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REDUCING THE COMPLEXITY OF NORMALIZING FLOW ARCHITECTURES FOR
POINT CLOUD ATTRIBUTE COMPRESSION
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ABSTRACT

Existing learning-based methods to compress PCs attributes
typically employ variational autoencoders (VAE) to learn
compact signal representations. However, these schemes suf-
fer from limited reconstruction quality at high bitrates due to
their intrinsic lossy nature. More recently, normalizing flows
(NF) have been proposed as an alternative solution. NFs are
invertible networks that can achieve lossless reconstruction,
at the cost of very large architectures with high memory and
computational footprint. This paper proposes an improved
NF architecture with reduced complexity called RNF-PCAC.
It is composed of two operating modes specialized for low
and high bitrates, combined in a rate-distortion optimized
fashion. Our approach reduces the number of parameters of
the existing NF architectures by over 6 x. At the same time,
it achieves state-of-the-art coding gains compared to previous
learning-based methods and, for some PCs, it matches the
performance of G-PCC (v.21).

Index Terms— Point clouds, Learning-Based, Compres-
sion, Attributes, Normalizing Flow

1. INTRODUCTION

Content consumption has been evolving towards immersive
formats [1], specially for entertainment. In this context, Point
Clouds (PCs) are one of the most popular volumetric repre-
sentations. PCs are sets of unordered points that contain the
coordinates x, ¥y, z, and the respective attribute information,
in our case, color. However, to properly represent an object,
PCs need to be very dense, with millions of points, becom-
ing expensive to store and transmit. Compression is therefore
necessary to make them a viable option to diffuse 3D content.

The standardization efforts in the MPEG [2] group have
contributed significantly to the advances in the field of PC
compression, and more recently, learning-based techniques
have been gaining popularity for PCs [3]. Very recently, nor-
malizing flow (NF) architectures have been considered for PC
attribute compression [4]. NF architectures have the poten-
tial of yielding good coding performance at high bitrates, but
the sparsity nature of PCs makes them challenging to imple-
ment, due to the necessity of using shuffling layers, which
leads to an increased number of coefficients. This impacts the

complexity of the architecture (memory consumption) and its
storage space, making it hard to use in real world scenarios.
This paper introduces an enhanced NF scheme for at-
tribute compression, referred to as Reduced Normalizing
Flow PC Attribute Compression (RNF-PCAC), to achieve
better computational and memory efficiency. The approach
is composed of two operating modes, targeting low and high
bitrate ranges, respectively: Back Projection mode (BP) and
No-Average mode (NA). We dynamically choose the best
coding mode using a rate-distortion optimization approach.
Our focus is to control the number of parameters in the net-
work while having a good rate-distortion performance. We
achieve better results than the original NF, with a six times
reduction in the number of parameters, and also achieve
comparable results to G-PCC version v.21 on some PCs.

2. RELATED WORK

The baseline for today’s research on PC static compression
is the Geometry-based PC Compression (G-PCC) algorithm
standardized by MPEG [2]. G-PCC encodes the geometry us-
ing an octree approach, whereas attribute coding is performed
by a Region Adaptive Hierarchical Transform (RAHT) [5].
Following the recent success of learning-based coding
(e.g., [6]), Variational Autoencoders (VAEs) have been also
applied to the compression of PCs, in particular for geome-
try. In [7], the authors use 3D voxel convolutions, and cast
the decoding problem as one of classifying which voxels
are non-empty. This initial architecture led to some exten-
sions and improvements, [8, 9]. In particular, [10] introduces
the use of sparse convolutions for PC compression. Sparse
convolutions are interesting for PCs tasks because they can
help overcome the limitations of available memory as well as
avoid the dilation of the features to empty spaces [11].
Learning-based coding of PC attributes has been less ex-
plored. In [12], attributes are mapped to a signal over a 2D
manifold and coded using a conventional image codec. How-
ever, this method fails when the geometry is complex, limiting
the coding performance. Deep-PCAC [13] employs second-
order point convolutions [14], which are lighter than sparse
convolutions, but have the inability to capture spatial depen-
dencies, which leads to relatively poor coding performance.
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Fig. 1: BP mode: The Encoder Back Projection (EBP) layer on the encoding path and the Decoder Back Projection (DBP)
layer on the decoding one allow us to control the number of channels through the network. The intermediate channels after the
BPs modules are respectively 12, 24, 96. By fixing the number of channels we reduce the number of coefficients of the network.
Added blocks in blue and removed blocks in grey and dashed, when compared to the original NF-PCAC [4]

Another method proposed in [15] consists of an extension of
[10] in a VAE architecture to compress the attributes of PCs.
VAE:sS are effective at low bitrates, as it reduces the dimension-
ality of the data. However, this reduction limits the maximum
reconstruction quality at higher bitrates.

Recently, Normalizing Flows [16] have been applied to
image compression [17] with promising results. NFs employ
affine coupling layers to produce invertible transformations of
the PC signal, similar to orthogonal transforms used in con-
ventional coding. This can lead to coding gains compared to
VAEs, especially at high bitrates. In our previous work [4],
we have pioneered using NFs for PCAC, obtaining state-of-
the-art performance over the current VAE approach. How-
ever, this approach employs shuffling layers to transform spa-
tial information into channels and expand the receptive field
of sparse convolutions. This leads to a higher number of co-
efficients, increasing its complexity and storage space. The
goal of this paper is to address this drawback.

3. PROPOSED METHOD

To have a bigger receptive field for the convolutions with-
out any loss in information, the NF-based coding network re-
lies on the voxel shuffling layer — a layer that, in the 3D do-
main, increases the number of channels (N) at a rate of N x 8
[4], causing the number of parameters in the network to ex-
plode. The addition of non-invertible blocks, such as chan-
nel averaging, to reduce the number of coefficients impacts
the performance at high-bitrate, while the removal of those
blocks will affect the low-bitrate range. To cope with these
contrasting objectives, we adopt here a divide-and-conquer
strategy. We devise an architecture (RNF-PCAC) composed
of two operating modes, both extending NF-PCAC [4] to ad-
dress a different bitrate range. The first mode (Section 3.1)
introduces non-invertible blocks in the core of the network to
control the number of coefficients and targets the low bitrate
range. The second mode (Section 3.2) relies on a reduction of
the architecture in [4] combined with an increased hyperprior
model and targets the higher bitrate range. Our final proposed

method RNF-PCAC consists in selecting dynamically one of
the two modes using rate-distortion optimization, similar to
conventional video coding.

3.1. Back Projection Mode (BP)

The first mode (see Figure 1) was designed to reduce the num-
ber of coefficients by controlling the number of channels in
the inner layers of the NF core. By systematically reducing
the number of channels before the voxel shuffling layers, we
reduce the total number of parameters needed to ingest data in
subsequent layers. To achieve that, one could directly apply
a channel averaging module. However, this approach causes
data loss, mainly losing high frequency information, since the
channel averaging is equivalent to a low pass filter. To tackle
that, we add back-projection blocks both on the encoder and
decoder side of our model. Back projection is used in super-
resolution context [18] and in image compression [19] with
the goal of improving the sampling of features. The goal is to
achieve the reduction in the number of channels, while main-
taining most of the information contained in those channels.

Fig. 2: Back Projection Layers in BP mode. (a) Encoder
Back Projection (b) Decoder Back Projection, Avg stands for
channel averaging, C'opy for channel copying and Sample
for convolutional sampling. 1 represent an increase in the
number of channels and | a reduction. Light blue blocks are
the sparse data, pink blocks are operators that require no pa-
rameters and darker blue blocks are convolutional layers.

On the encoder side, we have the Encoder Back Projec-
tion block (EBP), illustrated in Figure 2a. It aims to down-
sample channel data while retaining more information than



/

Invertible Neural Network (Flow)

Attention Hyperprior

Layer Encoder

— A A — -
i
| 1
Input Feofure e N ol :
PC Extraction EENERE > )
2 [ |9 9 9
NS >
o | |9 ol ¢
LSl (9] [ LS| —
= of = ol
ERCRE ERERE
gl ol
ZEEEE <) 3
gdle g
Reconstructed Feature oL [1 ($)
. < [ [
PC Extraction sl >

N

Hyperprior
Decoder

Layer

; Entropy
i ‘ Encoder
= T bits mm

it i Attention Enfropy
: : Decoder

Fig. 3: NA mode: The only sources of non-invertibility are the attention layer and the feature extraction, which do not affect the
dimensionality of the data. By removing the last block in the core and the channel average block, we obtain a smaller version
of the initial network with a bigger latent space. Removed blocks in grey and dashed lines when compared to [4].

a naive channel averaging. We compute the naive channel
average in Avg |, then copy the channels back to the origi-
nal size in C'opy 1. We obtain the residual information be-
tween the copied data and the original and we use it as input
to Sample |, a block composed of 3 sparse convolutional
layers that downsamples the residuals channels while learn-
ing important information that should be re-injected on the
averaged tensor.

On the decoder side, we have the presence of the Decoder
Back Projection block (DBP), reported in Figure 2b. It aims
to better reconstruct the original data than a naive copying
of the channels. For that, we copy the content back to the
original tensor size on C'opy 1 and feed it to a neural network,
Sample |, that has the goal of downsampling the data. We
then produce the residuals between the averaged tensor and
the downsampled version of the copied tensor. We feed this
to another neural network Sample T to recover some details
that were lost in the averaging. These details are then added
to the copied tensor to recover the original tensor, minimizing
the information loss that happened at the encoder side.

BP mode offers a good control over the size of model
and the BP blocks, can reduce the number of parameters and
achieve a good reconstruction that better maintains the data
details. The number of parameters is reduced by over ten
times when compared to the NF-PCAC [4] and we maintain
the performance in lower bitrates. Results are available in
Section 4. Since the BP mode contains more sources of non-
invertibility, the high bitrate performance is degraded when
compared to the baseline. Therefore, we propose a second
mode, NA, to handle the high-bitrate cases.

3.2. No-Average Mode (NA)

With the NA mode (see Figure 3), we aim to reduce the num-
ber of parameters and also the sources of non-invertibility by
reducing the initial architecture. The main contributor to the
increasing number of parameters is the last block of voxel
shuffling and coupling layers. We remove those blocks and
the channel averaging block that acts as a low-pass filter on
the channel data. With these two modifications, we reduce the

number of channels at the output of the core network and we
remove one of the biggest sources of non-invertibility, boost-
ing the performance on high bitrates.

The architecture on this mode has fewer layers than the
baseline NF-PCAC, while having more channels in the hy-
perprior modules to accommodate the channels added in the
shuffling layers. We reduce the number of coefficients by over
ten times and obtain a highly invertible network, obtaining
good results in the high bitrate domain. The experimental re-
sults and comparisons are available in Section 4.

4. EXPERIMENTS AND RESULTS
4.1. Training

The training set is a mix of different PCs that represent
real characters from 8i [20], owlii [21], volucap and xdprod
[22], as well as PCs generated from axyz textured mesh
bundles [23], sampled to produce PCs of roughly 1,000,000
points, a comparable density to the other PCs in our dataset.

To compensate for the lack of available data for training
and testing, we retain for tests the PCs Soldier [20], Basket-
ball Player [21] and Facade [2] while all the other sequences
are used for training and we repeat the same protocol using
Longdress and Redandblack [20] as test set for a broader val-
idation. Furthermore, an octree partition of PCs is performed,
generating blocks of size 128 x 128 x 128. We train on the
YUYV color space with no data augmentation for 20 epochs
with a learning rate of 1e~* and a batch size of 8. We train
a different model for each rate-point by varying the hyperpa-
rameter ) in the rate-distortion loss function.

4.2. Validation

For inference, we do not perform any partition. This helps us
avoid blocking artifacts that would occur when coding a PC
that has been divided into blocks. Since our architectures are
completely convolutional, they can be fed with any input data
size as long as it fits into memory.

For comparison purposes, we have a method with a VAE-
type architecture similar to the one presented in [15] reimple-
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Fig. 4: PSNR curves for four different PCs. The proposed method RNF-PCAC has competitive results against NF-PCAC, and
outperforms other learning-based methods. G-PCC v.21 results displayed for reference.

Peak GPU Memory Time

Methods Params | Storage 10-bits 11-bits 10-bits 11-bits
Enc | Dec | Enc Dec | Enc | Dec | Enc | Dec
NF-PCAC 278 1.10 4.99 | 439 | 10.02 | 10.04 | 0.99 | 0.95 | 3.37 | 3.27
NA only 26 0.10 331 | 274 | 848 | 9.03 | 0.65 | 0.56 | 2.20 | 2.02
BP only 18 0.07 279 1219 | 7.19 | 7.36 | 049 | 043 | 1.59 | 1.56
RNF-PCAC 44 0.17 331 | 274 | 848 | 9.03 | 1.14 | 0.56 | 3.78 | 2.02
ST PCAC 12 0.05 1.85 | 1.08 | 3.82 | 3.47 | 0.11 | 0.07 | 0.33 | 0.22

Table 1: Complexity Comparison: Millions of parameters,
storage in GB per rate-point, peak memory used in GB, and
average time in seconds on GPU (Nvidia®. Tesla ®. V100,
32 GB). Encoding times between input and entropy encoding
and decoding time between after entropy decoding and recon-
structed PC. ST-PCAC results for informative purposes.

mented by us, Sparse Tensor PCAC (ST-PCAC), in addition
to NF-PCAC [4]. All the models have the same mean-scale
hyperprior [24] that can be enhanced in the future by a more
robust model, and they were trained with the same dataset
and hyperparameters. We present rate-distortion results for
4 PCs in Figure 4 with the Y-PSNR as quality metric. Al-
though G-PCC can still be considered the best performing ap-
proach, our proposed method, RNF-PCAC achieves the best
results between the learning-based approaches, while offer-
ing an important reduction in the number of parameters when
compared with the approach on the original NF-PCAC [4].

As seen in Table 1, the number of parameters of RNF-
PCAC is over six times smaller than NF-PCAC [4], corre-
sponding to the sum of parameters on both modes. In our ap-
proach, we code the PCs with both modes and choose the best
performing one signalling it to the decoder with an extra bit.
By encoding sequentially with both, the encoding time is the
sum of the times for each mode. Peak memory consumption
corresponds to the biggest between both modes and the de-
coding time is also the biggest between both. One could opt
to perform parallel encoding, increasing memory consump-
tion and reducing encoding time. In any case, decoding time
and memory are not impacted.

4.2.1. Contribution of each mode

The BP mode outperforms all other methods on lower bi-
trates. When compared to NF-PCAC [4], it achieves simi-
lar and sometimes better performance using over 10x fewer
parameters. Besides, with the addition of the BP layers, the

number of channels throughout the network can be easily con-
trolled. At high bitrates, due to the addition of non-invertible
blocks, BP has degraded performance.

On the other end, the NA mode produces higher coding
gains than other learning-based methods at higher bitrates.
Due to the reduced number of non-invertible blocks, it allows
the decoder to receive the information with little loss. It also
has over 10x fewer parameters than the original NF archi-
tecture. However, when it comes to lower bitrates, the other
architectures are better performing. This happens because on
the NA we have no channel averaging layer, so the number of
coefficients to code is bigger than the other learning based ap-
proaches, as the voxel shuffling layers add more coefficients.

4.2.2. Overall coding gains and comparison with G-PCC

We present the BD rate results in Table 2, using G-PCC as ref-
erence. Our proposed method RNF-PCAC achieves the best
BD rate among the learning-based approaches, and for some
PCs it even has similar or slightly competitive performance
compared to G-PCC.

Point Cloud ‘ Basketball ‘ Soldier ‘ Longdress ‘ Facade
Deep-PCAC 942.75 295.44 340.23 526.74
ST- PCAC 73.18 43.53 53.79 168.41
NF-PCAC 13.47 1.26 30.58 55.66
RNF-PCAC (Ours) -0.11 -4.80 17.99 44.00

Table 2: Average BD-Rate (%) for luma channel: Learning-
based methods against G-PCC v.21. Negative values mean
bitrate savings.

5. CONCLUSIONS

We propose RNF-PCAC, a method comprising of two coding
modes: back-projection mode and no-average mode. The two
modes contribute to reducing the memory and computational
footprint of NF-based coding of PC attributes, while increas-
ing coding performance both at low and high bitrates. Dif-
ferently from geometry coding, learning-based PCAC is still
not competitive with the latest versions of G-PCC. Our re-
sults show that NF-based approaches are a promising avenue
to bridge this performance gap, offering a viable alternative
to the prevalent VAE-based approaches.
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