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ABSTRACT

3D Point Clouds (PCs) have become a valuable tool for repre-
senting intricate 3D information. Assessing the quality of PCs
remains a challenging task, especially when striving for optimal
immersive experiences. This paper introduces a novel metric
and training approach that leverages projection-based views to
evaluate the quality of 3D content. Our approach addresses a
critical issue related to the intrinsic bias of deep networks for
image recognition towards building hierarchical representations
including only the global semantic, at the expense of local de-
tails. This bias is a limiting factor in tasks like 3D point cloud
quality assessment where instances of the same content with
varying degrees and types of degradation can possess strikingly
similar representations. We propose a novel point cloud quality
metric using a dual supervised and unsupervised training strat-
egy to balance semantic understanding and preservation of criti-
cal perceptual quality-relevant information. The results demon-
strate the effectiveness and reliability of our solution compared
to state-of-the-art metrics on two standard 3D PCs quality as-
sessment benchmarks (3D PCQA). The source code is available
at https://github.com/mtliba/PQCA-ICASSP2024

Index Terms— 3D Point Clouds, Image Quality Assess-
ment, Representation Learning , Self-Supervised Learning.

1. INTRODUCTION
In recent years, the widespread adoption of 3D imaging tech-
nologies and 3D Point Clouds (PCs) [1] has stimulated the de-
velopment of applications such as augmented reality and the
metaverse [2], offering enhanced detail and realism [3]. How-
ever, these point clouds often suffer degradations during acqui-
sition and transmission, and require in practice lossy compres-
sion to manage storage and bandwidth constraints. This makes
reliable no-reference quality metrics crucial for ensuring real-
time immersive experiences. While subjective tests remain the
gold standard for evaluating 3D PCs quality, they typically in-
volve subjects viewing 2D projections of the PCs [4, 5]. Inte-
grating this practice to develop a No-reference metric serves a
dual purpose: it mirrors the subjective assessment setup for ob-
taining the ground truth Mean Opinion Score (MOS) and lever-
ages deep learning techniques developed for 2D images, facili-
tating advancements in objective 3D Quality Measurements.

To this end, various objective metrics have been developed

for 3D Point Clouds Quality Assessment (PCQA). These meth-
ods can be categorized into three main groups: Point-based,
Feature-based, and Projection-based metrics. Point-based
metrics, including Point-to-Point (Po2Po) [6], Point-to-Plane
(Po2Pl) [7], Plane-to-Plane (Pl2Pl) [8], evaluate quality by
comparing geometric and feature distances between the ref-
erence and distorted point clouds. Feature-based metrics
analyze point-wise geometry and associated attributes, either
globally or locally. Examples include PCQM [9], a metric com-
bining geometry and color features; and PointSSMIM [10],
which explores the applicability of the Structural Similarity
(SSIM) index in higher-dimensional, irregular spaces.

The concept of Projection-based metrics involves the pro-
jection of a 3D point cloud onto a 2D plane to evaluate its
quality [11, 12, 13, 14, 15]. While this projection introduces
minor distortions, leveraging advancements in 2D computer vi-
sion remains a significant step forward [16, 17]. However, there
are limitations when applying deep networks designed for im-
age recognition in this context. The noise in projected point
clouds is relatively subtle and affects only a small portion of
the 2D plane. Moreover, the hierarchical, abstracted represen-
tations built by deep recognition models become problematic
for tasks like 3D PCQA. Conventional models tend to abstract
away from local information [17], resulting in a concerning
issue: images with various degradation levels and types can
have remarkably similar representations, making fine-grained
perceptual distinctions nearly impossible.

In this paper, we introduce a novel 3D PCQA metric trained
using an innovative strategy combining supervised and unsu-
pervised learning that effectively leverages deep recognition
models. This strategy comprises two key components: Max-
imizing Intermediate-Layer Similarity: We enhance the sim-
ilarity between intermediate layers and the final representation,
enriching the feature representation latent space with essential
low-level information crucial for quality assessment. Quality-
Driven Self-Supervised Loss: We introduce a tailored self-
supervised loss component to meet quality assessment require-
ments, achieved through the use of quality-invariant augmenta-
tions during training.

2. PROPOSED METHOD:
Our approach aims to create an innovative dual training strat-
egy for 3D PCQA using 2D projected views using supervised
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Fig. 1. Overview of our proposed framework for 3D Point Cloud Perceptual Quality prediction. The pipeline illustrates the
preprocessing, feature extraction, and quality estimation stages: the quality is obtained as the mean overall views.

and unsupervised learning. We focus on maintaining global
semantics while preserving important details. By maximiz-
ing intermediate-layer similarity with the global representation,
we ensure that crucial early-layer details are consistently rep-
resented and refined in the final output. Additionally, we use
self-supervised learning with random view rotations to main-
tain view semantics without affecting perceptual quality char-
acteristics. As depicted in Fig. 1, our method can be summa-
rized in the following steps: view projection, feature extraction,
and a novel training strategy.

2.1. 3D Point Cloud Views Projection

Our initial step involves converting distorted 3D point cloud
(PC) objects into various 2D viewpoints using perspective pro-
jection, simulating human visual perception during quality as-
sessment. We utilize multiple virtual cameras at various angles
to capture the PCs from different perspectives. The 3D object’s
centroid is marked as the origin of a spherical coordinate sys-
tem (r, θ, ϕ), where r represents the radius, adjusted based on
each PC’s dimensions for precise capture. θ and ϕ are elevation
and azimuth angles, respectively, ranging from [0, 2π]. The
virtual camera coordinates are systematically defined: azimuth
angles vary by π

3 , and elevation angles are assigned values of
0, π

5 , π
2.5 , −π

5 , and − π
2.5 . This setup results in five distinct

camera trajectories, each capturing six unique views, totaling
30 images for each distorted 3D point cloud. In summary,
given a 3D Point Cloud PC, we obtain rendered projections
as X = ψ(PC), where X is the set of 30 rendered projections
(xj , j = 1, . . . , 30), and ψ(·) represents the rendering process.

2.2. Feature Extraction

We employ the Swin Transformer [18] for feature extraction,
known for capturing long-range details and providing rich
hierarchical semantic representations. The model processes
input images, splitting them into non-overlapping patches. We
use the “Base” variant, dividing images into 4 × 4 patches,
embedding them into C equal to 128-dimensional vectors.

These patches go through stages with specific layer counts
{2, 2, 18, 2} to hierarchically extract features. During atten-
tion, a 12 × 12 window balances attention specificity and
computational efficiency. This choice of the Swin Transformer
aligns with our goal of preserving relevant details and main-
taining global context. Integrating its capabilities of capturing a
long range of dependencies with our novel training strategy, we
tackle the challenge of accentuating crucial low-level details
information, while retaining a global context for an effective
3D PCQA using 2D projection views.

2.3. Training Strategy

Our proposed dual training strategy consists of optimizing su-
pervised and unsupervised losses. The goal of the supervised
loss is to create a mapping function parameterized by θ that
captures the relationship between the feature representation la-
tent space f(X; θ) and the distribution of the subjective qual-
ity scores S, through a shallow Multi-Layer Perceptron (MLP).
Our supervised loss over n PCs is :

Lsupervised =
1

n× 30

n×30∑
j=1

∥MLP(f(xj ; θ))− Sj∥2 (1)

Our unsupervised loss plays a crucial role in shaping a
more robust feature representation latent space tailored for our
downstream task of PCQA, as illustrated in Fig. 2. This loss
function aims to maximize the similarity between intermediate
stages and the final representations, leveraging Negative Cosine
Similarity (NCS) loss as depicted in graphs (a) and (b) Fig. 2.
In graph (a), we align the intermediate stages with the final rep-
resentation, while in graph (b), we perform the reverse process.
Here, fi(x : θ) corresponds to the feature representation of each
stage i. It is worth noting that NCS here is applied between par-
tially shared networks, where f encapsulates the parameters of
fi, also, both f and fi are applied to the same input x and not
to an augmented version. Following [19, 20], each stage sim-
ilarity loss can be expressed as symmetrized NCS with a stop
gradient setting [20]:



Fig. 2. Illustration of our unsupervised loss strategy. Graphs (a) and (b) show the use of Negative Cosine Similarity (NCS) to align
intermediate and final representations. While (a) aligns intermediate stages to the final stage, (b) does the reverse, the dimension
adjustment map z i to the dimension of z. Graph (c) applies the Simsiam loss on a projected view and its augmentation.

Li =
1

2
(NCS(p, stopgrad(zi)) + NCS(pi, stopgrad(z))) (2)

where the NCS is expressed as: NCS(a, b) = − a·b
∥a∥2·∥b∥2

,
p is the result of the prediction MLP head, denoted as h [19],
which is used to match the output of f and fi. z represents the
final representation, and zi is the intermediate representation.
This loss encourages the similarity between the feature repre-
sentations at different stages of the network and the last rep-
resentation, fostering a richer latent space encapsulating low-
level information which are perceptually important.

Furthermore, we maximize the similarity of representations
for the same view with various rotation angles by employing
the SimSiam loss [19]:

Lsimsiam =
1

2
(NCS(p1, stopgrad(z2)) + NCS(p2, stopgrad(z1))) .

(3)
In our approach, we have chosen to utilize rotation as the

sole augmentation strategy due to its quality-invariant prop-
erties, ensuring that the global representation consistently re-
flects quality. This process is highlighted in Fig. 2, graph (c).
Here the encoder f shares weights between the two views [19].
p = h(f(x1)) and z = f(x2). The prediction head h [19]
transforms the output of one view and matches the other rotated
view. The overall optimization objective for the dual training
can be expressed as a combination of the supervised and unsu-
pervised losses, with a weighting parameter λ :

L = Lsupervised + λ

(
Lsimsiam +

4∑
i=1

Li

)
. (4)

3. RESULT ANALYSIS

We evaluated the effectiveness of our model on two pub-
lic benchmarks that use subjective scores and involve var-
ious degradation types, including compression and noise.
ICIP2020 [21] consists of six reference point clouds, generat-
ing 90 degraded versions. These variations involve three main
compression techniques: V-PCC, G-PCC with triangle soup

Table 1. Results obtained on ICIP20[21] dataset using 6-folds

index Model PLCC ↑ SROCC ↑
m,f po2point MSE [6] 0.946 0.950
m,f po2plane MSE [7] 0.945 0.959
m,f color Y PSNR [22] 0.887 0.892
m,f pl2plane AVG [8] 0.922 0.910
m,f pl2plane MSE [8] 0.925 0.912
m,f PCQM [9] 0.796 0.832
m,f GraphSim [23] 0.931 0.893
m,n PointNet-SSNR [24] 0.908 0.955
m,f PointNet-DCCFR [25] 0.947 0.973
m,n PointNet-Graph [26] 0.946 0.973
p,n MultiModal [27] 0.945 0.978
p,n Swin Supervised 0.918 0.914
p,n Ours 0.965 0.970

coding, and octree coding. SJTU [28] consists of 9 reference
point clouds, generating a total of 378 distorted versions arising
from six degradation modalities: Octree-based compression
(OT), Color Noise (CN), Downscaling (DS),(GG)Geometry
Gaussian noise, and combination as (D+C), (D+G), (C+G).

We applied k-fold cross-validation by dividing the database
into k equally sized segments. The model was trained on k− 1
segments and tested on one. The procedure is repeated k times
with different test segments. The final performance metric
was calculated as the average of these k-fold cross-validation
results. We conducted a comprehensive evaluation of our ap-
proach by comparing it with state-of-the-art methods, This
comparison encompassed deep learning-based and not-deep-
based methods, operating either on 3D point clouds, or 2D
projected views (indexed as m, and p, respectively; f, n indexes
refer to Full, and No reference respectively). The selection of
deep-based methods was based on those already trained and
tested in their original benchmark settings on ICIP, and SJTU
using k-fold cross-validation. Pearson Correlation Coefficient
(PLCC) and Spearman Correlation Coefficient (SROCC) are
considered to report the quality prediction ability of all meth-



Fig. 3. PCA-based visualization of Swin Transformer features representations distribution from various training strategies on the
ICIP20 dataset against the subjective MOS. The four plots, from left to right, display: (1) Trained for image recognition, (2) Our
self-supervised training strategy, (3) Supervised training for quality assessment on ICIP, and (4) our combined approach using
both supervised and self-supervised losses trained on ICIP for PCQA.

Table 2. Results obtained on SJTU dataset using 9-folds[28]
index Model PLCC ↑ SROCC ↑
m,f po2point MSE [6] 0.812 0.729
m,f po2plane MSE[7] 0.594 0.628
m,f color Y PSNR [22] 0.817 0.795
m,f PCQM[9] 0.885 0.864
m,f GraphSIM [23] 0.845 0.878
m,f PointSSIM[10] 0.714 0.687
m,n PointGraph[26] 0.903 0.873
p,n 3D-NSS[11] 0.714 0.738
p,n 3DResnet [13] 0.861 0.832
p,n VQA PC [12] 0.864 0.851
p,n Ours 0.915 0.908

ods.
Table 1 presents the performance of our proposed method

on the ICIP dataset. Our method demonstrates a high correla-
tion with the subjective MOS ground truth, achieving a PLCC
of 0.965 and an SROCC of 0.970. These results outperform all
other metrics in terms of PLCC and are competitive in terms
of SROCC. To further validate the impact of the unsupervised
loss, we conducted a training experiment using only the super-
vised loss, labeled as “Swin Supervised” in Table 1. The perfor-
mance noticeably decreased, highlighting a gap in both PLCC
and SROCC. Table 2 shows the performance of our method on
SJTU which represents an intricate distribution of degradation
and noises, as can be seen, our method is achieving a high corre-
lation overcoming state-of-the-art methods on both PLCC and
SORCC. The results obtained on both datasets show the effec-
tiveness of our novel proposed training strategy.

To further validate our method, we visualize the network’s
representations in Fig. 3 using Principal Component Analysis
against the subjective MOS. We explored four configurations:
(1) pre-trained weights on Imagenet 22k, (2) retraining the net-
work on ICIP2020 with unsupervised loss only, (3) retraining
the network on ICIP2020 for quality assessment using super-

vised loss only, and (4) retraining the network on ICIP2020
for quality assessment using both supervised and unsupervised
loss. In configuration (1), the model struggled to discern nu-
ances between different image qualities, resulting in a repre-
sentation tightly clustered within a small range of 2 points (-12
to -10), lacking a linear correlation with quality scores. Con-
figuration (2) produced a noticeably distributed representation
spanning 8 points (from 22 to 30) but showed limited correla-
tion with quality scores, indicating the model’s ability to differ-
entiate image qualities but failing to align them accurately with
quality scores. Configuration (3) exhibited a slightly corre-
lated representation with quality scores but remained confined
to a narrow range (-14.5 to -12). In contrast, configuration (4)
displayed a well-distributed representation spanning (-12 to 4)
within a larger range of 16 points, and showed a strong linear
correlation with quality scores, which has not been noted in all
previous configurations. This visualization provides evidence
supporting the efficacy of our novel training strategy in improv-
ing point cloud quality assessment. Our choice to employ the
ICIP dataset for visualization is based on its composition of
3D point cloud (PC) objects predominantly depicting human
figures. This shared semantic representation across the dataset
aids in discerning how shifts in the network’s representation are
indeed attributable to variations in quality features, rather than
differences in the underlying semantic content.

4. CONCLUSION

Our work introduces an innovative metric and training approach
for 3D PCs quality assessment. We address the challenge of
preserving fine-grained details while maintaining overall image
context, deviating from traditional deep network biases. Our
approach leverages 2D projections and combines supervised
and unsupervised training methods to achieve a balance be-
tween semantic understanding and preserving critical visual
quality-relevant information. Extensive testing on benchmark
datasets demonstrates the potential of our approach for im-
proved 3D PCQA.
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