock areas and constriction curves: a) the conjectural picture, without queer constriction curves; b) a priori possible picture with a queer curve and a queer component.

Each three-dimensional phase-lock area has a kind of self-similarity structure: any two its components lying high enough look similarly. It would be interesting to find and study a self-similarity map of the parameter space that sends one component to the next one, adjacent to it from above. In his paper with Yu.Bibilo, see [8, subsection 6.2], the author suggested a candidate to such a self-similarity map: the Poincaré map of the so-called dynamical isomonodromic foliation G. Namely, he introduced the following four-dimensional extension of the three-dimensional family (1.4) of dynamical systems on torus modeling overdamped Josephson junction:

dθ dτ = ν + a cos θ + s cos τ + ψ cos(θ -τ ); ν, a, ψ ∈ R, s > 0, (a, ψ) = (0, 0). (1.8)
Family (1.3) is embedded to (1.8) by the mapping ( , s, ω) → (ν, a, s, ψ) = ( , ω -1 , s, 0).

(1.9)

In the new coordinates ( , χ, a, s) on the parameter space of family (1.8),

χ = ψ 2s , := ν - ψa s = ν -2χa,
consider the line field given by the following system of non-autonomous differential equations introduced in [8, formula (6.4)]:

     s = 0 χ s = a-2χ( +2χa) 2s a s = -2sχ + a s ( + 2χa)
.

(1.10)

The foliation of the four-dimensional parameter space by its phase curves, which are graphs of solutions of system (1.10), is called the dynamical isomonodromic foliation and denoted by G. (This name comes from relation to isomonodromic families of linear systems; see explanation below, in Remark 1.16.) The author has shown in [8, subsection 6.2] that each its leaf is a family of flows on T 2 that are conjugated to each other by diffeomorphisms isotopic to the identity. Thus, the rotation number and the number are constant along each leaf of the foliation G. For every ∈ R the function

w(s) := a(s) 2sχ(s) = a(s) ψ(s) (1.11)
satisfies Painlevé 3 equation

w = (w ) 2 w - w s -2 w 2 s + (2 -2) 1 s + w 3 - 1 w .
(1.12) along solutions of (1.10), see [8, theorem 6.6].

Consider family (1.3) modeling Josephson junction as the subfamily in (1.8): the hyperplane {χ = 0}, see (1.9). A solution ( , χ(s), a(s)) with initial condition ( , 0, a 0 ) in the latter hyperplane at s = s 0 may return back to the hyperplane at its another point ( , 0, a 1 ) at some next moment s 1 > s 0 . If it happens, then this induces the Poincaré first return map P : ( , a 0 , s 0 ) → ( , a 1 , s 1 ) defined on some subset of the hyperplane {χ = 0}. Problem 1.10 (see [8, problems 6.11-6.13]) Study the action of the Poincaré map P on the three-dimensional phase-lock area portrait of family (1.3). Is it true that it sends each interior component of every phase-lock area (starting from the second component) to its next component, adjacent to it from above? Is it true that it sends each constriction curve C ,k to C ,k+1 ? Problem 1.11 Describe the subset where the Poincaré map P is welldefined. Describe the subset where all its iterates are well-defined.

Remark 1.12 The second part of the latter problem is closely related to the description of those solutions of Painlevé 3 equation (1.12) that have an infinite lattice of residue one poles in R + . See Subsection 1.5, where relation to poles of solutions of Painlevé 3 equation will be presented together with a brief survey of results on poles.

Our second main result is Theorem 1.23 (Subsection 1.3). It states that -the Poincaré map P is well-defined on a neighborhood of the plane {a = 0} ⊂ R × (R 2 + ) a,s ; -its restriction to the latter plane sends a point ( , 0, s) to ( , 0, s * ), s * > 0, where s, s * are neighbor zeros of a solution of the -th Bessel equation.

To study the domain of the map P, it is important to study analytic extensions of solutions of system (1.10) and of the Painlevé 3 equation (1.12). Remark 1.13 It is well-known that solutions w(s) of Painlevé 3 equation (1.12) are meromorphic on the universal cover of the punctured line C * s = C \ {0} (classical result coming from the Painlevé property), and all their poles are simple with residues ±1 [28, theorem 31.1]. But a generic solution of (1.12) has a nontrivial monodromy and is not single-valued on C * .

Our third main result is Theorem 1.24 (Subsection 1.4) classifying singularities s 0 ∈ C s of solutions (χ(s), a(s)) of system (1.10). It states that each solution is meromorphic on the universal cover over C * s , and each its pole s 0 is either a zero of the corresponding solution w(s) of the Painlevé 3 equation (1.12) with unit derivative, or its pole with residue -1. Theorem 1.24 also states that for each initial condition lying in the constriction submanifold Constr the corresponding solution (χ(s), a(s)) is meromorphic either on C * , or on its double cover, and w(s) is meromorphic on C * . In the case, when the initial condition lies on a constriction curve C ,k , Theorem 1.24 states that the solution (χ(s), a(s)) is meromorphic single-valued on C * s . Let us note the Hamiltonian nature of non-autonomous system (1.10).

Proposition 1.14 For every fixed ∈ R the corresponding differential equation (1.10) on vector function (χ(s), a(s)) is Hamiltonian with time s-depending Hamiltonian function

H(χ, a, s) := - χ 2 a 2 s + a 2 4s + sχ 2 - χa s . (1.13)
In particular, for every positive s 1 , s 2 , s 1 < s 2 , the non-autonomous flow map of equation (1.10) from time s 1 to time s 2 (on a domain in C 2 χ,a where it is well-defined) preserves the standard symplectic form dχ ∧ da.

The proposition follows by straightforward calculation.

Remark 1.15 Representations of Painlevé equations as a Hamiltonian systems were found by J.Malmquist [START_REF] Malmquist | Sur les équations différentielles du second ordre dont l'intégrale générale a ses points critiques fixes[END_REF] (for all of them except for Painlevé 3 equations). For Painlevé 3 equations this was done by K.Okamoto [50, p. 265]. His result implies that our Painlevé 3 equation (1.12) is equivalent to the Hamiltonian system with the Okamoto Hamiltonian For fixed s, the G-pullback of the symplectic form dw ∧ dp is -4dχ ∧ da, and one has

H Ok (w, p; s) := 1 s (w 2 p 2 -(w 2 s -(2 -1)w + s)p).
H(χ, a, s) = - 1 4 H Ok (w, p) + wp s = - 1 4 H Ok • G(χ, a) + 2χa s .
Family of dynamical systems (1.4) modeling Josephson junction can be equivalently described by a family of two-dimensional linear systems of differential equations on the Riemann sphere, see [START_REF] Buchstaber | On properties of the differential equation describing the dynamics of an overdamped Josephson junction[END_REF][START_REF] Buchstaber | The rotation number quantization effect[END_REF][START_REF] Buchstaber | Holomorphic solutions of the double confluent Heun equation associated with the RSJ model of the Josephson junction[END_REF][START_REF] Foote | Geometry of the Prytz Planimeter[END_REF][START_REF] Ilyashenko | Lectures of the summer school "Dynamical systems[END_REF][START_REF] Ilyashenko | Phase-lock effect for equations modeling resistively shunted Josephson junctions and for their perturbations[END_REF], [12, subsection 3.2]. This is also true for the extended family (1.8). Namely, in the complex variables Φ = e iθ , z = e iτ equations (1.8) can be equivalently written as Riccati equations

dΦ dz = 1 z 2 s 2 Φ + ψ 2 Φ 2 + 1 z νΦ + a 2 (Φ 2 + 1) + s 2 Φ + ψ 2 .
(1.14)

A function Φ(z) is a solution of the latter Riccati equation, if and only if

Φ(z) = Y 2 (z) Y 1 (z) , where Y = (Y 1 , Y 2 )(z) is a solution of the linear system Y = -s K z 2 + R z + sN Y, (1.15) 
K = 1 2 χ 0 0 , R = -( + χa) -a 2 a 2 χa , N = -1 2 0 χ 0 ; χ = ψ 2s .
Given a z 0 ∈ C * = C \ {0}, say, z 0 = 1, the space of germs of solutions of linear system (1.15) at z 0 is identified with the vector space C 2 of initial conditions at z 0 . Analytic extension along a counterclockwise circuit around the origin is a linear operator acting on the latter local solution space, called the monodromy operator.

Remark 1.16 Solutions of (1.8) correspond to isomonodromic families of linear systems (1.15) [8, theorem 6.6]. (This explains the name "isomonodromic foliation" for the foliation by graphs of solutions of (1.10).) The latter isomonodromic families are induced from classical Jimbo isomonodromic deformations given in [START_REF] Jimbo | Monodromy Problem and the Boundary Condition for Some Painlevé Equations[END_REF], governed by Painlevé 3 equation [33, pp. 1156-1157], which implies equation (1.12). It is known that linear systems (1.15) corresponding to constrictions in subfamily (1.3) of (1.8) have trivial monodromy, see [8, proposition 4.1]. For a necessary background on linear systems with irregular singularities and isomonodromic families see, for example, [8, sections 2 and 3.1] and Subsection 2.7 below.

The plan of proofs of main results is presented in Subsection 1.6.

The constriction manifold: limit points and landing components

Theorem 1.17 1) The limit points of the constriction submanifold Constr ⊂ (R 2 + ) a,s are the points

β ,k = (0, s ,k ), s ,k > 0 is the k -th positive zero of the Bessel function J (s) = 1 π π 0 cos( τ -s sin τ )dτ. (1.16)
2) For every β ,k there exists a unique connected component C ,k of the manifold Constr landing at β ,k , and C ,k accumulates to no other β ,j .

3) The union of the closure Constr in R ≥0 × R s and its image under the symmetry with respect to the s-axis is a regular analytic submanifold Constr ⊂ R 2 a,s . It intersects the s-axis orthogonally at the points β ,k . 4) The image of each curve C ,k under the projection to the a-coordinate is the whole a-semiaxis R + .

Proposition 1.18 Let C ⊂ Constr be a constriction curve. Let the restriction to C of the coordinate function a be bounded on at least one its side: we split C into two semi-curves separated by a point, and we require that a be bounded on at least one of them. Then C coincides with some of C ,k .

Corollary 1.19 Conjecture 1.7 implies Conjecture 1.6.

For a given ∈ R and a subset V ⊂ (R 2 + ) a,s , by V we denote the subset of those parameters (B, A; ω) for which (a, s) = (ω -1 , A ω ) ∈ V and B ω = : (ii

V := {(B, A; ω) = ( a , s a ; a -1 ) | (a, s) ∈ V } ⊂ R B × (R 2 + ) A,ω . (1 
) Let U C ⊂ (R 2 + ) a,s denote the connected component of the complement R 2
+ \C lying on the right from C. There exists a domain V ⊂ U C adjacent to C such that the two-dimensional domain V ⊂ {B = ω} ⊂ R 3 , see (1.17), lies in a connected component of the interior of the three-dimensional phase-lock area L . The latter component of Int(L ) is called a queer component adjacent to C from the right. This queer component is adjacent to no curve C ,k (but a priori, may be adjacent to some other queer constriction curves). See Fig. 4b).

The Poincaré map of the isomonodromic foliation G

Recall that the foliation G is the foliation by graphs of solutions of system (1.10). The initial 3-parametric family (1.4) of dynamical systems on T 2 modeling Josephson junction is a cross-section to G (see (1.9)). In the parameters ( , χ, a, s), this is the hyperplane {χ = 0} with the plane {a = 0} deleted. We denote it by Jos o and its closure by Jos:

Jos := {χ = 0, s > 0} ⊂ R 4 ,χ,a,s , Jos o := Jos \ {a = 0}.
The foliation G is tangent to Jos at points of its proper hyperplane {a = 0}.

Definition 1.21 Consider the solution ( , χ(s), a(s)) of equation (1.10) whose graph passes through a given point ( , 0, a 0 , s 0 ) ∈ Jos o (initial condition).

Let s 1 > s 0 be the next point where χ(s 1 ) = 0, and let the vector function (χ(s), a(s)) be well-defined on the segment [s 0 , s 1 ]; a(s 0 ) = a 0 . The map P : ( , a 0 , s 0 ) → ( , a(s 1 ), s 1 ) of the first return to Jos o will be called the Poincaré map of the isomonodromic foliation G.

Remark 1.22 The Poincaré map P, wherever defined, preserves the rotation number function, and hence, the phase-lock area portrait. This follows from constance of the rotation number along leaves of the foliation G.

The next theorem is our second main result.

Theorem 1.23 1) The Poincaré map P is well-defined and analytic on a neighborhood of the hyperplane {a = 0} in Jos, including this hyperplane.

2) Given an ∈ R and an s > 0, let s * > s be the next zero after s of the solution of the -th Bessel equation (2.11) vanishing at s. The Poincaré map P sends the point ( , 0, 0, s) to the point ( , 0, 0, s * ). In particular, it sends each β ,k = ( , 0, 0, s ,k ) ∈ Jos to β ,k+1 . Here s ,k is the k-th positive zero of the Bessel function J (s).

3) For ∈ Z let C ,k and β ,k be the constriction curves and their landing points from Theorem 1.17. The Poincaré map P sends each constriction curve germ (C ,k , β ,k ) to the next germ (C ,k+1 , β ,k+1 ).

1.4 Analytic extension and singularities of solutions of (1.10) and the Painlevé 3 equation (1.12)

It is well-known that each solution of Painlevé 3 equation (1.12) extends analytically to a meromorphic function on the universal cover over C * (Painlevé property), and its singular points in the universal cover are simple poles with residues ±1 [28, theorem 31.1]. Our third main result is the following slightly stronger theorem, on analytic extension of vector solutions (χ(s), a(s)) of system (1.10).

Theorem 1.24 1) For every given ∈ C each solution (χ(s), a(s)) of system (1.10) extends to a meromorphic vector function on the universal cover of punctured complex line C * s = C \ {0}. 2) Each its pole s 0 ∈ C * (i.e., a point s 0 that is a pole of some its component and either a pole, or a regular point of the other component) is -either a zero with derivative one of the corresponding solution w(s) = a(s) 2sχ(s) of Painlevé 3 equation (1.12); in this case a(s) is holomorphic at s 0 , a(s 0 ) = ±s 0 , and χ(s) has a simple pole at s 0 with residue ± 1 2 ; -or a pole of w(s) with residue -1; in this case a(s) has simple pole with residue ±s 0 at s 0 , and χ(s) is holomorphic at s 0 and χ(s 0 ) = ∓ 1 2 . 3) For every initial condition (χ * , a * , s * ), s * = 0, corresponding to a linear system (1.15) with trivial monodromy the corresponding solution (χ(s), a(s)) of system (1.10) is meromorphic either on C * , or on its double cover C * t given by t → s = t 2 . More precisely, it remains unchanged up to sign after analytic extension along a simple circuit around the origin. The corresponding solution w(s) of Painlevé 3 equation (1.12) is always meromorphic on C * . 4) Statement 3) hold for every initial condition (0, a * , s * ), where (a * , s * ) lies in the constriction submanifold Constr .

5) For every (0, a * , s * ) such that (a * , s * ) lies in a constriction curve C ,k the corresponding solution (χ(s), a(s)) of (1.10) is meromorphic on C * .

The Poincaré map P and poles of Painlevé 3 solutions

Lemma 1.25 [8, lemma 6.7, p.5475]. The graph of a non-identically-zero solution (χ(s), a(s)) of system (1.10) crosses the hyperplane {χ = 0} exactly at points corresponding to those s = s 0 = 0 where the corresponding solution w(s) = a(s) 2sχ(s) of Painlevé 3 equation (1.12) has a pole with residue one.

Our main results imply the following new result.

Proposition 1.26 The Poincaré map P : Jos o → Jos o is well-defined at a point ( , 0, a 0 , s 0 ), if and only if the corresponding solution a(s) 2sχ(s) of Painlevé equation (1.12) defined by the solution (χ(s), a(s)) of (1.10) with (χ(s 0 ), a(s 0 )) = (0, a 0 ) is holomorphic on a finite interval (s 0 , s 1 ), has pole with residue one at s 1 and has no zeros with unit derivative in the interval (s 0 , s 1 ).

Proof The proposition follows from Lemma 1. [START_REF] Glutsyuk | On the adjacency quantization in an equation modeling the Josephson effect[END_REF] , where v(s) is a solution of the -th Bessel equation (2.11); see Subsection 2.2 and statements 1), 2) of Theorem 1.23. Indeed, each solution v(s) of the Bessel equation has an infinite sequence of real positive zeros, and they are poles of w(s) with residue 1. Novokshenov's numerical experience (2020) has shown that small real deformations of the real Bessel type solutions also have infinite sequence of positive poles with residue 1. Each transcendental meromorphic on C * solution of Painlevé 3 equation has infinite number of complex poles with residue one; under an additional genericity assumption, it has infinite number of complex poles with both residues ±1 [28, theorem 31.1]. Existence of one-dimensional family of tronquée solutions, which have no poles in a sector containing the real positive semiaxis, was proved in [START_REF] Lin | Existence and uniqueness of tronquée solutions of the third and fourth Painlevé equations[END_REF].

Plan of the proof of main results

The proof of main results is based on the following characterization of the constrictions.

Proposition 1.30 [25, proposition 2.2] Consider the period 2π flow map h = h 2π of system (1.4) acting on the transversal coordinate θ-circle {τ = 0}. (It is also the Poincaré map of the latter cross-section.) A point (B, A; ω) is a constriction, if and only if ω, A = 0 and h = Id. Proposition 1.31 In the coordinates ( , a, s) on the parameter space of family (1.4) the Poincaré map h = h ,a,s : S 1 θ → S 1 θ is analytic as function on R 3 ,a,s × S 1 θ . The proposition follows from the classical theorem on analytic dependence of solution of analytic differential equation on parameters and initial condition.

First in Subsection 2.1 we prove a part of Theorem 1.17. Namely, we show that accumulation points in the s-axis (if any) of the manifold Constr have ordinates that are zeros of the Bessel function J . We show that the germ of Constr at each intersection point lies in a regular germ of analytic curve. Then we deduce that the union of the closure Constr ⊂ R a × (R + ) s and its image under the symmetry with respect to the s-axis is an analytic submanifold.

In Subsection 2.3 we prove Statements 1) and 2) of Theorem 1.23. To do this, we blow up the space R 4 ,χ,a,s \ {s = 0} along the plane {a = χ = 0}. The complexified blown up manifold will be denoted by

C 4 . Its exceptional divisor is Σ := C 2 ,s × CP 2 [χ:a] \ {s = 0}
. By Π ⊂ C 4 we denote the strict transform of the hyperplane {χ = 0}, which corresponds to model of Josephson junction. The line field given by (1.10) induces a holomorphic line field on the complexified blown-up manifold C 4 that is tangent to the exceptional divisor Σ. The hypersurface Π appears to be its global cross-section. The restriction to Σ of the line field appears to be given by the Riccati equation equivalent to the projectivization of the -th Bessel equation. This yields a geometric interpretation of the well-known fact that Painlevé equation (1.12) has a one-dimensional family of the so-called Bessel type solutions

w(s) = du(s) ds u(s)
, where u(s) is s times a solution of the -th Bessel equation. See [21, Section 10 in Chapter 12] and Theorem 2.5 in Subsection 2.2 below.

It will be deduced from the above statements that the first return Poincaré map P : Π → Π is well-defined on a neighborhood of the intersection Π ∩ Σ, and its restriction to Π ∩ Σ is the map ( , s) → ( , s * ), where s * > s is the next (after s) zero of a solution of the Bessel equation vanishing at s.

Next, in Subsection 2.4 we show that each zero s ,k > 0 of Bessel function J corresponds to an accumulation point β ,k = (0, s ,k ) of some constriction curve: a component of the manifold Constr . To do this, we first show that at least some β ,m is an accumulation point. This is done by using the above-mentioned part of Theorem 1.17 (already proved in Subsection 2.1) and results of Klimenko and Romaskevich [START_REF] Klimenko | Asymptotic properties of Arnold tongues and Josephson effect[END_REF] on Bessel asymptotics of boundaries of the phase-lock areas. Then we deduce that each s ,k corresponds to a constriction curve. This is done by using Statements 1) and 2) of Theorem 1.23 (already proved in Subsection 2.3) and applying iterates of the Poincaré map P (and its inverse) sending the above accumulation point β ,m to any other β ,k . This will finish the proofs of Theorems 1.17 and 1. [START_REF] Foote | Geometry of the Prytz Planimeter[END_REF].

In Subsection 2.5 we prove Proposition 1.18. In Subsection 2.6 we prove Theorem 1.5 and Corollary 1.20. In Subsection 2.8 we prove Theorem 1.24. The proof uses Stokes phenomena theory and isomonodromicity of family of linear systems (1.15) along solutions of system (1.10). The corresponding background material on Stokes phenomena and isomonodromic families is briefly recalled in Subsection 2.7.

Brief historical remarks

Hereby we present a very brief survey of results that were not mentioned in the introduction. See [START_REF] Bibilo | On families of constrictions in model of overdamped Josephson junction and Painlevé 3 equation[END_REF] for a more complete survey. I.A.Bizyaev, A.V.Borisov, and I.S.Mamaev [START_REF] Bizyaev | The Hess-Appelrot case and quantization of the rotation number[END_REF] noticed that a big family of dynamical systems on torus in which the rotation number quantization effect realizes was introduced by W.Hess (1890). Such systems were studied in classical mechanics in problems on rigid body movement with fixed point in works by W.Hess, P.A.Nekrassov, A.M.Lyapunov, B.K.Mlodzejewski, N.E.Zhukovsky and others. See [START_REF] Bizyaev | The Hess-Appelrot case and quantization of the rotation number[END_REF][START_REF] Lyapunov | On one property of the differential equations of the problem of movement of a heavy solid body with a fixed point[END_REF][START_REF] Mlodzejewski | On conditions of existence of asymptotic periodic movement in Hess' problem[END_REF][START_REF] Nekrassov | Étude analytique d'un cas de mouvement d'un corps pesant autour d'un point fixe[END_REF][START_REF] Zhukovsky | Loxodromic Pendulum[END_REF] and references therein. P.A.Nekrasov observed in [START_REF] Nekrassov | Étude analytique d'un cas de mouvement d'un corps pesant autour d'un point fixe[END_REF] that the above-mentioned big family of systems considered by Hess can be equivalently described by a Riccati equation (or by a linear second order differential equation).

Numerical experiences of V.M.Buchstaber, O.V.Karpov, S.I.Tertychnyi, D.A.Filimonov, V.A.Kleptsyn, I.V.Schurov have shown that as ω → 0, the "upper" part of the phase-lock area portrait converges to a kind of parquet in the renormalized coordinates ( , µ): the renormalized phase-lock areas tend to unions of pieces of parquet, and gaps between the phase-lock areas tend to zero. See Fig. 3 and the paper [START_REF] Kleptsyn | Josephson effect and slow-fast systems[END_REF]. This is an open problem. In [START_REF] Kleptsyn | Josephson effect and slow-fast systems[END_REF] V.A.Kleptsyn, O.L.Romaskevich, and I.V.Schurov proved some results on smallness of gaps and their rate of convergence to zero, as ω → 0, using methods of slow-fast systems.

A subfamily of family (1.4) of dynamical systems on 2-torus was studied by J.Guckenheimer and Yu.S.Ilyashenko in [START_REF] Ilyashenko | The duck and the devil: canards on the staircase[END_REF] from the slow-fast system point of view. They obtained results on its limit cycles, as ω → 0.

2 Proof of main results

Intersection points of Constr with the s-axis: their regularity and landing components

Here we prove the following lemma.

Lemma 2.1 1) For every ∈ Z each finite accumulation point of the submanifold Constr ⊂ R 2 + (if any) lies in the s-axis and has the type β = (0, y), where y > 0 is a zero of the Bessel function J .

2) The subset Constr ⊂ R 2 , which is the union of the closure Constr ⊂ R 2 and its symmetric with respect to the s-axis, is a one-dimensional analytic submanifold intersecting the s-axis orthogonally at the above points β.

3) Each connected component of the submanifold Constr landing at some point β of the s-axis accumulates to no other point of the s-axis.

4) Each above landing component is projected onto the whole a-axis R + .

The first step of the proof of Lemma 2.1 is the following proposition.

Proposition 2.2 Let ∈ Z. Let a sequence of points in Constr accumulate to a point (0, y) of the s-axis. Then J (y) = 0.

Proof The submanifold Constr is the intersection of the positive quadrant R 2 + with the analytic subset

M := {h ,a,s = Id} ⊂ R 2 a,s , (2.1) 
see Propositions 1.30 and 1.31. The germ at (0, y) of the analytic subset M is one-dimensional, by assumption. Therefore, it is a finite union of germs of analytically parametrized curves. Let us calculate the derivative of the time τ flow maps h τ : S 1 → S 1 (and in particular, of the map h = h 2π ) in the parameters (a, s) from the equation in variations corresponding to (1.3). Set θ(τ, θ 0 , a, s) = h τ (θ 0 ) to be the solution of differential equation (1.3) with the initial condition θ = θ 0 at τ = 0. One has (2.5)

θ| a=0 = θ(τ, θ 0 , 0, s) = f (τ ) := θ 0 + τ + s sin τ, h| a=0 = Id, (2.2) 
Proof Suppose the contrary: there exists a sequence of points (a k , s k ) ∈ Constr converging to (0, y), as k → ∞, but the derivative (2.5) is non-zero at some θ 0 . One has

h ,a k ,s k (θ 0 ) = θ 0 + a k ∂h ,a,s k ∂a (θ 0 )| a=0 + O(a 2 k ),
since h ,0,s ≡ Id, see (2.2). Therefore, the latter right-hand side cannot be equal to θ 0 for all k, since a k > 0. But h ,a,s = Id for all (a, s) ∈ Constr , by Proposition 1.30. The contradiction thus obtained proves the claim. 2

System of identities (2.5) for all θ 0 is equivalent to the system of equalities Proof The submanifold Constr consists of those (a, s) ∈ R 2 + for which the difference ∆(a, s; θ) := h ,a,s (θ) -θ vanishes identically in θ ∈ R. The Taylor series in (a, s) of the latter difference is divisible by a, since it vanishes for a = 0. Therefore, the function ξ(a, s; θ) = a -1 ∆(a, s; θ) is analytic. One has J (y) = 0 (Claim 1) and ξ(0, y; θ 0 ) = 0 for every θ 0 ,

(2.7) by the equality ∂ ∂a ∆(0, y; θ 0 ) = 0, see (2.5).

Proposition 2.4 For every y > 0 such that J (y) = 0 one has ∂ξ ∂s (0, y; θ 0 ) = 0 for every θ 0 / ∈ π 2 + πZ.

(2.8)

Proof Inequality (2.8) is equivalent to the inequality

∂ 2 ∆ ∂a∂s (0, y; θ 0 ) = 0 for θ 0 / ∈ π 2 + πZ. (2.9) 
Let us prove (2.9). Equations in variations on the similar derivative of a solution θ(τ, θ 0 , a, s) is obtained by differentiation of equation ( 2.3) in s and subsequent substitution a = 0 and θ s | a=0 = sin τ (which is also found from the equation in variation on θ s ):

d dτ ∂ 2 θ ∂a∂s = -sin θθ s = -sin(θ 0 + τ + s sin τ ) sin τ = 1 2 (cos(θ 0 + ( + 1)τ + s sin τ ) -cos(θ 0 + ( -1)τ + s sin τ )).
Integrating the latter differential equation with zero initial condition at τ = 0 and substituting τ = 2π yields

∂ 2 θ ∂a∂s (2π, θ 0 , 0, y) = ∂ 2 ∆ ∂a∂s = 1 2 2π 0
(cos(θ 0 + ( + 1)τ + y sin τ ) -cos(θ 0 + ( -1)τ + y sin τ ))dτ = π cos θ 0 (J +1 (-y) -J -1 (-y)), (2.10) by (1.16), the addition formula for cosine and the second equality in (2.6) (which holds for every integer number ). The Bessel function difference in the latter right-hand side is equal to -2J (-y), by well-known formula, see [57, p. 17, formula [START_REF] Andreev | Connection formulae for asymptotics of the fifth Painlevé transcendent on the real axis[END_REF]]. The latter derivative is non-zero, since J is a solution of the second order differential equation (Bessel equation) and J (-y) = (-1) J (y) = 0. Finally, the right-hand side in (2.10) is non-zero. This together with (2.10) implies (2.9). Proposition 2.4 is proved. 2

The analytic subset M ⊂ R 2 is symmetric with respect to the s-axis. This follows from the fact that changing sing of ω is equivalent to applying the variable change θ → θ + π to dynamical system (1.4), which does not change triviality of the Poincaré map (the time 2π flow map of the zero fiber S 1 θ × {0}). The subset M \ {a = 0} ⊂ R 2 a,s coincides with the union of the subset Constr and its image under the symmetry with respect to the s-axis. Both latter subsets are contained in the analytic subset

A θ 0 := {ξ(a, s; θ 0 ) = 0} ⊂ R 2 a,s
for every fixed θ 0 ∈ R. For θ 0 / ∈ π 2 + πZ, the germ of the subset A θ 0 at an accumulation point β = (0, y) of the set Constr is a germ (γ, β) of regular analytic curve transversal to the s-axis, since J (y) = 0 (Proposition 2.2) and by Proposition 2.4. It is orthogonal to the s-axis, by symmetry. The punctured germ γ \{β} coincides with the germ at β of the set M \ {a = 0}, since the latter is a one-dimensional submanifold in R 2 + ⊂ R 2 \{a = 0} whose germ at β lies in γ. This implies the statements of Proposition 2. [START_REF] Arnold | Geometrical Methods in the Theory of Ordinary Differential Equations[END_REF] But in fact, the argument is valid for every sequence in Constr .) The germs of the set M \ {a = 0} at points of its accumulation to the s-axis coincide with those of the analytic subset A θ 0 , θ 0 / ∈ π 2 + πZ, punctured at the latter accumulation points: see the above proof of Proposition 2.3. They are regular at the base (accumulation) points, as is A θ 0 , which was proved above. The intersection of the set M \ {a = 0} with the positive quadrant coincides with Constr . This implies that the union of the closure Constr and its symmetric image with respect to the s-axis is an analytic submanifold in R 2 (symmetry of the set M ). Its orthogonality to the s-axis at their intersection points is obvious. The coordinate a is unbounded from above on each connected component of the submanifold Constr ⊂ R 2 + , by [8, theorem 1.12]. This implies that each component landing at some point in the s-axis is projected to the whole a-axis R + and cannot start and end at points of the s-axis. This implies Statements 3) and 4) of Lemma 2.1 and finishes the proof of the lemma. 

w(s) = du(s) ds u(s) , u(s) = s (C 1 J (s) + C 2 Y (s)).
Here J (s) and Y (s) are linearly independent solutions of Bessel equation

d 2 v ds 2 + 1 s dv ds + (1 - 2 s 2 )v = 0. (2.11)
Namely, J is the -th Bessel function

J (x) = ∞ p=0 (-1) p Γ(p + 1)Γ(p + + 1) x 2 2p+ .
(It is well-known that for ∈ Z, J is also given by formula (1.16).) The above solutions w(s) of (1.12) are called the Bessel type solutions. Proposition 2.6 A function v(s) satisfies Bessel equation (2.11), if and only if the function u(s) = s v(s) satisfies the equation

u + 1 -2 s u + u = 0 (2.12)
In this case the function

w(s) = du(s) ds u(s) (2.13)
satisfies the Riccati equation

w = 2 -1 s w -w 2 -1. (2.14)
Each solution of (2.14) satisfies Painlevé 3 equation (1.12).

Proof Writing v = us -and substituting this to Bessel equation (2.11) yields

s -u -2 s --1 u + ( + 1)s --2 u + 1 s (s -u -s --1 u) + (1 - 2 s 
2 )s -u = 0, which is equivalent to (2.12). Differentiating (2.13) and substituting (2.12) yields

w (s) = -w 2 + u (s) u(s) = -w 2 + 2 -1 s w(s) -1.
Thus, Riccati equation (2.14) is the projectivization of a linear system equivalent to (2.12). This implies that each its solution is of type (2.13) with u(s) = s v(s), where v satisfies Bessel equation (2.11). Hence, each its solution is a solution of Painlevé 3 equation (1.12), by Theorem 2.5. 2

Blow up and domain of the Poincaré map P

Convention 2.7 We will be dealing with the plane C 2 χ,a blown up at the origin. The blown up plane will be denoted by C 2 . The exceptional divisor (the pasted projective line) is naturally identified with the projectivization of the space C 2 χ,a : the projective line CP 1 equipped with homogeneous coordinates [χ : a]. Since formally speaking, the functions χ and a on C 2 vanish on the exceptional divisor CP 1 ⊂ C 2 , we rename its canonical homogeneous coordinates [χ : a] by [y 1 : y 2 ], in order to avoid confusion. Similarly, the space C 4 ,χ,a,s blown up along the ( , s)-space {χ = a = 0} will be denoted by C 4 . Its exceptional divisor will be denoted by 

Σ := CP 1 [y 1 :y 2 ] × C 2 ,s .
2 ,s = {[0 : 1]} × C 2 ,s . 
2) The restriction to Σ of the line field V is given by the Riccati equation on the function Ψ(s) = y 2 (s) y 1 (s) that is the projectivization of linear system

ẏ1 ẏ2 = -s 1 2s -2s s y 1 y 2 . (2.15)
Namely, Ψ(s) is a solution of the above-mentioned Riccati equation, if and only if Ψ(s) = y 2 (s) y 1 (s) where y = (y 1 (s), y 2 (s)) is a solution of system (2.15). 3) Along each solution y(s) of system (2.15) the corresponding function

w(s) := y 2 (s) 2sy 1 (s) (2.16)
satisfies Riccati equation (2.14) and Painlevé 3 equation (1.12). 4) The line field V restricted to Σ is transversal to the hypersurface Π at their intersection points.

Proof System (1.10) considered as a differential equation on vector function (χ(s), a(s)) with constant parameter has right-hand side that vanished for χ = a = 0. This implies that system (1.10) lifts to a holomorphic line field V on C 4 that is tangent to the exceptional divisor Σ = {χ = a = 0} = CP 1

[y 1 :y 2 ] × C 2 ,s . Its restriction to Σ is given by the projectivized linear part in (χ, a) of the right-hand side of (1.10): linear system (2.15), whose matrix in the right-hand side coincides with the Jacobian matrix in (χ, a) at (0, 0, s) of the (χ, a)-component of system (1.10). The ratio w(s), see (2.16), satisfies Riccati equation (2.14):

w = - 1 s w + (-2sy 1 + s y 2 )y 1 -y 2 (-s y 1 + 1 2s y 2 ) 2sy 2 1 = 2 -1 s w -1 -w 2 .
Painlevé 3 equation (1.12) on w(s) can be proved in two possible ways: a) It follows from Proposition 2.6. b) Take a solution ( , χ(s), a(s)) of system (1.10) with the initial condition ( , χ 0 , a 0 ) at s = s 0 . The corresponding solution a(s) 2sχ(s) of Painlevé 3 equation (1.12) converges to w(s), as (χ 0 , a 0 ) → (0, 0) so that a 0 2s 0 χ 0 → w 0 := w(s 0 ). Therefore, the limit w(s) also satisfies Painlevé 3 equation (1.12).

Statements 1) -3) of Proposition 2.8 are proved. Transversality statement 3) follows immediately from the fact that linear system (2.15) has matrix with off-diagonal elements being non-zero for every s = 0. 2

Consider the standard vector field directing V:

           s = 0 χ = a-2χ( +2χa) 2s a = -2sχ + a s ( + 2χa) s = 1 .
(2.17)

Set Π + := the real part of Π ∩ {s > 0}, X + := Π + ∩ Σ.
Proposition 2.9 1) For every initial condition x 0 = [0 : 1] × ( , s 0 ) ∈ X + the real forward orbit of field (2.17) starting at x 0 meets X + at some point x 1 = [0 : 1] × ( , s 1 ), s 1 > s 0 (take x 1 to be the first point of return to X + ).

2) The same holds for every x 0 ∈ Π + lying in some neighborhood of X + , and the map x 0 → x 1 is a well-defined germ of analytic Poincaré first return map P : (Π + , X + ) → (Π + , X + ).

3) In the case, when the above x 0 , x 1 lie in X + , one has x 1 = P(x 0 ), if and only if 0 < s 0 < s 1 and s 0 , s 1 are neighbor zeros of a solution of Bessel equation (2.11).

Proof The flow of field (2.17) on Σ is given by solutions w(s) of the Riccati equation (2.14). Intersections of its orbit with Π are poles of the solution w(s). Recall that w = u u , see (2.13), where u(s) = s v(s), v(s) is a solution of Bessel equation (2.11). Therefore poles of w are exactly zeros of v(s). The Bessel function J (s) has infinite sequence of positive zeros. For every other solution v(s) of Bessel equation its zeros are intermittent with those of J , by Sturm Separation Theorem. Therefore, each its solution v has also infinite sequence of positive zeros. The map sending one zero of a solution to the next one depends analytically on the parameter of solution, since no two zeros can collide: a non-trivial solution of a second order differential equation cannot have multiple zeros. This proves Statements 1) and 3). Statement 2) follows from transversality statement 4) of Proposition 2.8. 2

2.4

The Poincaré map on constriction curves. Proofs of Theorems 1.17 and 1.23 Proof The proof is analogous to the discussion in [8, subsection 4.3]. It is based on the Bessel asymptotics of the boundary curves of phase-lock areas proved by A.Klimenko and O.Romaskevich [START_REF] Klimenko | Asymptotic properties of Arnold tongues and Josephson effect[END_REF]. Let us recall their result.

The boundary of the phase-lock area L r consists of two curves ∂L r,0 , ∂L ,π , corresponding to those parameter values, for which the Poincaré map of the corresponding dynamical system (1.4) acting on the circle {τ = 0} (i.e., the time 2π flow map) has fixed points 0 and π respectively. These are graphs ∂L r,α = {B = G r,α (A)}, G r,α are analytic functions on R; α = 0, π.

Theorem 2.11 [38, theorem 2]. There exist positive constants ξ 1 , ξ 2 , K 1 , K 2 , K 3 such that the following statement holds. Let r ∈ Z, A, ω > 0 be such that |rω|

+ 1 ≤ ξ 1 √ Aω, A ≥ ξ 2 ω. (2.

18)

Let J r denote the r-th Bessel function. Then

1 ω G r,0 (A) -r + 1 ω J r - A ω ≤ 1 A K 1 + K 2 ω 3 + K 3 ln A ω , (2.19) 
1 ω G r,π (A) -r - 1 ω J r - A ω ≤ 1 A K 1 + K 2 ω 3 + K 3 ln A ω . (2.20) 
Let u 1 < u 2 < . . . denote the sequence of points of local maxima of the modulus |J (-u)|: u k → +∞, as k → ∞. Proposition 2.12 For every ∈ Z, a 0 > 0 and every k large enough dependently on , a 0 , for every a ∈ (0, a 0 ] there exists a w k = w k (a) ∈ (u k , u k+1 ) such that (a, w k ) ∈ Constr . Proof In the coordinates (a, s) inequalities (2.18), (2.19) and (2.20) can be rewritten for r = respectively as up to a known constant factor, see asymptotic formula for J (s), as s → +∞, in [57, section 7.1, p. 195]. Therefore, they dominate the right-hand sides in (2.22) and (2.23). This together with (2.22), (2.23) implies that for every k large enough, set

| a | + 1 ≤ ξ 1 a √ s, s ≥ ξ 2 , (2.21) aG ,0 ( s a ) -+ aJ (-s) ≤ a s K 1 + K 2 a 3 + K 3 ln(s) , (2.22) aG ,π ( s a ) --aJ (-s) ≤ a s K 1 + K 2 a 3 + K 3 ln(s) . ( 2 
A k = u k a , ω = a -1 , G ,0 (A k ) = ω -J (-u k )(1 + o(1)), G ,π (A k ) = ω + J (-u k )(1 + o(1)),
as k → ∞, uniformly in ω > a -1 0 , i.e., uniformly in a ∈ (0, a 0 ]. This implies that the difference ∆(A) := G ,π (A) -G ,0 (A) has the same sign, as J (-u k ), at A = A k , whenever k is large enough, for every a ∈ (0, a 0 ]. The extrema u k are intermittent maxima and minima of the function J (-u), and the values J (-u k ) have intermittent signs. Therefore, the same holds for the above differences ∆(A k ). Thus, for every k large enough the function ∆(A) has at least one zero W k lying between A k and A k+1 . The latter zero corresponds to an intersection point of the boundaries ∂L ,0 , ∂L ,π . The latter intersection point is a constriction of the phase-lock area L . Hence, its abscissa is equal to ω, by [8, theorem 1.4]. Finally, we have shown that for every k large enough for every a ∈ (0, a 0 ], set w k = w k (a) := aW k , the corresponding point (a, w k ) lies in the constriction submanifold Constr . One has w k ∈ (u k , u k+1 ), by construction. Proposition 2.12 is proved.

2

The family of points (a, w k (a)) from Proposition 2.12 with a ∈ (0, a 0 ] accumulates to a point (0, w * k ), w * k ∈ [u k , u k+1 ]. Thus, the manifold Constr has infinitely many limit points (0, w * k ). This proves Proposition 2.10. 2

Proposition 2.13 Let β ,k = (0, s ,k ) lie in Constr ⊂ R 2 a,s . Then β ,k+1 = (0, s ,k+1 ) also lies in the manifold Constr , and the germ of Constr at β ,k+1 is the image of its germ at β ,k under the Poincaré map P. If in addition, k ≥ 2, then β ,k-1 also lies in Constr , and its germ at β ,k-1 is the image of its germ at β ,k under the inverse P -1 .

Proof The Poincaré map P sends β ,k to β ,k+1 , by Proposition 2.9, Statement 3). It sends the germ of the manifold Constr at β ,k to its germ at β ,k+1 . Indeed, it preserves and the conjugacy class of the underlying dynamical system on torus, and hence, property of dynamical system to have identity Poincaré map. Therefore, it preserves the property to be a constriction, by Proposition 1.30. This implies the first statement of the proposition, on the map P. Its second statement, on P -1 , is proved analogously.

2

Proof of Theorems 1.17 and 1.23. An intersection point from Proposition 2.10 is some of the β ,k = (0, s ,k ) (Proposition 2.2). It is a regular point of the submanifold Constr , and it is unique intersection point of its component passing through β ,k with the s-axis. Their intersection is orthogonal. The component is projected to the whole a-axis. These statements follow from Lemma 2.1. All the β ,k are intersection points. This follows from Proposition 2.13. Theorem 1.17 is proved. Theorem 1.23 follows from Theorem 1.17 and Propositions 2.9, 2.13. 2

2.5 Conjectures 1.6 and 1.7. Proof of Proposition 1.18

Proof of Proposition 1.18. Let C be a connected component of the submanifold Constr ⊂ (R 2 + ) a,s . The coordinate a = ω -1 is unbounded from above on C, see [8, theorem 1.12]. Therefore, its projection to the asemiaxis is a semi-infinite interval (a 0 , +∞). Let now a be bounded on a semicurve C -of the curve C. The semicurve C -should tend to "infinity"

R 2 + , since C is a submanifold in R 2 + : a closed subset in R 2
+ that is locally a submanifold. Therefore, either C -has a limit point in the positive s-axis, or s tends to infinity along the semicurve C -(Theorem 1.17). In the first case one has C = C ,k for some k, by Theorem 1.17. The second case is impossible, by [8, proposition 4.13]. Finally, C = C ,k . This proves Proposition 1.18. 2 Suppose now that the statement of Conjecture 1.7 is true for a given ∈ Z: each component C of the constriction submanifold Constr is bijectively projected onto the a-semiaxis. Then C is continuously parametrized by a ∈ R + , and hence, a is bounded on at least one side of the curve C. Therefore, C = C ,k for some k, by Proposition 1.18. Hence, the statement of Conjecture 1.6 holds. Thus, Conjecture 1.7 implies Conjecture 1.6.

Constriction curves and components of three-dimensional

phase-lock areas. Proof of Theorem 1.5 and Corollary 1.20

In the proof of Theorem 1.5 and Corollary 1.20 we use the following theorem and lemma.

Theorem 2.14 [8, theorem 1.7] For every ω > 0 and r ∈ Z each constriction (B 0 , A 0 ) in the corresponding two-dimensional phase-lock area L r (ω) is positive, that is, there exists a neighborhood

U = U (A 0 ) ⊂ R such that the punctured interval B 0 × (U \ {A 0 }) lies in Int(L r (ω)).
Proof of Theorem 1.5. Fix some r ∈ Z and ω > 0. Consider the line Λ := {a = ω -1 } ⊂ R 2 a,s . We will identify its points with their s-coordinates. For every point x = (B 0 , A 0 ; ω) ∈ Int(L r ) consider those constrictions in ∂L r (ω) that lie below x, i.e., with A < A 0 . Let us denote their subset by Constr r,x . Let C max ∈ Constr r,x denote the upper of them; set

s max := s(C max ) = A(Cmax) ω
. The constrictions in Constr r,x correspond to intersection points of the segment [0, s max ] ⊂ Λ with constriction curves (treated as components of the constriction submanifold Constr r ). To each constriction η ∈ Constr r,x we assign its multiplicity, which is equal to the index of the intersection Constr r ∩ Λ at η. For each constriction curve C let n(C, x) ∈ {0, 1} denote the sum of multiplicities of those constrictions in Constr r,x (taken modulo two) that lie in C. To each point x ∈ Int(L r ) we put into correspondence its code: code(x) := the collection of those constriction curves C for which n(C, x) = 1, i.e., the collection of those constriction curves that contain odd number of constrictions (with multiplicities) lying in Constr r,x .

Proposition 2.15 For every r ∈ Z the code is constant on each connected component of the three-dimensional phase-lock area L r .

Proof As a point x moves continuously inside Int(L r ), the constrictions of the two-dimensional phase-lock area L r (ω(x)) lying below x either remain the same, or some new constrictions are born, or some of them disappear2 . A birth of constrictions comes from a tangency point of the line {a = ω -1 (x)} ⊂ R 2 a,s with a constriction curve C. The number of new constrictions born from a tangency point is obviously even, and all of them lie in C. Therefore, birth of new constrictions does not change the code. The case of disappearance of constrictions is treated analogously. 2

Proposition 2.16 1) For every r ∈ Z, N ∈ N there exists a small ε > 0 such that for every a 0 ∈ (0, ε) the line Λ = {a = a 0 } ⊂ R 2 a,s intersects each one of the curves C r,k , k = 1, . . . , N , transversally at a point x k = x k (a 0 ) close to β r,k so that x 1 , . . . , x N are the only points of intersection of the segment I := {a 0 } × [0, x N + ε] with the constriction manifold Constr r .

2) For every k = 1, . . . , N let us identify x k with the corresponding constriction of the two-dimensional phase-lock area L r (ω), ω = a -1 0 . On the component of Int(L r (ω)) adjacent to x k from above the code is identically equal to (C 1 , . . . , C k ).

The proposition follows immediately from Theorem 1.17. It implies that for every r ∈ Z infinitely many different codes are realized by points of the interior of the three-dimensional phase-lock area L r . Therefore, Int(L r ) consists of infinitely many components. Theorem 1.5 is proved.

2

Proof of Corollary 1.20. Statement (i) of Corollary 1.20 follows from Proposition 1.18. There exists a domain V ⊂ U C adjacent to C such that the corresponding subset V ⊂ {B = ω}, see (1.17), lies in a connected component of Int(L ). Indeed, take an arbitrary a 0 > 0 such that the line Λ = {a = a 0 } intersects C transversally in at least one point x. There exists a semi-interval J(x) ⊂ Λ adjacent to x such that J(x) lies both in U C and in the two-dimensional phase-lock area L (ω(x)), ω(x) = a -1 0 (positivity of constrictions, see Theorem 2.14, and transversality). We take the above interval J to be the maximal one. The domain V we are looking for is the union of the intervals J(x) for all the points x of transversal intersection Λ∩C. The corresponding subset V ⊂ {B = ω} lies in a connected component of the three-dimensional phase-lock area Int(L ). Let us denote the latter component by Comp(V ). Let us show that it is adjacent to no curve C k .

Making the intersection C ∩ Λ transversal (by choosing a generic a 0 ) and taking the above x to be the lower point of the latter intersection, we get that J (x) is a vertical line interval adjacent to x from above. The code of every its point contains the curve C, by construction. Thus, the code of each point in V contains C. On the other hand, we have the following Proposition 2.17 On each component in Int(L ) adjacent to a constriction curve C ,k , the code can contain no queer constriction curve C.

Proof Fix a component W adjacent to C ,k of the interior Int(L ). There exists a domain S ⊂ R 2 a,s adjacent to C ,k such that the corresponding subset S ⊂ {B = ω } ⊂ R 3 B,A;ω , see (1.17), lies in W . This is proved analogously to the above proof of a similar statement on the subset V ⊂ U C , see the beginning of the proof of Corollary 1.20. For every x ∈ S the corresponding point ( a -1 (x), s(x) a(x) ; a -1 (x)) ∈ S ⊂ W will be identified with x and also denoted by x. Fix a queer constriction curve C (if any). We have to show that the code of every x ∈ W does not contain C. It suffices to prove this statement just for some x ∈ W . Taking x ∈ S to be close enough to the endpoint β ,k of the curve C ,k , we can achieve that the segment in the vertical line Λ = {a = a(x)} connecting x with its projection to the a-axis does not intersect C. This follows from the assumption that C is queer (hence, accumulates to no point of the s-axis, by Theorem 1.17). Then the code of the point x does not contain C, which follows from definition. Proposition 2.17 is proved.

2

The component in Int(L ) containing V is adjacent to no curve C ,k , since its code contains C (Proposition 2.17). This proves Corollary 1.20. 2 2.7 Background material. Linear systems with irregular singularities: Stokes phenomena and isomonodromic deformations

Irregular singularities and Stokes phenomena

The following material on irregular singularities of linear systems and Stokes phenomena is contained in [START_REF] Arnold | Ordinary differential equations. In: Dynamical Systems I[END_REF][START_REF] Balser | A general theory of invariants for meromorphic differential equations. I. Formal invariants[END_REF][START_REF] Balser | Birkhoff invariants and Stokes' multipliers for meromorphic linear differential equations[END_REF][START_REF] Ilyashenko | Galois groups, Stokes operators, and a theorem of Ramis[END_REF][START_REF] Jurkat | Birkhoff invariants and effective calculations for meromorphic linear differential equations[END_REF][START_REF] Sibuya | Stokes phenomena[END_REF]. Consider a two-dimensional linear system

Y = K z 2 + R z + O(1) Y, Y = (Y 1 , Y 2 ) ∈ C 2 , (2.24) 
on a neighborhood of 0. Here K and R are complex 2 × 2-matrices, K has distinct eigenvalues λ 1 = λ 2 , and O( 1) is a holomorphic matrix-valued function on a neighborhood of 0. Then we say that the singular point 0 of system (2.24) is irregular non-resonant of Poincaré rank 1. The matrix 

K is conjugate to K = diag(λ 1 , λ 2 ), K = H -1 KH, H ∈ GL 2 (C),
Y = K z 2 + R z Y , K = diag(λ 1 , λ 2 ), R = diag(b 1 , b 2 ), (2.25) 
R is the diagonal part of the matrix H -1 RH.

(2.26)

The matrix coefficient K in system (2.24) and the corresponding matrix K in (2.25) are called the main term matrices, and R, R are residue matrices. However the normalizing series H(z) generically diverges. At the same time, there exists a covering of a punctured neighborhood of zero by two sectors S 0 and S 1 with vertex at 0 in which there exist holomorphic GL 2 (C)-valued matrix functions H j (z), j = 0, 1, that are C ∞ smooth on S j ∩ D r for some r > 0, and such that the variable changes Y = H j (z) Y transform (2.24) to (2.25). This Sectorial Normalization Theorem holds for the so-called Stokes sectors. Namely, consider the rays issued from 0 and forming the set Let W (z) = diag(e -λ 1 z z b 1 , e -λ 2 z z b 2 ) denote the canonical diagonal fundamental matrix solution of the formal normal form (2.25). The matrices X j (z) := H j (z)W (z) are fundamental matrix solutions of the initial equation (2.24) defining solution bases in S j called the canonical sectorial solution bases. Here we choose the branches W (z) = W j (z) of the matrix function W (z) in S j so that W 1 (z) is obtained from W 0 (z) by counterclockwise analytic extension from S 0 to S 1 . And we define the branch W 2 (z) of W (z) in S 2 := S 0 obtained from W 1 (z) by counterclockwise analytic extension from S 1 to S 0 . This yields another canonical matrix solution X 2 (z) := H 0 (z)W 2 (z) of system (2.24) in S 0 , which is obtained from X 0 (z) by multiplication from the right by the monodromy matrix exp(2πi R) of the formal normal form (2.25). Let S j,j+1 denote the connected component of intersection S j+1 ∩ S j , j = 0, 1, that is crossed when one moves from S j to S j+1 counterclockwise, see Fig. 5. The transition matrices C 0 , C 1 between thus defined canonical solution bases X j , Remark 2.20 Let M f denote the formal monodromy of system (2.24): the monodromy matrix diag(e 2πib 1 , e 2πib 2 ) of its formal normal form (2.25) with respect to a diagonal fundamental matrix solution W (z). Let M denote the monodromy matrix of system (2.24) written in the basis given by the fundamental matrix solution X 0 (z). It is well-known, see [32, p.35], that

{Re λ 1 -λ 2 z = 0}. ( 2 
X 1 (z) = X 0 (z)C 0 on S 0,1 ; X 2 (z) = X 1 (z)C 1 on S 1,2 , (2.28 
M = M f C -1 1 C -1 0 .
(2.29)

Isomonodromic deformations

We will deal with linear systems on C of the type

Y = K z 2 + R z + N Y, Y ∈ C 2 , (2.30) 
where K, R, N are complex 2×2-matrices such that each one of the matrices K, N has distinct eigenvalues. Let λ ∞1 , λ ∞2 denote the eigenvalues of the matrix N . System (2.30) has two nonresonant irregular singular points of Poincaré rank 1: at the origin and at infinity. Namely, the variable change z = 1 z transforms the infinity in z-coordinate to the origin in z-coordinate, and system (2.30) is transformed to a linear system with irregular singular point at the origin in the z-coordinate. The corresponding Stokes rays, i.e., Stokes rays "at infinity" of initial system (2.30), are given by the equation Re((λ ∞2 -λ ∞1 )z) = 0 (2.31)

For every p = 0, ∞ let S p0 , S p1 be Stokes sectors of system (2.30) at the singular point p. Fix a point z 0 ∈ C * = C \ {0} and paths α p going from the point z 0 to some point in S p0 . Let X p0 (z) be the canonical sectorial fundamental matrix solutions of system (2.30) in sectors S p0 . Consider their analytic extensions to z 0 along the paths α -1 p . Thus obtained germs of fundamental matrix solutions X p0 (z) at z 0 depend only on the homotopy classes of the paths α p in the class of paths with fixed starting point z 0 and free endpoint lying in S p0 . Let Q denote the transition matrix between the fundamental matrix solutions X p0 , p = 0, ∞, near z 0 :

X ∞0 (z) = X 00 (z)Q. (2.32)
Let C p0 , C p1 denote the Stokes matrices at p defined by the sectorial matrix solutions X p0 (z).

Remark 2.21 When we renormalize X p0 (z) by multiplication from the right by diagonal matrix D p (which means similar renormalization of the corresponding branch of diagonal fundamental matrix solution W (z) = W p (z) (defining X p0 ) of formal normal form at p), this transforms the initial Stokes matrix collections and transition matrix Q to 

C pj = D -1 p C pj D p , Q = D -1 0 QD ∞ . Definition 

Extension of solutions. Proof of Theorem 1.24

The first step of the proof of Theorem 1.24 is the following proposition.

Proposition 2.24 Fix an ∈ C and a path α : [0, 1] → C * from a point s * to a point s 0 ; s * , s 0 ∈ C * . Let a solution (χ(s), a(s)) of system (1.10) extend holomorphically to every α(t), t ∈ [0, 1), along the path α : [0, t] → C * , but do not extend to s 0 = α(1) along the path α. Let w(s) = a(s) 2sχ(s) be the corresponding solution of Painlevé 3 equation (1.12). Then one of the two following statements holds:

(i) either w(s 0 ) = 0 and w (s 0 ) = 1; in this case a(s) is holomorphic at s 0 , a(s 0 ) = ±s 0 , and χ(s) has a simple pole at s 0 with residue ± 1 2 ; (ii) or w(s) has a simple pole at s 0 with residue -1; in this case a(s) is meromorphic near s 0 and has a simple pole with residue ±s 0 at s 0 ; χ(s) is holomorphic near s 0 and χ(s 0 ) = ∓ 1 2 . Proof The variable change u = χ -1 transforms system (1.10) to

u s = 1 2s (-au 2 + 2 u + 4a) a s = 2 us (a 2 -s 2 ) + a s (2.33)
Therefore, differentiating the formula 

w(s) = a(s) 2sχ(s) = a(s)u(s) 2s ( 2 
(s) = a 2 (s) 4s 2 w 2 (s) . 2 
At least one of the values χ(s 0 ), a(s 0 ) should be infinite: otherwise, the solution (χ(s), a(s)) would be holomorphic at s 0 , by Existence and Uniqueness Theorem for ODEs.

Case 1): w(s) is holomorphic at s 0 . This together with (2.35) implies that a 2 (s) is holomorphic at s 0 . Thus, a(s 0 ) is finite, hence χ(s 0 ) = ∞, see the above discussion. Therefore, u(s) and w(s) = a(s)u(s) 2s vanish at s = s 0 . Every solution of Painlevé 3 equation (1.12) has derivative ±1 at each its zero. This is well-known and follows directly from (1.12): the polar part of its right-hand side at a zero of w(s) comes from (w ) 2 w -1 w , and it should cancel out. Now equalities w(s 0 ) = 0, w (s 0 ) = ±1 together with (2.35) imply that either a(s 0 ) = ±s 0 if w (s 0 ) = 1, or a(s 0 ) = 0 if w (s 0 ) = -1. In the second case the functions a 2 (s), u 2 (s) are both holomorphic (Proposition 2.25) and both vanish at s 0 . One has a(s) = c √ s -s 0 (1+o(1)), u(s) = -2sc -1 √ s -s 0 (1 + o(1)), as s → s 0 , due to the latter statement and the asymptotics w(s) = a(s)u(s) 2s = -(s -s 0 )(1 + o(1)). But the above asymptotics of the function u(s) contradicts the first equation in (2.33): the left-hand side should tend to infinity, as s → s 0 , while the right-hand side doesn't. Thus, the second case is impossible. Hence, w(s 0 ) = 0, w (s 0 ) = 1, a(s 0 ) = ±s 0 = 0, and a 2 (s) is holomorphic at s 0 (Proposition 2.25). Hence, a(s) is holomorphic at s 0 . This together with holomorphicity of w(s) and equality w(s) = a(s)u(s) 2s = (s -s 0 )(1 + o(1)) implies holomorphicity of the function u(s), the equalities u(s 0 ) = 0, u (s 0 ) = ±2 and Statement (i) of Proposition 2.24.

Case 2): w(s) has a pole at s 0 . Then this pole is simple with residue ±1, see [28, p.158]. In the case, when the sign is +, one has w(s) = 1 s -s 0 + 2 -1 2s 0 + O(s -s 0 ), (2.36) see [28, p.158]. This together with equation (2.35) implies that the Laurent series polar parts at s 0 of the w-terms in its left-and right-hand sides are equal, and hence, a 2 (s) is holomorphic at s 0 . This together with (2.34) implies that u(s) → ∞, hence, χ(s) → 0, as s → s 0 . Finally, the point (χ(s 0 ), a(s 0 )) is finite, -a contradiction. Thus, the residue of the function w(s) at s 0 is equal to -1. This together with (2.35) implies that the function a 2 (s) is meromorphic near s 0 with order two pole at s 0 and asymptotics a 2 (s) = s 2 0 (s -s 0 ) 2 (1 + o(1)), as s → s 0 .

Hence, a(s) is meromorphic near s 0 and has simple pole with residue ±s 0 at s 0 . Together with (2.34), this implies that χ(s) is holomorphic near s 0 and χ(s 0 ) = ∓ 1 2 . Statement (ii) of Proposition 2.24 is proved. 2

Proof of Theorem 1.24. Statements 1) and 2) of Theorem 1.24 follow from Proposition 2.24. Let us prove its Statement 3). A solution (χ(s), a(s)) of (1.10) yields an isomonodromic family of linear systems (1.15), see [8, theorem 6.6]. Therefore, there exist analytic families X 00 (z, s), X ∞0 (z, s) of sectorial matrix solutions in Stokes sectors S 00 , S ∞0 of systems (1.15) with χ = χ(s), a = a(s) (S p0 = S p0 (s) depend on s for p = 0, ∞) such that -the Stokes matrices at the origin and at infinity defined by X p0 (z, s), p = 0, ∞, remain constant (independent on s);

-the transition matrix Q, X ∞0 (z, s) = X 00 (z, s)Q, see (2.32), between analytic extensions to z 0 = 1 of the fundamental matrix solutions X p0 along paths α -1 p = α -1 ps ⊂ C * (depending continuously on s) is also constant. As s is changed, the Stokes sectors turn and the paths α ps defining the above analytic extension are deformed continuously (homotopied with fixed starting point z 0 and free endpoints lying in variable sectors S 00 , S ∞0 ). As s makes complete tour around the origin, both sectors S 00 , S ∞0 make complete tours, but in opposite directions: see (2.27), (2.31). The system corresponding to the analytic extension of the solution (χ(s), a(s)) along the circuit in question has the same formal normal forms and Stokes matrices at zero and at infinity (for appropriately normalized canonical sectorial solutions in S p0 ). But the homotopy classes of the paths defining the (unchanged) transition matrix are changed. Proposition 2.26 Let a system (1.15) have trivial monodromy. Then the corresponding transition matrix Q given by (2.32) is path-independent: it depends only on the normalization of canonical sectorial fundamental matrix solutions in S p0 by multiplication by diagonal matrices.

Proof Each solution of system (1.15) in question is holomorphic on C * , by triviality of monodromy. This implies that the result of its analytic continuation along a path α from some point to z 0 is independent on its homotopy class in the class of paths in C * with fixed endpoints. Therefore analytic extension of each matrix solution X p0 to z 0 , and thus, the transition matrix Q, are path-independent. 2 Remark 2.27 As was shown in [8, proposition 4.6], triviality of monodromy of a system (2.30) (in particular, of a system (1.15)) implies triviality of its Stokes matrices and formal monodromies at both singular points 0 and ∞.

Let the initial condition (χ * , a * , s * ) correspond to a system (1.15) with trivial monodromy. Consider the corresponding solution (χ(s), a(s)) of system (1.10), which yields an isomonodromic deformation of linear system in question. As s makes a circuit around the origin, the initial condition (χ * , a * , s * ) is transformed to another triple ( χ, a, s * ) corresponding to a system (1.15) with trivial monodromy, the same Stokes sectors S pj , p = 0, ∞, j = 0, 1 (they are completely defined by s * , which remains the same) and the same transition matrix Q, which is path-independent (Proposition 2.26). extension along a simple counterclockwise circuit in C * s around the origin. This follows from Statement 4). It remains to show that the solution is singlevalued. Indeed, suppose the contrary: it has sign-reversing monodromy for certain (a * , s * ) ∈ C ,k . Then it has sign-reversing monodromy for every (a * , s * ) ∈ C ,k , by continuity and connectivity of the curve C ,k . In particular, this holds for (a * , s * ) ∈ C ,k arbitrarily close to β k = (0, s ,k ). Passing to the rescaled coordinates ( y 1 , y 2 ), (χ, a) := (a * y 1 , a * y 2 ), and taking the limit of thus rescaled system (1.10) and the solution in question with χ(s * ) = 0, a(s * ) = a * , as (a * , s * ) → (0, s ,k ), we get linear system (2.15) and its solution y = (y 1 , y 2 )(s) with y(s ,k ) = (0, 1). The limit solution y(s) should also have sign-reversing monodromy, by construction. Hence, -1 is an eigenvalue of the monodromy operator of system (2.15). But its monodromy operator is unipotent: its eigenvalues are equal to exponent of (2πi times the eigenvalues of its residue matrix at the origin); the residue eigenvalues are ± ∈ Z. The contradiction thus obtained finishes the proof of Theorem 1.24.
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Figure 1 :

 1 Figure 1: Phase-lock areas and their constrictions for ω = 1. The abscissa is B, the ordinate is A. Figure taken from paper [13, fig. 1b)] with authors' permission, with coordinate axes added.

Figure 2 :

 2 Figure 2: Phase-lock areas and their constrictions for ω = 0.5. Figure taken from papers [13, fig. 1d)], [20, p. 331] with authors' permission, with coordinate axes added.

Figure 3 :

 3 Figure 3: Phase-lock areas and their constrictions for ω = 0.3. Figure taken from paper [13, fig. 1e)] with authors' permission, with coordinate axes added.

It appears that system ( 1 . 10 )

 110 is equivalent to the Hamiltonian equation with the Okamoto Hamiltonian function H Ok via the variable change (w, p) = G(χ, a) := ( a 2χs , 4sχ 2 ).

. 4 ) 1 .

 41 θ -a sin θθ a . (2.3) Substituting a = 0 and θ = f (τ ), see (2.2), to (2.3) and integrating (2.3) with the initial condition θ a | τ =0 = 0 yields θ a (τ ) = 0 + τ + s sin τ )dτ. (2Claim If (0, y) is an accumulation point of the set Constr , then ∂h ,a,y ∂a (θ 0 )| a=0 = 0 for every θ 0 ∈ S 1 .

2 Proposition 2 . 3

 223 τ + y sin τ )dτ = 0; 2π 0 sin( τ + y sin τ )dτ = 0, (2.6) by (2.4) and cosine addition formula. The second identity in (2.6) holds automatically, since the function sin(x) is odd and 2π-periodic. The first integral in (2.6) is equal to 2π 0 cos( τ + y sin τ )dτ = 2 π 0 cos( τ + y sin τ )dτ = 2πJ (-y), see (1.16), since the function cos(x) is even and 2π-periodic. One has J (-x) = (-1) J(x), see [57, section 2.1, formula (2)]. Thus, (2.5) is equivalent to the equality J (y) = 0. This together with Claim 1 proves Proposition 2.2. Let y ∈ R + be such that β = (0, y) is an accumulation point of the submanifold Constr . Then the germ at β of the subset Constr is a germ of regular curve orthogonal to the s-axis.
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 2 

2. 2

 2 Bessel type solutions of Painlevé 3 equation Theorem 2.5 [21, Section 10, Chapter 12] For every ∈ R the corresponding Painlevé 3 equation (1.12) admits a one-parameter family of solutions of type

Proposition 2 . 8

 28 Let Π ⊂ C 4 denote the strict transform of the hyperplane {χ = 0} (which corresponds to complexified model of Josephson junction) under the above blow up. 1) System (1.10) lifts to a well-defined line field V on C 4,0 := C 4 \ {s = 0} : a non-autonomous ordinary differential equation on C × C 2 -valued function in s with constant -component. The exceptional divisor Σ is tangent to the line field V. Its intersection with Π is the plane C

Proposition 2 . 10

 210 The submanifold Constr ⊂ R 2 intersects the s-axis in at least one point (in fact, at an infinite number of points) with positive ordinate.

. 23 )

 23 For every k large enough the value s = u k satisfies inequality (2.21) for all a ∈ (0, a 0 ]. Substituting s = u k to the right-hand side in (2.22) transforms it to a sequence of functions of a ∈ (0, a 0 ] with uniform asymptoticsa(O( 1 u k ) + O( ln u k u k )),as k → ∞. The values |J (-u k )| are known to behave asymptotically as 1 √ u k

Example 2 .Figure 5 :

 25 Figure 5: Stokes sectors in the case, when λ 1 -λ 2 ∈ R.

  .17) Corollary 1.20 Let ∈ Z. Every queer constriction curve C ⊂ Constr (a component different from C ,k 's, if any) satisfies the following statements: (i) The coordinate function a is unbounded from above on both sides of C (i.e. on both semicurves in C separated by one point);

  and Theorem 1.24. 2 Corollary 1.27 All the iterates of the Poincaré map P are defined at a given point ( , 0, a 0 , s 0 ), if and only if the corresponding solution w(s) of Painlevé 3 equation (1.12) has an infinite sequence of real positive poles with residue 1 going to +∞, no pole ŝ > s 0 with residue -1 and no zero s

* > s 0 with unit derivative.

Problem 1.28 Describe those ( , 0, a 0 , s 0 ) ∈ Jos o for which w(s) has an infinite sequence of real positive poles with residue 1 going to +∞ and no zero s * > s 0 with unit derivative. Remark 1.29 Existence of an open subset of initial conditions for Painlevé 3 equation (1.12) for which w(s) has an infinite sequence of real positive poles with residue 1 going to +∞ follows from [2, theorem 3.1] (implying an analogous statement on zeros of solutions of Painlevé 5 equations) and Novokshenov's Backlund transformation argument [49]. This holds, for example, for the real Bessel type solutions, which have the type w(s) = d(s v(s)) ds s v(s)

  and one can achieve that K = K by applying the constant linear change (gauge transformation) Y = H Y.Recall that two systems of type (2.24) are analytically equivalent near the origin, if one can be transformed to the other by linear space coordinate change Y = H(z) Y , where H(z) is a holomorphic GL 2 (C)-valued function on a neighborhood of the origin. Two systems (2.24) are formally equivalent, if the above H(z) exists in the class of invertible formal power series with matrix coefficients. System (2.24) is formally equivalent to a unique formal normal form

  .27) They are called imaginary dividing rays or Stokes rays. A sector S j is called a Stokes sector, if it contains one imaginary dividing ray and its closure does not contain the other one.

  ) are called the Stokes matrices.Remark 2.18 A priori, the canonical fundamental matrix solution W (z) of the formal normal form does not necessary have a single-valued branch, since the exponents b k may be non-integer. A diagonal fundamental matrix solution W (z) is uniquely defined up to multiplication by diagonal matrix. This renormalization of the matrix W (z) in the above construction transforms the initial Stokes matrix pair to a new Stokes matrix pair obtained from the initial one by conjugation by one and the same diagonal matrix. It is well-known that two germs of linear systems of type (2.24) are analytically equivalent, if and only if they have the same formal normal form and their Stokes matrix pairs are conjugated by the same diagonal matrix (i.e., can be normalized to be the same).

  2.22 [22, definition 4.2]. A continuous family of linear systems of type(2.30) is isomonodromic, if one can choose a continuous family of canonical fundamental matrix solutions X p0 (z) at z 0 defined by continuous families of Stokes sectors S p0 and paths α p so that the monodromy matrix in the basis given by X 00 , the Stokes matrices C pj and the transition matrix Q remain the same.Remark 2.23 Isomonodromicity is equivalent to the condition saying that the formal monodromies M f p at singular points p, the Stokes matrices and the transition matrix remain the same: see (2.29). In a continuous family of linear systems (2.30) constance of formal monodromies is equivalent to constance of residue matrices of formal normal forms. It is well-known that if an isomonodromic family of linear systems depends analytically on a parameter lying in a simply connected domain in a complex manifold, then the corresponding fundamental matrix solutions from the above definition can be normalized to depend analytically on the parameter. See [11, theorem 13.1 and its proof] for the Fuchsian case; in the case of irregular singularities the proof is analogous.

  Proposition 2.25 Let α, s 0 and (χ(s), a(s)) be the same, as in the conditions of Proposition 2.24. Then both χ 2 (s) and a 2 (s) are meromorphic on a neighborhood of the point s 0 .

											.34)
	yields									
	w =	1 2s	(	1 2s	(-a 2 u 2 + 2 au + 4a 2 ) +	2 s	(a 2 -s 2 ) +	au s	) -	au 2s 2
					=	2a 2 s 2 -1 +	(2 -1)w s	-w 2 .	(2.35)
	Proof Meromorphicity of the function a 2 (s) near s 0 follows from equation
	(2.35) and meromorphicity of the function w(s) on the universal cover over
	C * s (Painlevé property). This together with (2.34) implies meromorphicity
	of the function χ 2						

There is a misprint, missing

2π in the denominator, in analogous formulas in previous papers of the author with co-authors: [25, formula (2.2)], [13, the formula after(1.16)].

Conjecture 1.7 implies that as ω varies continuously, birth (disappearance) of constrictions is impossible.
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Proposition 2.28 Systems (1.15) corresponding to the above (χ * , a * , s * ) and ( χ, a, s * ) either coincide, or differ by sign of the two first cordinates: χ = -χ * , a = -a * . Or equivalently, the corresponding systems (1.15) either are the same, or are transformed one to the other by the constant diagonal gauge transformation Y → diag(1, -1)Y .

Proof The paths defining the transition matrix Q for the new system can be chosen the same, as for the initial system (Proposition 2.26). Therefore, taking appropriate normalization of the sectorial matrix solutions X 00 , X ∞0 for each system one can achieve equality of the transition matrices. The Stokes matrices are trivial (Remark 2.27). The formal normal forms of both systems at each singular point are the same. Indeed, they are completely defined by s and the residue matrix eigenvalue , which are the same for both systems, since is independent on s (see also Remark 2.23). Therefore, the formal normal forms, the Stokes and transition matrices of both systems are the same for appropriate normalizations of the sectorial matrix solutions X p0 (z), p = 0, ∞. This together with [34, proposition 2.5, p.319] implies that the systems are gauge equivalent: this means that there exists a matrix H ∈ GL 2 (C) such that the variable change Y → HY transforms one linear system to the other. Conjugation by the matrix H should preserve the opposite triangular forms of the matrices K and N . Therefore, H is diagonal, since each one of the latter matrices has distinct eigenvalues. Moreover, conjugation by H should preserve equality of opposite off-diagonal terms χ of the matrices K and N . This implies that the ratio of its eigenvalues is a square root of unity, and H = diag(1, ±1) up to scalar factor. Then one has ( χ, a) = (±χ * , ±a * ). This proves Proposition 2.28.

2

Proposition 2.28 implies (together with Statement 1) of Theorem 1.24) that the solution (χ(s), a(s)) of (1.10) with initial conditions corresponding to a system (1.15) with trivial monodromy either is meromorphic on C * , or changes sign after analytic extension along a simple circuit around the origin. Therefore, the latter analytic extension does not change the ratio w = a 2sχ . Thus, w(s) is meromorphic on C * . Statement 3) of Theorem 1.24 is proved.

Statement 3) holds for every initial condition (0, a * , s * ) such that (a * , s * ) ∈ Constr , since it corresponds to a linear system with trivial monodromy: for every constriction (B, A; ω) the corresponding linear system (1.15) with χ = 0, = B ω , s = A ω , a = ω -1 has trivial monodromy, see [8, proposition 4.1]. This proves Statement 4).

Let us now prove Statement 5). Let (0, a * , s * ) be an initial condition with (a * , s * ) ∈ C ,k for some k ∈ N. The corresponding solution (χ(s), a(s)) is either meromorphic single-valued on C * , or meromorphic double-valued with sign-reversing monodromy. This means that it changes sign after analytic