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ABSTRACT. In this paper, the stability of longitudinal vibrations for transmission problems of two smart-system
designs are studied: (i) a serially-connected Elastic-Piezoelectric-Elastic design with a local damping acting
only on the piezoelectric layer and (ii) a serially-connected Piezoelectric-Elastic design with a local damping
acting on the elastic part only. Unlike the existing literature, piezoelectric layers are considered magnetizable,
and therefore, a fully-dynamic PDE model, retaining interactions of electromagnetic fields (due to Maxwell’s
equations) with the mechanical vibrations, is considered. The design (i) is shown to have exponentially stable
solutions. However, the nature of the stability of solutions of the design (ii), whether it is polynomial or
exponential, is dependent entirely upon the arithmetic nature of a quotient involving all physical parameters.
Furthermore, a polynomial decay rate is provided in terms of a measure of irrationality of the quotient. Note
that this type of result is totally new (see Theorem 3.6 and Condition (Hpo1)). The main tool used throughout
the paper is the multipliers technique which requires an adaptive selection of cut-off functions together with a
particular attention to the sharpness of the estimates to optimize the results.

Keywords. magnetizable piezoelectric beams; serially-connected beams; transmission problems; irrationality
measure; partial viscous damping; exponential stability; polynomial stability.

1. INTRODUCTION

Piezoelectric materials are multi-functional smart materials (most notably Lead Zirconate Titanate) used
to develop electric displacement that is directly proportional to an applied mechanical stress [49]. They can
be used as actuators/sensors, and also be integrated to a mother host structure [48]. Due to their small
size and high power density, they have become more and more promising in industrial applications such as
implantable biomedical devices and sensors [14, 15], wearable human-machine interface sensors [16], and nano-
positioners and micro-sensors due to the excellent advantages of the fast response time, large mechanical force,
and extremely fine resolution [45].

In deriving a mathematical model for the equations of motion on a piezoelectric beam, actuated by a volt-
age source, three major effects and their interrelations need to be considered: mechanical, electrical, and
magnetic. Mechanical effects are mostly modeled through Kirchhoff, Euler-Bernoulli, or Mindlin-Timoshenko
small (linear) [28] or large (nonlinear) [18] displacement assumptions, where the constitutive relations between
the nonzero stress and strain tensors are used to model longitudinal displacements of the centerline (stretch-
ing/compression), transverse displacements (bending), and rotations of the beam. It is also reported that the
small displacement assumptions lead to the bending and rotational motions completely immune the applied
voltage [36]. These tensors are coupled to the electric/magnetic displacements and electric/magnetic field
tensors. There are mainly three approaches to include electromagnetic effects due the Maxwell’s equations:
electrostatic, quasi-static, and fully-dynamic [25, p. 336]. Electrostatic and quasi-static approaches are widely
used in voltage-controlled piezoelectric beam models - see e.g. [49] and the references therein. These models
completely exclude magnetic effects and their coupling with electrical and mechanical effects. Even though
the electro-static and quasi-static approaches are sufficient for defining piezoelectricity, electromagnetic waves
generated by mechanical fields need to be accounted for in the calculation of radiated electromagnetic power



from a vibrating piezoelectric acoustic device, e.g. see [53] and the references therein. For this reason, the
fully dynamic models of piezoelectric beams are needed to be understood well. In fact, the dynamic effects for
(acoustic) magnetizable piezoelectric beams are pronounced and must be taken into account in the modeling
[36, 50].

Denote v(x,t) and p(z,t) by the longitudinal vibrations of the center line of the beam and the total charge
accumulated at the electrodes of a single piezoelectric beam. Assuming that the beam is fixed at the left end
x = 0 and free at the right end x = L, the equations of motion is a system of partial differential equations [36]
as the following

PVt — Qg + VPDgz = 0, (x,t) € (0,L) x (0,00)
Uptt — /Bp:mc + ’Yﬁvww =0,
(1.1) v(0,t) = p(0,t) =0,
. avx(Lvt) _fYﬁpx(Lvt) :g(t),
5pfc(L7t) - 'Yﬂvm(Lvt) = 7V(t)7 te (0’ OO)
(vav Utvpt)(xvo) = (UO,pO,Ulvpl)v MS [07L]
where p, «, 3, 7, and p are mass density per unit volume, elastic stiffness, impermeability, piezoelectric constant,
and magnetic permeability of the beam, respectively, and g(t) and V(¢) are strain and voltage actuators, and

(1.2) a =a—~*B>0.

By the electrostatic approach, the model above is simplified to a single wave equation model by taking =0
and p; = 0, considering g(t) =0, and (1.2), e.g. see [37],

PU — Q1Uze = 0, (z,t) € (0,L) x (0,00)
(1.3) v(0,t) =0, avi(L,t) =~V (t) te (0,00)
(1)71)15)(1',0) = ('Uo,’Ul), T e [O,L}

The model by the quasi-static approach is the same as (1.3) yet p; # 0.

The exact observability/stabilizability and the type of stability of the solutions (1.1) of the PDE model by
each approach differs substantially. For example, the PDE model obtained by electrostatic/quasi-static ap-
proach is the boundary damped wave equation in (1.3), and it is known to be exactly observable/exponentially
stabilizable with one state measurement v:(z,t) on the boundary @ = L, e.g. see [12, 24]. In deep contrast
to this result, the PDE model obtained by the the fully-dynamic approach in (1.1) can not be exactly observ-
able/exponentially stabilizable for almost all choices of material parameters with only one state measurement,
ve(x,t) or pi(z,t), on the boundary z = L, e.g. see [36, 37]. Explicit polynomial decay estimates are obtained
for more regular initial data and for a small class of materials satisfying certain number-theoretical conditions
[37, 38]. The same model (1.1) is considered in [41] for the open-loop sensor configuration (i.e. g(t), V(t) = 0)
with a dissipative damping term dv; with § > 0, acting only in the first equation of (1.1). It is also reported
that two nonzero state feedback measurements v(L,t) (tip velocity) and p;(L,t) (total current on the elec-
trodes) are necessary to achieve exact observability /exponential stabilizability [42, 52]. This underlines the fact
that the two boundary damping terms or one viscous damping term are both able to exponentially dissipate
non-stabilizing (high-frequency) magnetic effects. There is also a large literature considering the model (1.1)
under thermal effects, fractional-type damping, and distributed or boundary-type memory and delay terms,
see [2)-[5],[17]-[22], [47, 54] and the references therein.

A serially-connected smart system is an elastic structure consisting of longitudinally attached fully-elastic
and piezoelectric layers, see Figs. 1 and 2. Use of piezoelectric materials for a serially-connected design in var-
ious transmission mechanisms of aerospace, aviation, automobile, ships, and robots has boosted substantially
in the last decade, see [13, 30] and the references therein. A rigorous mathematical treatment for a trans-
mission problem of a three serially-connected purely-elastic waves/strings/beams is provided in [20]. Indeed,
if the outer wave equations have both viscous damping terms, an exponential stability result is shown to be
immediate. Several authors have also studied transmission problems of serially-connected strings/beams with
e.g. a thermoelastic material [35] or a viscoelastic material [43].

To the best of our best knowledge, serially-connected transmission systems involving elastic and magnetizable
piezoelectric systems are not treated mathematically in the literature, especially with Condition (Hpe), which
appears in Section 3.3. The goal of this paper is to fix this gap by considering two particular designs, for which
we obtain novel decay rates of the energy, see Theorems 2.6, 3.5 and 3.6. The first design, whose PDE model is
described below in (E/P/E), is the transmission problem of an Elastic-Piezoelectric-Elastic system, as in Fig.




Elastic beam Piezoelectric beam

x=0 x=ll x=lz x=1L

u(x, t) v(x,t) y(x,t)

FIGURE 1. Serially-connected Elastic-Piezoelectric-Elastic transmission system clamped at both ends. The
piezoelectric material itself is an elastic material covered by electrodes at their top and bottom surfaces, and
connected to an external electric circuit. As the elastic layers stretches or shrinks, the piezoelectric beam
stretches or shrinks as well, and therefore, charges separate and line up in the vertical direction, and electric
field (voltage) is induced in the electrodes. The overall motions on the system are considered to be only
longitudinal.

1, with only one local damping acting on the longitudinal displacement of the center line of the piezoelectric
material:

Ugg — ClUgy = 0, (z,t) € (0,11) x (0,00),
PVt — QU + YBPzx + d2(z)vr = 0, (z,t) € (I1,12) x (0,00),
Uptt — BPez + VBVze = 0, (x7t) € (lla 12) X (0, 00)7
Ytt — Yz = Oa (l’,t) € (127 L) X (07 00)7
U(O,t) = y(Lat) =0,
’U(ll,t) = u(lht),

E/P/E

( / / ) ’U(ZQat) = y(127t)7
avg(l1,t) —vBpx(l1,t) = crug(l1, 1),
O‘Ux(lQat) - ’Yﬁpx(l%t) = chx(l%t)’
ﬂpfc(llat) = Wﬂvr(llat)a
sz(l%t) = ’Vﬁvm(l%t)v te (Oa OO),
(vaypalhUt,vupuyt)('ao) = (uo,vo,po,y07u1,v17p17y1)(-)

where 0 < 1y <ly < L, ¢1,¢2 > 0 and d2 € L*(ly,13), such that

(LD — P) dQ(f) > d2’0 >0 in (az,bg) C (l1,12)7 and dQ(l') >0 in (11712)\((L2,b2).

v(t)

Piezoelectric beam Elastic beam I
x=0 X = ll =1L

v(x,t) y(x,t)

FIGURE 2. Serially connected Elastic-Piezoelectric transmission line clamped at both ends.




The second design, whose PDE model is described below in (P/E), is for the transmission problem of a
Piezoelectric-Elastic system, as in Fig. 2, with only one local damping acting on the elastic part:

Pt — OV + YBPzz = 0, (z,t) € (0,11) x (0,00),
ppet — Bpax + v(ﬁvjm =0, Ex t; € Eo, 11)) X ((0, oo)),
Ytt — CoYaza + d1(T)yr = 0, z,t) € (I3, L) x (0, 00),

v(ly,t) = y(l1,1),

O‘vz(ll’t) - 76px(ll7t) = C2yx(llat)v

Bpa:(lht) = ’Yﬂvz(lht)v te (0700),
(v, 0, Y, v, Pe,y) (-, 0) = (vo, Do, Yo, v1, 01, ¥1) (),

where 0 < Iy < L, ¢o > 0 and d; € L*(ly, L) such that
(LD — E) d1<.’13) > d170 >0 in (al,bl) C (ll,L>, and d1<.’1?) >0 in (ll,L>\(a1,b1).

The paper is organized as follows. In Section 2, first, well-posedness and the exponential stability of the
model (E/P/E) are studied under the conditions (LD — P) on the damping function ds. In Section 3, the
well-posedness and the strong stability of (P/E) system are analyzed under the conditions (LD — E) on the
damping function dy. Moreover, the decay rate of the energy depends on the arithmetic nature of a quotient
involving all physical parameters of the system. More precisely, if the quotient is a rational number different
from ;;“_rj, for all ny,n_ € N (see (SC) in Theorem 3.3), the energy is proved to decay exponentially. If the
quotient is an irrational number, the energy is proved to decrease polynomially if the irrationality measure of
this quotient is finite. The proof of the main results are all based on the multipliers technique, requiring an
adapted choice of cut-off functions, and a particular attention to the sharpness of the estimates to optimize the
results.

It is crucial to note that, as a consequence of our arguments developed in section 2, the electrostatic/quasi-
static design, identical to the design in [20], with a local damping only acting in the middle layer can be shown
to be exponentially stable, see Remark 2.15. This is a major improvement of the results in [20] since the
exponential stability result is only achieved by fully-distributed viscous damping terms for the outer layers.

2. STABILITY RESULTS FOR THE (E/P/E) SYSTEM

Note that the assumption (LD — P) applies to all results in this section. For simplicity, the repetition is
avoided unless it is necessary to state.

2.1. Well-Posedness. This section is devoted to establish the well-posedness of the system (E/P/E) by a
semigroup approach. The natural energy of system (E/P/E) is defined by

1 I 1t
B = 5 [l + i) o [ (ol + ool + sl + B, = o) dot [ (il + el )
1 2

Lemma 2.1. The energy E(t) is dissipative along the regular solutions (u,v,p,y) of the system (E/P/E), i.e.

d & )
(2.1) @B = —/h da|vs 2 dz.
Proof. First, multiplying (E/P/E), by %, integrate by parts over (0,;), and take the real part to get
1d [ ad M —
(2.2) q /0 lug|?dx + 51% /0 [ug |*de — c1 R (ux(ll,t)ut(lht)) =0.

Next, multiply (E/P/E), by T, integrate by parts over (l1,l2), and take the real part to get

d [ ad [° —— ——
gdt/ll |vt|2dx+2dt/ll |vg|2dz — aR (vz(l%t)vt(lg,t))—i—asﬁ (vz(ll,t)vt(ll,t)>

(2 ) lo l2
—yBR ( / vaxtdas> + 18R (pala, o2, 1)) = 78R (o, e, D) = = [ dafuiPda.

ll ll




Now, multiply (E/P/E)3 by 7,, integrate by parts over (l1,[3), and take the real part to get

Hd

Bd

> |p£\ dz = AR (pa 2, Opel2, 1)) + 6% (pa(ln, Opelis, 1))

l2

R ( vxpmdx> +98R (v (la, pi(i2,8)) = 78R (va (1, Opu(01 1)) = 0.

5

By implementing (E/P/E),, and (E/P/E),,,

! l
wd [ 2 B8 d / /2 _
(2.4 i | e 55 [ elae —yam ([ v
and multiplying (E/P/E), by ¥ and integrating by parts over (la, L) lead to
1d [* 2, 5 d -
(2.5) 2ai ), Wle Sy | e + R (a1 002 D) =01
Thus, by adding (2.3) and (2.4) and noting (1.2)7

1d b2 S
> dq (/ (plvel® + onlva|® + plpel* + Blyve — pal?) dl’) + R ((avx(ll,t) —7Bpz(l1,1)) Ut(llat))
Iy

2
—R ((avw(lg, 1) — 7Bpu(ln, 1)) Ut(lg,t)) = | dofu,|?da.
Iy
In the final step of the proof, add (2.2), (2.5) and (2.6), use the continuity conditions (E/P/E)y and (E/P/E),
and the transmission conditions (E/P/E)g and (E/P/E),. Hence, (2.1) follows.
In order to have a unique solution to (E/P/E), the following Hilbert spaces are introduced. For any real
numbers a, b such that a < b,

(2.6)

b
L%(a,b) = {feLQ(a,b); / fdxzo}, H}(a,b)={f € H'(a,b); f(a)=0},
Hl(a,b) = H'(a,b) N L%(a,b), Hp(a,b) = {fEHlab) f(b)zO}.
The energy space H is now defined by
H={(u,u",v,2,p,qy,y") € H(0,11) x L*(0,11) x H'(I1,l3) x L*(l,12) x H(0,11) x LZ(l1,13)x
Hp(l2, L) x L*(la, L) = u(l) = v(h), y(la) = v(la)},

and for U = (u, ut, v, 2,p,q,9, yl) € H, a norm on H can be chosen of the following form

l l
2 U5 = Jo' (erlual® + [ul?) do + [;7 (aaloal® + plz[* + Blyve — pal® + plal?) da
’ L
+ [, (calyel® + |y ) dz.

noting that the standard norm on # is

U112 = lluz 7. o) F lut 20,0,y + 027 (i) T 101220, 00y + 120221 1) + P2 1220, 1)

2.8
(28) lalaty o+ lelZa, o+ 16 o, 1.

Lemma 2.2. The norm defined by (2.7) is equivalent to the standard norm (2.8) on H, i.e. for all
U= (u,ul,v,z,p, q,y,yl) € H, there exist two positive constants Cy, Cs, independent of U, such that

(2.9) CllIUIZ < U1, < CallU 3

Proof. The inequality on the right with Co = max(cy, 1, a; + 28 max(y2,1), i, p, c2) is immediate by Young’s
inequality since

Bllvve = PallZoq, 10) < 289 IvallZaqy 1) + 281P2llT2y 10y < 28max(v?, )(lvallZaq, ) + P2llE2 0y 10))-

I
We have u(ly) = / U, dx, and by the transmission condition u(l1) = v(l),
0

v(z) =u(ly) + /x ve(t) dt.

Iy




Applying Young’s and Cauchy-Schwarz inequalities leads to

(2.10) lu(ly)]? < llHU:c”%z(o,zl)v

(2.11) (@) * < 2lu(l)? + 202 = W)l[vallF2, 1)-
As(2.10) and (2.11) are considered together

l2

(2.12) @) < 20 — by maxs o~ 1) (e oo + leeliFag, )
1

i=cC3
Next, Young’s inequality is applied to get
(2.13) 1pallZz 0y < 2lPe = Y02l T2y 1) + 207 0a -
By combining (2.12) and (2.13)
Uz < (1+ C3)Huw||%2(02,ll) + HulH%Q(g,ll) +(1+ 2722+ C3)va”%2(l§,l2) + ||z||%2(ll,l2)
+2|p — Uz”LZ(zl,lQ) + HQHLZ’(lth) + ||yz||L2(127L) + ||yl||L2(127L)-
Hence,this leads to the left inequality of (2.9) with

1
C, = .
' max (]—a (1 + 03)6;17 (1 + 272 + 03)a;17 p717 25717 M717 651)
O
Define the unbounded linear operator Agpg : D(Agpr) C H — H by

u ul
ut ClUgy — dqut
v z

1

2 (Vg — —daz

AEPE ; == p( o Vqﬂpxx 2 ) ) VU: (’U,,’U/l,U,Z,p,q,y,yl) ED(-'AlEPE)

Yy yt
yl CYza — d3yl

with the domain
U= <u3u170727p7Qay>y1) S Ha ’LL1 S Hll,(oall)a z e Hl(ll7l2)7 q S Hi(l1712)7

yt € Hh(lo, L), w € H*(0,11) N HL(0,11),v € H*(I1,12), p € H*(l2,11) N H} (11, 1s),
y € H*(lo, L) N Hy(lo, L), avg(li) = vBps(l) = crug(h), avg(la) — vBpa(l2) = cayx(l2),
Bp(l1) = 1Bva(ls), Bpa(la) = 1Bva(la), u' (1) = 2(1), and  y'(Ia) = =(1a)

Remark 2.3. Using (1.2), direct calculations show that the transmission conditions

avx(h) - Vﬁpz(ll) = Clux(ll) and ﬁpz(ll) = Vﬁvz(ll)

are equivalent to the transmission conditions

D(AgpE) =

v (1) = crug(l) and capy(li) = eryus(lh),
while the transmission conditions
avz(la) — ¥Bpa(l2) = c2ys(l2) and Bpx(l2) = vBus(l2),
are equivalent to the transmission conditions
a1z (l2) = c2yx(l2) and a1pz(l2) = c27ya(l2).

If (u,v,p,y) is a sufficiently regular solution of the system (E/P/E), it can be transformed into a first-order
evolution equation on the Hilbert space H as the following

(2.14) Uy = AgppU, U(0) = Uy,




where U = (u,u1,v,v,p, 0,9y, y:) and Uy = (ug, u1, vo, V1, Po, P1, Yo, Y1). By the arguments of Lemma 2.1, for
all U = (u7u1,v,z,p,q,y,y1) € D(AEPE),

l2
(2.15) R((AppsU,U)y) :—/ ds| 2 2dz,

5

which implies that Agpg is dissipative. Now, let F = (f1, f2, f3, fa, 5, f6, f7, fs) € H. By the Lax-Milgram
Theorem, one can prove the existence of U € D(Agpg) solving the eequation

—~ApppU = F.
Therefore, the unbounded linear operator Agpg is m—dissipative in #H, and consequently, 0 € p(Agpg).
Moreover, Agpg generates a Cy—semigroup of contractions (etAEPE ) >0 by the Lumer-Phillips theorem.
Therefore, the solution of the Cauchy problem (2.14) admits the following representation

U(t) = etAerey,, ¢ >0,

which leads to the well-posedness of (2.14). The following result is immediate.
Theorem 2.4. Letting Uy € H, the system (2.14) admits a unique weak solution U satisfying
UecCORT,H).
Moreover, if Uy € D(Agpg), the system (2.14) admits a unique strong solution U satisfying
UeC'RYH)NCORT, D(AgpE))-
2.2. Strong Stability. Now the following result is about the strong stability of (E/P/E).

Theorem 2.5. The Cy—semigroup of contraction (etAEPE) is strongly stable in H; i.e., for all Uy € H, the
solution of (2.14) satisfies

tlgrolo HetAEPEUOHH = 0.

Proof. Since the resolvent of Agpg is compact in H, it follows from the Arendt-Batty’s theorem (see page
837 in [6]) that the system (E/P/E) is strongly stable if and only if Agpgr does not have pure imaginary
eigenvalues, i.e. o(Agpg) NiR = 0. From Section 2.1, it is already know that 0 € p(Agpg). Therefore, only
o(Agpr) NiR* = () must be proved. For this purpose, suppose that there exists a real number A\ # 0 and
U = (u,ut,v,2,p,q,9,y') € D(Agpg) such that

(2.16) AgppU = iA\U.
which is equivalent to the following system
(2.17) ut =id\uin (0,11), z=id\vin (I1,lz), q=1i\pin (I1,l), y*=i\yin (I, L),
and
AU+ cluge =0, x € (0,1y),
(2.18) px\zv + QUzp — VBpae — doz =0, 1z € (I1,l2),
pA“P + BPaa — YBVze = 0, z € (I1, ),
Ny + cayea = 0, z € (l2, L),
From (2.15), (LD — P) and (2.16),
(2.19) 0=RGEAU,U), = R(AppeU,U), = — /llz do|z|?dux.
On the other hand, from (2.17), (2.19), (LD — P) and the fact that A # 0, we have
(2.20) daz =01in (I1,l2) and consequently z=v=0, z € (ag,bs).
By a = aj +7%8 and (2.20) in (2.18),,
(2.21) PA’0 + 1z + 5 (VBV2z — Bpaa) = 0, x € (I, 12).

Combining (2.18), and (2.21) leads to
(2.22) A2 (pv +ypp) + a1vge =0, m € (Ig, o).




Next, by (2.20) in (2.22) and X # 0 we get p = 0 in (ag, b2), the third equation in (2.17) yields

(2.23) p=q=0 in (az b2).

Since v, p € H?(l1,12) C C*([az, ba)),

(2.24) v(€) = va(€) = p(¢) =p=(¢) =0, (€ {az by}
Now, combining (2.22) and (2.18),, the following reduced system is obtained
(2.25) Vpy = —)\2afl (pv +ypp), x€ (I1,l2)
(2.26) Doz = —)\2ozfl (va + ,uaﬁ_lp) , x € (l1,la).

Let Upiezo = (V,02,0,p2) . From (2.24), Upiezo(b2) = 0. Now, the system (2.25)-(2.26) can be written in
(b, l2) as the following

(227) (Upiezo)w = BUpiezo in (b27 l2);
where
0 1 0 0
B— —pa;*N? 0 —ypay A2 0
0 0 0 1
—p7af1)\2 0 —uaﬁ_lafl)\g 0

The solution of the differential equation (2.27) is given by
(228) Upiezo(l‘) = 6B<z7b2)Um‘ezo(b2) =0 in (bg,lQ).

Analogously, it can be proved that Upieso = 0 in (I1,a2). Consequently, v = p = 0 in (I1,l3). Since v,p €
Hz(ll,lg) C Cl([ll,lg]),

(2.29) v(¢) = v2(¢) =p(¢) =pa(¢) =0 where (€ {l1,l2}.

By U € D(Agpg), the continuity and transmission conditions,

(2.30) w(0) = u(lh) = ur(l1) = y(la) =y (l2) = y(L) = 0.

Finally, by (2.18),, (2.18), and (2.30) it is easy to conclude that u = 0 in (0,/;) and y = 0 in (I2, L). Hence,
U = 0. The proof is thus complete. ([

2.3. Exponential Stability. The aim of the subsection is to prove the exponential stability of System (E/P/E)
under the sole assumption (LD — P). The main result of this section is the following theorem.

Theorem 2.6. If (LD — P) holds, the Co—semigroup of contractions (e!AEPE)~q is exponentially stable, i.e.
there exists M > 1 and w > 0 such that

(2.31) |etABPET ||l < Me || Upllpe, YUo € H.

Before diving into the technicality of the proof of Theorem E/P/E, recall from, e.g. [27], [40], that a
Co—semigroup of contractions (e"Azre) >0 On H must satisfy two conditions (3.17) if

(M1) iR C p(ArpE)

(M2) sup || GM — Agpg) ™" 2y < 4o0.

A€ER
Since we already proved in Theorem 2.5 that iR C p(Agpg), condition (M1) is satisfied. Now only the condition
(M2) must be proved. We follow a contradiction argument, for this purpose, suppose that (M2) is false, then
there exists {(A\",U™)}n>1 C R* x D(Agpg) with

n n n n,n ,n ,n n ,n ny T
(2.32) A*] oo and Ul = || ("l 0", 2" 0" gy Yy ) =1
such that
(233) (l)\nI_AEPE‘) Ur = Fn.— (fl,n7f2,n7f3,n7f4,n’f5,n,f6,n7f7,n7f8,n)—r -0 in H.
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For simplicity, let the index n be dropped. Then, (2.33) is equivalent to
ivu—ul=fl'—0 in H(0,0),

(2.34) iw—z=f3—=0 in HY(,Il),

’ iNp—q=f>—0 in H,l),

iMy—yl=f"—=0 in Hi(l, L),

and

idut —cul, = f2 =0 in L2(0,1,),
(2.35) INDZ — QU + VBPwew + doz = pf* — 0 in  L%(ly,ls),
’ ’L>‘Mq - 5pza: + 76”19: = ,U/fG —0 in LQ(lla 12),
i — Colpr = fE =0 in L2%(ly, L).

Merging (2.34) and (2.35), a more compact system of equations is obtained

MU+ g, = F1,

(2 36) AQpU + QU — ’Yﬁp;m; — iAdov = F‘Q7
>‘2,up + Bpax — ’Yﬁvx;c = F3,
>\2y —+ CoYpa = F4,

where

{ Flz—(fz—f—iAfl), F2:—(pf4+d2f3+i)\pf3),
(2.37)

F3 = — (uf® +idpf®) and F* = —(f% +irf7).
By a = a; + 728 in (2.36),,
Npv + a1 Upp 4+ (YBVzx — BPrz) — iAdv = F2.
Now, combining (2.36), and the above equality lead to
A Vg = —)\va - 'y)\Qﬂp + iXdov + F% + ~F3.
Inserting the above equation in (2.36),, the system is reduced to

AU+ clugg = F1,
A2pv + 1z + YUAZp — iddov = F?,

(2.38) X0 + 01 Bpas + pyBA0 — idyBdyw = FY,
)‘Qy + Co2Ypx = F47

where

(2.39) F°=F?4+~F® and F°®=aF®+~BF2

At this moment, the following series of technical lemmas, as consequences of the dissipativity property of the
solutions (u,u',v, z,p, q,y,y*) of the system (2.34)-(2.35), are needed to finish the proof of Theorem E/P/E.

Lemma 2.7. The solution (u,u',v,z,p,q,y,y') of the system (2.34)-(2.35) satisfies the following estimates

lo lo ba
(2.40) / do|z|*dx = o(1), / do|\v|*dz = o(1) and / |M|2dr = o(1).

11 11 az

Proof. To get the first estimate in (2.40), take the inner product of (2.33) with U in H, and use ||U]|y =1
and || F|j% = o(1) so that

la
(2.41) /l d2|Z|2dﬂC = *%«AEPEU, U>H) = §R<(i>\] - .AEPE)U, U>7—L = §R<]:, U>7-L = 0(1).

Next, by multiplying (2.34), by /d2, using the first estimation in (2.40), and || F|l% = o(1), the second estimate
in (2.40) is immediate. Finally, by (LD — P) and the second estimate in (2.40), the third estimate in (2.40) is
obtained. O

Note that for all 0 < e < szf“z, the following cut-off functions are fixed
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o 0 € C?([l1,12]), k € {1,2} such that 0 < i (z) < 1, for all z € [I1,ls] and

0 ( )_ 1 if 1‘6[&24»]{67627]&?],
FEZ0 0 if @€l ao+ (k= 1)e] U by + (1 — ke, Io).

Observe that #; = 1 on the support of 6.

Lemma 2.8. The solution (u,u',v,z,p,q,y,y*) of the system (2.34)-(2.35) satisfies the following estimates

l2
(2.42) 01| \p|2dz = o(1), IAp2dz = o(1), and / lq|?dz = o(1),
11 D. D,

ba—as

where D, := (az +¢,by — €) with a positive real number € small enough such that € < 225

Proof. First, multiply (2.38), by /361p, integrate over (I1,l2) by parts, and use definition of 6; to get

lo lo lo
\2pB 01vpdr — a8 01v,p,dxr — a1 B 0l v.pdx
(2.43) 15} 1 I

l2 l2

l2
+yuB | 01| p|Pde —irB / dy01vpde = B | 6, F°pdzx.
Iy l1 l

It is known that ||U]lx = 1 and ||F|l% = o(1), which implies in particular that (Ap) is uniformly bounded
in L?(l1,l3) due to (2.34);). Therefore, by Cauchy-Schwarz inequality, Lemma 2.7, the definition of ¢; the
following is deduced

lo

la l2 l2
NpB [ O1vpdz| = o(1), 0l v pdr| = O™ = o(1), [iAG | dabivpdz| = o(A71), 0, F°pdzx| = o(1).
l1 l1 ll ll
Inserting the above estimates into (2.43) and taking the real part leads to
l2 l2
(2.44) yuB 01| \p2dx — a1 R O1v,D,dx | = o(1).
ll ll
Analogously, multiply (2.38), by —6,7, integrate over (l1,lz) by parts to get
lo lo 2
—/\QMa/ 01pvdx + o B 0 pvdz + a1 8 01psvzdx
(2.45) It no noL
—ppB 01| \v|?dx + i/\'yﬁ/ 01do|v|?dr = — 6, F5%dx.
151 5 l
By the definition of 61, |U||% =1, || F|l% = o(1), Cauchy-Schwarz inequality, Lemma 2.7
Iy Lo l2
(2.46) Nua [ 01pvdz| = o(1), 0, p,vdx| = o(A™") and 0, F5tdz| = o(1).
I 11 5

Inserting the estimates above into (2.45) together with Lemma 2.7 yields

la
(2.47) R ( 91pwvwdm> = o(1).
U1
Thus, the combination of (2.44) and (2.47) gets the first estimate in (2.42), and together with which, and the
definition of 6, the second estimate in (2.42) is immediate. Finally, by the second estimate in (2.42), (2.34),
and the fact that || F|l3% = o(1), the third estimate in (2.42) is obtained. O

Lemma 2.9. The solution (u,u',v,z,p,q,y,y') of the system (2.34)-(2.35) satisfies the following estimate
lo

(2.48) 01|v,|2dr = o(1), and consequently / v, |2dx = o(1).
I D.
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Proof. Multiplying (2.38), by —617 and integrating over (I1,l2) by parts yield

15 Iy Iy Iy
—p [ 01| Pdz + oy 0 v vdr + an OrfvaPde — v [ 0 )\2puda
(249) I I l I I

la

2
+iMyB [ Oido|vPde = — / 6, F5udz.
ll ll

By Cauchy-Schwarz inequality, Lemma 2.7, the definition of 0y, ||U|l% = 1, and ||F|l3% = o(1), the following

hold
Iy lo la
/ 0, v, dx| = o(A71), / 6, \?podz| = o(1) and / 0, F5%dx = o(1).
l1 lq 15
Finally, inserting these estimates in (2.49) and by (2.40), the first estimate, and therefore the second estimate,
in (2.48) are obtained. O

Lemma 2.10. The solution (u,u',v,2,p,q,y,y') of the system (2.34)-(2.35) satisfies the following estimates
l2
(2.50) / O2)p.>dz = o(1), and consequently / |pe|?dz = o(1)
U Do
where Do := (ag + 2¢,by — 2¢€) with a positive real number ¢ small enough so that € < bz’ff‘”,

Proof. Multiplying (2.38), by —62p integrating over (Iy,l2) by parts lead to

I Iy Iy la

fua/ 92|)\p|2dx+041ﬂ/ F);pmﬁderalﬁ/ 92|pm|2dxfp'yﬂ/ \20,0pdx

(2.51) b Iy h I
2

+Z/\’}/B dobovpdr = — Fﬁegﬁdﬂf.
l1 ll

By Cauchy-Schwarz inequality, Lemmas 2.7, 2.9, the definition of 0a, ||U|l3 = 1, and || F||x = o(1),

la

/\202vﬁda:

la

eépxﬁdx

l2

F* O>pdx

l2
A dobovpdr
Iy

=o(A7h), =o(1), =o(A"!) and =o(1).

15 I l1

Finally, inserting the above estimates into (2.51) and by Lemma 2.8, the first estimate, and therefore the second
estimate, in (2.50) are obtained. O

Lemma 2.11. Let g € C([l,1s]). The solution (u,u',v,z,p,q,y,y") of the system (2.34)-(2.35) satisfies the
following estimate
lo l2
(2.52) /l 9" (plM]* + alve|® + ulAp|? + Blpe|?) do — 2v8R (/l g’pzvzdx> F () — Ti(ls)
= Ta(l2) — J2(l1) + o(1)
where ¢ € {ly,12} and
{ J1(¢) = 9(C) (MO + alva (O + pxp(O? + Blp=(C)I*) = 298R (9(¢)p= ()T (C))

T2(¢) = 2R (iApg(O) F2()u(C)) + 2R (iAng(O) f°(OP(C)) -
Proof. First, multiply (2.36), by —2¢7,, and integrate over (I1,2) to get

l2 l2 lo
—p/ g(|)\v|2)xdx—a/ g(\vz|2)xdm+2vﬁﬂ? </l gpmvzdx>
15 I 1

l2 l2
+2R (z)\/ gdw%dm) = 2R (/ gFQUIdx> .
l1 ll

11

(2.53)




By several integration by parts and the definition of F? in (2.37), the following is obtained

12
g (pIxo? + alve|?) de — g(la) [pIho(l2) |* + alve(l2)?] + g(lh) [plAo(l)[* + afve(1)[?]

5

lo lo
—278R ( /l g’pmvmdx> — 28R < / gpwvmdx> + 298R (9(l2)p2 (12)Tz(12))

(2.54) 8

ll ll

Iy l2
—27v6R (g(11)p.(11)vL(11)) — 2R (z/\/ gdgvvxd:ﬂ> = 2R (/ g(f* + dgfg)vmd:c>

—op (Mp / 2(f3g)xvdx> 2R (IApg(1) F (12)0(12)) — 2R (IApg(l) £ (L)5(1)

Since v, is uniformly bounded in L?(ly,l2) and ||F||3 = o(1), by Cauchy-Schwarz inequality and Lemma 2.7

lo lo lo
R (i)\ /l1 gdw%dm)‘ =o(1), |Re </11 g(f? +d2f3)%dx>‘ =o(1), R (i)\p/ll (fgg)wvdx>

Substituting the estimatation above into (2.54) leads to
2
| (NP + alunf?) do = g(02) [P0 + a1 + (1) [pIae(t) + e (0P

2.55 1 L2 L2
(2:35) —274R ( g'pzvzdx> — 296N < GP2Vzzdx | + 2vBR (9(l2)p2 (l2)vz(12))
ll ll

—29BR (9(1)p= (1) (l1)) = 2R (iApg(l2) £2 (l2)(12)) — 2R (iApg (1) £2(1)o (1)) + o(1).
Analogously, multiply (2.36), by —2¢p, and integrate over (l1,l2) to obtain and taking the real part, we get

lo lo lo lo
*u/ 9(|Ap[*)zda — 6/ 9 (Ips]?), dz +275% </ gvmpxdz> = 2R (/ 9F3pxdx> :
1 11 15 U1

By several integration by parts and the definition of F*® given in (2.37), the following holds

= o(1).

la
/l g (Al + Blpz|?) da — g(l2) [l Ap(la) P + Blp(l2)1?] + g(lr) [[Ap(1)1 + Blpa (1)]?]
(2.56) B B . B
+27ﬁ% gva:mpwdx =2R gf pwdx — 2R MH/ (gf )wpdx
I Iy I

F2R (Mg (i) £ (12)B(12)) — 2R (idug (L) FU)P(L)) -
Since p, and Ap are uniformly bounded in L?(ly,l5) and ||F|j3 = o(1), Cauchy-Schwarz inequality is imple-

mented to obtain
lg l2
R (/ ngpmdx> ‘ =o(1) and |R (Mu/ (gf5)mpdx> ‘ = o(1).
l1 ll
la

Substituting the estimates above into (2.56) results in
9 (1l + Blps|?) dz — g(l2) [nlAp(i2)* + Blpa(l2)P] + g(la) [1lAp(L)* + Blpa ()]

(2.57) " L
+276R (/l gvmpxdfv> = 2R (iAug(l2) 2 (I2)p(l2)) — 2R (iApg (1) f2(11)p(1h)) + o(1).

Finally, adding (2.55) and (2.57), the desired result (2.52) is obtained. O

Lemma 2.12. The solution (u,u',v,2,p,q,y,y") of the system (2.34)-(2.35) satisfies the following estimates

lo lo l2 l2
(2.58) |\v|?dz = o(1), lv.? = o(1), |\p|?dz = o(1) and |p|?dx = o(1).

11 15 Iy l
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Proof. First, define two cut-off functions 63,604 € C?([l1,ls]) such that 0 < 65,64 < 1 for all € [y, 1] and

1 it zell,a + 2, [0 if xel,a+ 2],
(2.59) 93(”‘{ 0 if z€lap—2ely) @ 94(9”)_{1 if 2 € [ay — 2, 1y).

By taking g(z) = (x — 11)03(x) + (z — l2)04(x), it is easy to see that
g'(x) = 03(2) + 0a(z) + (x — )03(2) + (x — 12)04(x) and g(hh) = g(l2) = 0.
Setting g = (v — 11)05 + (z — l2)0) and considering g defined above in (2.52) lead to

l2

l2
(62400 (oIl + aloa 4 Wl + Blpuf?) d - 205%
l1 ll

(03 + 94)pw%d$>

(2.60) B 2 2 2 S
— | g (plwl® + alvel® + plpl? + Blpa|?) dz +27BR GpTzdz | +o(1).
ll ll

=1 =Ty
Now, adopting (2.40), (2.42), (2.48), (2.50), the definitions of #3 and 6, and Cauchy-Schwarz inequality result
in
(2.61) |Z1] = o(1) and |Zz| = o(1).
On the other hand, since o = a1 + v283, it is easy to see that

lg lo
/ (05 + 04) (c|vs|* + BIps|?) do — 2vBR (/ (05 + 94)p11135dx> =
(2.62) h h

l4 l4
o / (03 + 94)|vx|2dx + 6/ (03 + 04)|yv, — pm\de.
l1 ll

Therefore, substitution of (2.61) and (2.62) into (2.60) result in

la
(2.63) / (05 + 04) (p| ] + arlvg | + p|Ap|® + Blyve — pa?) dz = o(1).

15
Finally, by (2.40), (2.42), (2.48), (2.50), the definitions of 65 and 6, in (2.63), the desired result (2.58) is
obtained. (|
Lemma 2.13. The solution (u,u',v,2,p,q,y,y') of the system (2.34)-(2.35) satisfies the following estimates
(2.64) )P =0(A7%),  |u(l2)* = o(A7?),  |ve(l)]* =0(1) and |vs(l2)]* = o(1).
Proof. Define g € C1([l1,l5]) such that
(2.65) g(l2) = =1, g(h) =1, max |[g(z)|=m, max |¢'(x)| =mj.

me[ll,lg] IE[ll,lg]

By using g in (2.52),

lz l2
(2.66) Ji(lh) = Ti(le) = */ g (p|A]? + alvg > + p|Ap|* + Blpe|?) da + 2vBR </ g’pmvmdfs> +
. I

Iy
J2(l2) = J2(lh) +o(1),

which, together with (2.65) and (2.58), implies that

l2 l2

|9 G0l + alen? + A0 + Blpl?) i = (1) and |a% ( / g'vaxdx> | —of1).

ll ll
Substituting these estimates into (2.66) and by (2.53) leads to

M(ly) + M(l2) = 2vBR (p2(11)02 (1)) — 29BR (po (12)v2(12)) + F2(l2) — Ta(lr) + o(1)

where

(2.67) M(Q) = pXo(OF + alv (O + ulAp(Q? + Blp (O,

and therefore,

(2.68) M(l) + M(l2) < 29B|pe (1) [|va ()| + 2vB[pa (12)| vz (l2) ] + [ T2(l2)| + [F2(l1)| + o(1).
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Now, use the fact that f2 € H(ly,12) C C([l1,12]), f> € HL(I1,l2) C C([l1,12]), and || F|j3 = o(1) (cf. (2.33)),
to obtain

(2.69) (Ol =0(1) and |f2(¢)|=o0(1), where (€ {i1,l}.
Finally, by (2.69), the definition of 75 given in (2.53), and Young’s inequality,

(2.70) { 298P (Ollva (O < ¥*Bloz (O + Blp=(O)1%,
| O] < BoM(QF + 2017 + 5uPw(OF +2ul (O < §olAe(Q)2 + FuAp(Q) +o(1),
where ¢ € {l1,l2}. To get the desired result (2.64), substitute (2.70) into (2.68) and use o = a1 + v28,

2
p [
(2.71) >~ (S + Se)? + arfo. (1)) < o1).
j=1
([
Lemma 2.14. The solution (u,u',v,2,p,q,y,y") of the system (2.34)-(2.35) satisfies the following estimates
I L
(2.72) / (M + eruel?) =0(1) and | (Dol + ealyal?) do = o(1).
0 I

Proof. First, multiply (2.36), and (2.36), by —22%u, and —2(x — L)¥;, and integrate over (0,l;) and (I2, L),
respectively. Since || F|lz = o(1), and u, and y, are uniformly bounded in L?(0,1;) and L?(l, L), respectively,

I Iy Iy it
—/ x (|)\u|2)z dx — cl/ x (|um\2)x = 2R (/ xf2umda:> +2R (z)\/ scfluggdx>
0 0 0 0

=o(1)

and

L L L L
_/12 (x—1L) (l)\y|2)xdx — ¢ /52 (x—L) (|y1|2)m =2 (/12 (x — L)fSyIdm> +2R (z’)\/lz (x —L)f7yxdx) .

=o(1)

Since ||F|j% = o(1), and (Au) and (\y) are uniformly bounded in L?(0,1;) and L?(l, L), respectively,

5
/ (|)\u|2 + 01|um\2) dr — 1y (\)\u(ll)|2 + cl|uz(ll)|2) =
0

1
(2.73) _oR (zA/O (xfl)gcuda:) +2R (ML f (L)a(h) + o(1)

=o(1)

and

L
/l (IM? + calyol?) dx + (2 = L) (INy(l2)* + c2lya (12)|?) =

(2.74) o (l A\ /l (z— L) f7)$ydm> —2R (iA(ls — L) f7(12)7(l2)) + o(1).

=o0(1)
Recalling Remark 2.3, u(l1) = v(l1), v(l2) = y(l2), (2.64) and the facts that
11 L
[fH )l < / |faldz =o(1) and [fT(l2)| < [ |fildz = o(1),
0

l2

the following is obtained
{ Mu(l)? + erfus ()P = o(1),  [Ay(l2)|* + calya(l2)]* = o(1),
R (AL f (1)) | = o(1), R (A2 — L) f7 (12)5(12)) | = o(1).
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Finally, substitution of the estimates above into (2.73) and (2.74), the desired result (2.72) is obtained. O
Now, we are ready to finally prove Theorem 2.6.

Proof of Theorem 2.6. By (2.58) and (2.72), we obtain that ||U|l3 = o(1). This contradicts that ||U|3 = 1.
Hence, (M2) holds true, and this makes the proof complete.

Remark 2.15. Note that the electrostatic/quasi-static approaches in modeling piezoelectric beams discard the
dynamic electromagnetic effects, i.e. u =0 in (E/P/E). Therefore, the reduced model becomes identical to
the one obtained in [20], where two fully-distributed viscous damping terms for the outer wave equations are
considered to achieve exponential stability. However, through the analysis of the section, it can be shown
that only a local damping acting in the middle layer can also lead to an exponential stability result with the
assumption (LD — P). The proof is exactly the same (even simpler) as the one presented above yet it left to
the reader. This is a major improvement of the earlier result.

3. STABILITY RESULTS FOR THE SYSTEM (P/E)

Note that the assumption (LD — E) applies to all results in this section. For simplicity, the repetition of the
assumption in the results below is avoided unless it is necessary to state.

3.1. Well-Posedness. In this section, the well-posedness of the system (P/E) is established by a semigroup
approach. The natural energy of the system (P/E) is defined by

1 fh 1 [r
Bes(t) =5 [ (ol +aalul+ ulp P+ Bve —pa) o+ 5 [ (1l + cala?) do
0 U1

It is straightforward to show that the energy Epg(t) is dissipative along the smooth enough solutions of (P/E),
ie.

dEpg(t L
(3.1) %() = —/ dy |y, |*da.
¢ L

Define the energy space Hpg
Hpp = {(U,z,p,q,y,yl) € (HL(0,1y) x L2(0,zl))2 x Hy(ly, L) x L*(I1, L), v(l;) = y(ll)}
equipped by the norm

l
U3, = Jo! (calval® + plzl? + Blyve — pa|® + plql?) da

(3.2) L
+ fll (C2|y$|2 + |y1|2) dwv VU = (U7 %D, 4q,Y, yl) € HPE-

This norm is equivalent to the standard norm of Hpg (the arguments in the proof of Lemma 2.2 can be followed
mutatis mutandis). Define the unbounded linear operator Apg : D(Apg) C Hpr — Hpr by

v z
4 % (avxw - ’Yﬁpm)
A P 1 . YU = (v,2,p,q,y,y") € D(A
re |y L (Bps — ABuas) (v,2,0,¢,9,y") € D(ApE)
Yy y!
1 1
Yy CoYxa — dly

with the domain
U := (’Uazapaqay7y1) S HPEa Z,q € H£(07l1)7 yl € H}%(O;ll)a v,p € H2(07l1) mHle(07l1>7 }

y e H*(ly, L)N Hy (I, L), awy(lh) —vBpa(lh) = caya(l), Bpa(lh) =vBuvs(l), v () = z(lh)

Remark 3.1. Obviously as in the previous section, the transmission conditions

avg(l1) — vBpz(li) = c2yz(l1), and Bpy(lh) = vPvL(ly),

are equivalent to the transmission conditions

D(Apg) = {

a1vz(l1) = coye(l), and a1py(l1) = covyz(l1).
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If (v,p,y)" is a sufficiently regular solution of the system (P/E), the system can be transformed into the first
order evolution equation on the Hilbert space Hppg

(3.3) Uy = AppU, U(0) = U,

with U = (v, ve, p, pt, y, y¢) and Uy = (vo, v1, o, P1, Yo, y1)- By the analogous arguments in Subsection 2.1, the
solution of the Cauchy problem (3.3) admits the following representation

U(t) = eAPel,, ¢ >0,
which leads to the well-posedness for (3.3).
Theorem 3.2. Let Uy € Hppg, the system (3.3) admits a unique weak solution U satisfying
UeC'URT, Hpg).
Moreover, if Uy € D(Apg), the system (3.3) admits a unique strong solution U satisfying
UecC'RT, Hpr)NC°'(RT, D(Apg)).

3.2. Strong Stability. In this section, the strong stability of the system (P/E) is investigated. Here is the
main result.

Theorem 3.3. The Cy—semigroup of contraction (etAPE) is strongly stable in Hpg, i.e., for all Uy € Hpg,
the solution of (3.3) satisfies tlim €472 U3 = 0, if and only if
— 00

(5C) Tt e

o 1 Vny,n_ €N

where the two positive real numbers oy and o_ are defined by

(3.4) o = \/(Pﬂ +p0) + (pB — po)® +42Bp \/(pﬂ + ) = (pB — po)? + 497 Fpp.

2Ba; 2Ba;

Proof. It follows from the Arendt-Batty theorem (see page 837 in [6]), since the resolvent of Apg is compact
in Hpg, the system (P/E) is strongly stable if and only if Apg does not have pure imaginary eigenvalues, i.e.
o(Apg) NiR = 0. By Section 3.1, 0 € p(Apg) is immediate. However, o(Apg) NiR* = () must be proved. For
this purpose, for a real number A\ # 0 and U = (v, 2,p,q,y,y') € D(Apg), consider

(3.5) AppU =iAU,

which is equivalent to the following system

(3.6) z=7i)vin (0,11), ¢=1i\pin (0,1;), and y'=i\yin (I3, L),
and

p/\Q,U + Qg — VBPze = 0,
(3.7) pA?D + Bpae — YBV2z =0, x € (0,11),
>‘2y+02yasx _dlyl :07 S (lle)v

From the identity
L
R(ArpU, Uy, = [ dily'Pda.
5

and (3.5),
L
(3.8) 0=R(AU,U)y,, =R(ApeUU)y, =— [ dily'|*ds.
Iy
Thus,
(3.9) diy' =01in (I,L), and consequently, y' =y =0in (a1,b;)

by (3.6), (LD — E) and (3.8). Considering (3.7);, (3.9) and the unique continuation theorem, y = 0 in (Iy, L).
Moreover, since y € H?(l1,L) C CY([l1, L]), y(l1) = y.(l1) = 0. It follows from the continuity condition and
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Remark 3.1 that v(l;) = v,;(l1) = pz(l1) = 0. Using the fact that @ = a1 ++283, (3.7), and (3.7),, the system
(3.6)-(3.7) reduced to

Ve = =A% (pv + yup)
(3.10) Doz = —)\Qafl (7/)7) + uaﬂ_lp) , x€(0,0),
v(0) = p(0) = v(l1) = ve(l1) = p2(l1) = 0.

By differentiating (3.10); twice, using (3.10)2 and (3.10)3, the following system is obtained

(3.11) 01 B0z + )\2(P5 + )V + NPXLU =0,

. U(O) = vxz(o) = U(ll) = vz(ll) = 'U:rzz(ll) =0.
The characteristic polynomial corresponding to (3.11) is
(3.12) q(3) = a1 B + N2 (pB + pa) s + pupA.

and therefore, define
qo(m) := a1 8m? + X2(pB + pa)m + ppA*.

Since (pB + pa)? —4Bagpup = (pB — pa)? +442B2up > 0, the polynomial go has two distinct real roots m_ and
my

my = —0’3_A2 and m_ = —0? \?
where oy and o_ are defined by (3.4). Observe that m, < 0, and by a > 28, m_ < 0 is immediate. Setting
sy = y/—my and »_ = /—m_, q has in total of four roots iscy,—is,, i, —ix_. Hence, the general
solution of (3.11) is

v(x) = ¢ 8in(se4.x) + 2 cos(se1x) + cgsin(z_x) + ¢4 cos(s_x)

where ¢; € C, j = 1,---,4. By the boundary conditions in (3.11) at « = 0 and %JQF — %% #0, it is deduced
that ¢ = ¢4 = 0. Moreover, by boundary conditions in (3.11) at z = I,

c1sin(seply) + ezsin(>_11) =0,
(3.13) c1ey cos(seyly) + ez cos(x_1l1) =0,
1363 cos(seqly) + c33¢3 cos(sc_l) = 0.

Now, by (3.13), and (3.13),,

T_ T (g cos(zeply)  se_cos(se_lq)
M{(er,es)” = (0,0)7, where M = (%i cos(seyly) 33 cos(se_ly).

It is easy to see that det(M) = sc_scy (32 — 53 ) cos(sc_11) cos(se411). Utilizing 33 — 5% # 0, it is observed
that det(M) vanishes if and only if cos(sryl1) = 0 or cos(3_1;) = 0. We split this into three cases:

Case 1: Consider cos(s>_l1) = 0 and cos(s4ly) # 0. It follows from (3.13); and (3.13), that ¢; = ¢3 = 0.
Consequently, U = 0.

Case 2: Consider cos(s>_{1) # 0 and cos(seyl1) = 0. It follows from (3.13); and (3.13), that ¢; = ¢3 = 0.
Consequently, U = 0.

Case 3 Consider cos(s4l1) = 0 and cos(>_11) = 0. Then, there exists ny,n_ € N such that

2 1 2n_ +1
(3.14) ny = n;—lj_ m and »_ = n2ll+ .
By ¢ = ¢4 =0, and (3.13),, (3.14), the general solution of (3.11) is given by
2 1 2n_+1
(3.15) v(z) = ¢ | sin Pt ) tein (222
2[1 2ll
where ¢ € C. On the other hand, by (3.14) again,
2 1 2 1
(3.16) P _ Ok _ el eN, and A= o0t
w_ o_ 2n_ +1 2l104
where o4 and o_ are defined by (3.4). Hence, o (Apg) NiR = @ if and only if (SC) holds. O
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3.3. Exponential and Polynomial Stability Results. The aim of this subsection is to prove the exponential
and the polynomial stabilities of the system (P/E) if (LD — E) holds and under an appropriate assumption on

the ratio Z—i’, which depends on its arithmetic nature. Let us consider the following hypotheses

Hgyp) Assume that & € Q is such that 2+ = & where ged(€y,€-) = 1, and &4, £ are even and odd
P o_ o_ & + +

integers, respectively, or the other way around.
(Hpo1) Assume that 7= is an irrational number. Then, suppose that there exists w (Z—j) > 2, depending on

Z—f, such that for all sequences A = (&1, €20 )nen € (N x NN with & ,, ~ &, for sufficiently large n,

there exist a positive constant c (Z—f, A) and a positive integer N (g—f, A) , depending on 7= and the

sequence A, such that

0-7-‘1- _ fl,n
0— 52,71

>C(Z7A>,vnzN("+ A).
g

o

Remark 3.4. (i) Note that it will be shown in section 4 that the number w (‘7*) 1s indeed an irrationality
measure of the quotient Z—f More explanations on this notion will be under way as well as examples and some
references. (ii) Note also that (Hgxp) or (Hpo1) implies that (SC) holds.

The main results of this section are the following theorems.

Theorem 3.5. Assume that (LD — E) and (Hgxp) hold. Then, the Co—semigroup of contractions (etAPE)tzo
is exponentially stable, i.e. there exist M > 1 and w > 0 such that

(317) ”etAPEUO”'HPE < Mei(m”UO”HPE’ YUy € Hpe-

Theorem 3.6. Assume that (LD — E) and (Hpo1) hold. Then, there exists a constant C > 0 such that the
energy of the system (P/E) satisfies the following estimate for all t > 0

C

2
&),4
C

(3.18) |et4PET, |2 <
4o
t

By ([27], [40] for Theorem 3.5), or ([9], [31] for Theorem 3.6), the Co—semigroup of contractions (e"A7=)
on Hpg satisfies (3.17) or (3.18) if the following two conditions hold

||U0H2D(APE)7 VU € D(ApEg),

t>0

1, . 1 ) {=0, for Theorem 3.5,
(N2) ilelli VH (A = Apgp) " lley <oo  with 0 — 4o (%) 4. for Theorem 3.6,

Since it is already proved that iR C p(Apg) (see Section 3.3), it remains to prove the condition (N2), for
which a contradiction argument is applicable. Suppose that (N2) is false. Then, there exists a sequence
{(N",U™)}n>1 C R* x D(Apg) with

n n n n n n n n T
(3.19) A= oo and (Ul = || (0", 2" 0" 0" 9" y"") llaes =1
such that
(3.20) )\fl (A" — App)U" =G" = (gl’"’gl"’g37n7g4’n,g5’n,gG’n)—r —0 in Hpg.

For simplicity, index n is dropped for the rest of the proof. Now, (3.20) is equivalent to
iw—z=A"fg" -0 in H}(0,1),
(3.21) ip—q=A""t¢> =0 in H(0),
iy —yt =A% =0 in Hi(lh,L)
and
IANPZ — QUgp + VBDzz = pA P92 — 0 in  L2(0,1,),
(3.22) iNG = BPaa + YBVze = pA g =0 in L*(0,11),
iINY = oy +diyt =2 g% =0 in L2(Iy, L).

18



Combining (3.21), and (3.22), leads to

(3.23) M2y + Coypn — iMd1y = A H(—iNg® — dig® — ¢5).
Lemma 3.7. The solution (v, z,p,q,y,y") of the system (3.21)-(3.22) satisfies the following estimates
L L b1

(3.24) / di |y Pdz = o(A7Y), / dy|\y|2dz = o(A7Y), / IAy|2dz = o(A7F).

15 151 ay
and
(3.25) / Yz |?dz = o(A7F)

D.

where D, := (a1 + €,b1 — €) with a small enough € > 0 such that ¢ < blfT‘“,

Proof. The proof is split into two steps.
Step 1. For obtaining first estimate in (3.24), take the inner product of (3.20) and U in Hppg, and use the
fact that |U||lxp, =1 and [|G|l3,, = o(1),

L
. 1 _

(3.26) /l duly P = —R ((ApsU, Uhy,,,) = R (A = App)U, Uy, ) = 3R (6, Uy, ) = oA,

1
Next, multiply (3.21), by /di, and use the first estimate in (3.24) and [|G|l3 = o(1). This leads to the second
estimate in (3.24). Finally, the second estimate in (3.24) with (LD — E) yields the last estimate in (3.24).
Step 2. For proving (3.25), let 0 < € < %5 and fix the cut-off function 65 € C2([ly, L]) such that 0 < 85(z) <
1 for all z € [I4, L], and

1, i xefar+eb—¢,

05(x) o { 0, if xe€ [ll,al] U [bl,L].

Now, multiply (3.23) by 657, integrate by parts over (I1, L), and use the definition of 85 to obtain
L L L L
(3.27) 05| \y|?dx — cz/ 05|y |*dzr — coR ( 9gywydx> =-R ()\_Z/ (iAg° + d1g® + 96)95yd:c) .
l1 l1 l1 ll

It is know that ||G||#,, = o(1) implies that (Ay) is uniformly bounded in L?(l;, L) by (3.21), and y, is uniformly
bounded in L?(l;, L). Therefore, by Cauchy-Schwarz inequality, (3.24), and the definition of s, |U||%,, = 1,

L L 1 (f
R{ | Ogweyde || =5 [ O5(yP)ede| = |5 | 65"yl de] = o(A72),
Iy 2 l1 2 11
L
and A_Z/ (iAg® + d1g° + ¢%)0s7dx| = o(A7F).
5
Substituting the above estimates into (3.27) and using (3.24) lead to
L
/ 05|y, |2dz = o(A7F).
15
Finally, by the definition of 65, the desired result (3.25) is obtained. O
Lemma 3.8. The solution (v, z,p,q,y,y") of the system (3.21)-(3.22) satisfies the following estimates
L
(3.28) / (IMy]? + calya|?) de = o(A~ ),
5
(3.20) Mo = 0(A"5), Jua(B)? =0(A"%) and |pa(L)]* = o(A"3).

Proof. The proof is split into three steps.
Step 1. Letting hy € C'([l1, L]), the following estimate is targeted to prove

L
- /l B (Il + ealys ) de + B (L) (gD + calya (D))
—ha(l) ([Ay(1)]” + e2lya (L) ]?) = 2R (N ~“ha () g” ()7(l)) + o(A7%).

(3.30)
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First, multiply (3.23) by 2h;7, and integrate over (I1,L) to get
L L L
[ () + sl o =20 (3 [ iy | = 20 (3¢ [ (0" +dig? + g ).
11 Iy l

As the Integration by parts is implemented,

L
*/l Ry (Il + ealysl?) do + ha (L) (ML) + ealya (L)*) = ha(la) (Ay(10)* + e2lya(l)]?)

1 I L L
(3.31) _om <z>\/ d1h1yy$d:c> — _oR <)\—e/ (drg® _,_gﬁ)h%dx) + 2R (i)\l—é/ (h1g5)1yd$>

l] ll ll
+2R (IN " ha (1) g° (1)F(1h)) -

Since y, is uniformly bounded in L2(l;, L) and ||G||%,, = o(1), by Cauchy-Schwarz inequality and (3.24), the
following estimates are immediate

L L
—2R (m/ dlhlyymdx> | = o(A7%), |§R <A€/ (dig® + gﬁ)hyxdx> | =o(\7H),
ll ll

L
R (M /l (hg5)xydx>| =o(A7H).

Finally, substituting these in in (3.31) lead to the desired equation (3.30).
Step 2. For this step, (3.28) is aimed to be proved. First, define the following cut-off functions 6g,67; €
C*([l1, L)) by

(3.32)

1 if zefh,a+¢|, 0 if zelly,ar+é),
96(”0)_{ 0 if sclas—er] 4 97(5”)_{ 1 if z€lag—e L)

so that 0 < 6,07 <1 for all z € [Iy, L].
Following the the same arguments as in Lemma 2.12, take hy(x) = (x — 1)0s(z) + (z — L)87(z) in (3.30).
This, combined with Lemma 3.7, results in (3.28).
Step 3. Finally, to prove (3.29), take hy(z) = © — L in (3.30) and use (3.28) to obtain
Ay (1)]? + calya ()7 = 2R (=X g2 (1)7 (1)) + 0o(A2).

It follows from Young’s inequality that
_ _t _ 1 _t
Ay + ealyz ()P < 227 6> (W) Ay ()] + o(A72) < 237 %(g° (L) + M7 +0(A72).

Now, use g° € Hx(l1,L) C C([l1,L]) and ||G|3,, = o(1) to obtain |¢g°(I1)| = o(1). This, together with the
estimate above, provides the following estimate

4

1 e
FMI + ey ()] < o(A72).

Hence, (3.29) is concluded from recalling Remark (3.1). O
For the next result, substitute (3.21), and (3.21), in (3.22); and (3.22),, respectively, so that the following
system is obtained,

(3.33) { PA20 + Qg — VBPza = — A" (pg® + irpg")
BA*D + BPoa — VBVze = —A " (g + iAng?).

Lemma 3.9. The solution (v, z,p,q,y,y') of the system (3.21)-(3.22) satisfies the following estimate

15 ’

U Iy L
30 o ePdoti [P rar [CuPdoss [ - paPde - 2un )P < o(x )
0 0 0 0

Proof. First, use the multipliers —22v, and —2zp, for (3.33); and (3.33),, respectively, and integrate over
(0,11) to get

l1 ll ll ll
—p/ (| |?) pdz — a/ z(Jvg|?) wdz + 298R (/ xpmvmdx> = 2R ()\_E/ T (pg2 + i)\pgl) vxdx> ,
0 0 0 0

20




l1 ll l1 ll
*ﬂ/ 2(|Ap|*)oda — 5/ 2(|pe|?)ada + 2vBR (/ xvmpmdx> =2R (/\e/ z(ng* + iAugg)pmde) :
0 0 0 0

Next, integrate by parts the identities identities above, and use (3.29) and o = ay + 728,

ll ll l1 ll
oPdetan [CoaPde 2 [P - 2R | [ prade
0 0 0 0

1y 11 Iy
—2vB%R (/ xpwvmdm> = 2pR ()\_e/ xg%wdx) — 2R <i/\1_€p/ (chl)zvdm> +o(\™
0 0 0

l] l1 ll
IAplPdz — plxp(L)1? + B | |pel*dz + 27BR (/ wvmpzdm> =
0 0

(3.35)

[VIEN
~—

0

(3.36) . .
2uR ()\e/ xg4pxdx> — 2R (i)\le,u/ (xg‘?’)mpdx) + 2R (i/\lfelmgig(ll)ﬁ(ll)) + 0(/\’5).
0 0

Since |G|, = 0(1), and vy, ps, Av, Ap are uniformly bounded in L?(0,1;),

ll ll
R )\_é/ g°T.dz || = oA, |20 (i)\l_ep/ (xgl)xvdx>‘ =o(A7H),
0 0

ll ll
R /\—e/ g 'pydr || =o(X7H), |R (i)\l_eu/ (ng)mde?) =o(A7Y).
0 0
Thus, (3.35) and (3.36), together with the last two estimates, reduce to
2 b 2 h 2
(3.37) / [Av] dz+u/ [Ap| +a1/ |vg|“dx + B |Yvs — o] da

2
—pla | Ap(11)]? = 2R (IA "l pg® (1)B(1)) + o(A72).
On the other hand, since g> € HL(0,11) C C([0,11]) and ||G||%,, = o(1), by Young’s inequality
2R (X0 g (1)B(1)) | < L Ap(i) 2 + Lph=20g3 @) < L p(l) 2 + o(A~2).

Finally, substituting the estimate above in (3.37) lead to (3.34). O

For the next result, another form of (3.33) is needed by considering o = vy + v2f:

(3.38) A2 pv + 0 Ugp + YuNZp = XTG4+ iNTTEG2,

' N2 pap 4 o Bpee + pyBA2v = ATEGP A TG,
where
(3.39) G' =~ (pg* +ug"), G*=—(pg" +ug’),

G® = — (aug* +pBg°), G* = —(aug®+pyBg") -

Lemma 3.10. The solution (v, z,p, q,y,y*) of the system (3.21)-(3.22) satisfies the following asymptotic esti-
mate

er(l)p(ly) = —e2(l)o(A~THY) — e3(11)o(A~T) — le4<zl>o<xﬁ>

Iy 1
(3.40) —)\4/ (e3(s)G'(s) + ea(s)G?(s)) ds — i)\lff/ (e3(s)G?(s) + ea(s)G*(s)) ds
0 0
- es(l)p(l) = feﬁu ) <x<%+l>> = er(l)o( ) — ex(l)o(A )
(3:41) -2t ; (e7(s )+ es(s)G?(s)) ds — i)\l_z/o (e7(s)G?(s) + es(s)G*(s)) ds,
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with

cos(sry) — cos(ss_ by cos(sx_) — b_ cos(ss
61(5): ( ;—)_bi( )7 62(8): + ( b)_bi ( +)’

»_sin(ssey) — sy sin(ss_)

+
 bysey sin(sxo) — bz sin(ssy)

e3ls) = 5 €4(S) = )
(3.42) (%) sy (by —b-) (o) sy (by —bo)
: by cos(sseq) — b cos(zs_) cos(ssy) — cos(za_)
es(s) = ,  es(s) = —bib_ )
by —b_ by —b_
byb_ (sepsin(sse_) — s_sin(ss»y)) by s sin(ssey) — b_sey sin(ss_)
67(8) = b _ b ) 68(8) = b _ b ?
sy (by —bo) s (by —bo)
and
2 2 2 2
. — Ap a1 = — Ap
(343) »_ = Ao_ Hy = >\U+, b+ = W and b_ = W

where o4 and o_ defined in (3.4).

Proof. Firstly, note that (3.4) and (3.43) directly imply that

ap— pB+\/(ap—pB)* + 4> Bup

_ap—pB—/(an—pB)* +44*Bup

be = 2By #0 b 20y #0
_ 2 232
(3:44) q p, —p_ = Viop p? T L b =P 20,
o77 I

sy =No,0_#0, and X _2+ #0.
» o_

which, indeed, better explains the expressions of e;,i = 1,---,8 in (3.42).
Let UPE = (v,v4,p,pz) . By (3.29),
-
(3.45) UPE(0) = (0,02(0),0,p2(0),  UPE(1) = (oA~ D), 00~ %), p(1), oA 5))
and therefore, the system (3.38) can be written as
(3.46) UPP = NPEUPE L @
where
0 1 0 0 0
X g X ALY a2
PE __ P P . + A TG
(3.47) N©™% = 0 1 0 0 1 1 and G = 0
Aoy 0 7A2Za 0 ples: + it
[e5] [e5]

Notice that the eigenvalues s of the matrix N*F are the roots of the following characteristic equation

q(>)
S() = —=
(%) orf
where ¢(5¢) is defined in (3.12). This characteristic equation has four distinct pure imaginary roots is_, —is_, isx,,

—is, where s, and s_ are defined in (3.43). Since the eigenvalues of N¥'F are simple, N©'¥ is a diagonalizable
matrix, i.e., NPF can be written as NTZ = PNJEP~! such that

1 1 1 1 iy 0 0 0
pP= i%+ —i%+ 13_ —ix_ NpE _ 0 —i%+ 0 0
- by by b_ b_ ’ Lo 0 0 13— 0 ’
i%+b+ —7:%+b+ ix_b_  —ix_b_ 0 0 0 17
and )
—p B 1 i
“ib_ o
pio_ L e b
20y —b_) | b, %= 1 L
=




where by and b_ are defined in (3.43). Therefore, for all s € R, E(s) :=
B(s) = V"0 = (Ey(s))

(3.48)
with

(3.49)

Ey1(s) = Exa(s) =

by cos(ss_) — b_ cos(ssy)

w_si(by —b_)

by —b_

cos(ss4) — cos(sx_

E13(5) - ( ;—) b ( ) ’
+ - —

2y b sin(ssey) — by sin(ss_)
Eo(s) = b — b
Eaa(s) = bib_ (sey sin(ss_) — »_sin(ssy))

- s sy (by —b_)

by sin(ssey) — b_sey sin(ssx_)

Eza(s) =

E24(S) = E’lg(s)7 E31(8) = —b+b,E13(S),
E41 (S) = —b+b_E23(S), E42(S) = —b+b_E24(8).

NPE

s = PeN{"sP=1 o1 equivalently,

1<i<4 1<j<4

_ byseysin(sse_)—b_3_ sin(sscy)
ElQ(S) - s34 (by—b_) ’

Buu(s) = 2=y,

3 sin(ssx_)—sy sin(ssxy)
Ens(s) = D= :

b cos(s»y)—b_ cos(ssx_)
by —b_

E33(8) = E44(8) =

b_s_ sin(ssx_)—by sy sin(szcy)
E43( ) by —b_ )

b

By the classical arguments from the theory of ordinary differential equations, the solution of (3.46) is given by

5
UPE(z) = N"E @) PE (L) / NTE @) G (5)ds.
with l
1
UPE(O):G’NPEIIUPE(ll)f/ e N5 G(s)ds
0

Next, substitute (3.45) and (3.47) and (3.49) into the above equation to obtain

0 o(A~(5+1) 0
=0 _ pn) "](j(lf) [ B NG+ TG | 4
pz(0) o(A~ 1) ’ ATEG(s) + 0N TEGH (s)

This together with (3.49) yields
Bra(—11)p(1) = ~Eua(~1)o(A~ ) = Bia(—1)o(x~*) — Bua(—t)o(x~)
,)\J/O (E12(—5)G'(s) + B1a(—5)G?(s)) dsfi)\lfefo (Era(—5)G2(s) + Era(—5)G(s)) ds,

and
Egg(—zlgp(zl) = —F31(—l)o(A~ (T D) — E32(—11)O(A—%)l — Ess(—l1)o(A™ 1)
_)\—e/ (E32(—5)G'(s) + E34(—5)G?(s)) ds — i)\l_z/ (E32(—5)G?(s) + E34(—s)G*(s)) ds
0 0
which, thus, lead to (3.40) and (3.41). O

Lemma 3.11. The solution (v, z,p, q,y,y*) of the system (3.21)-(3.22) satisfies the following asymptotic esti-
mates

(3.50) (cos(ly 324 ) — cos(ly32_)) Ap(ly) = o(A™ %),  (by cos(lys24) — b cos(lyz_)) Ap(l) = o

Proof. First, the following estimates are immediate by (3.42), (3.44), (3.39), and ||G||x,, = o(1
[ea(l)oA =) = oA~ D), ea(li)o(A~ )| = o(A=EFD),fea(l)o(A7 1))
lea(l)o(A=(4 +1))l = oA, er(l)o(A™ 1) = oA, fes(l)o(A7T)| =

(3.51) / s) + ea(s)G%(s)) ds| = o(A~(FY),

/ 1 es()G3(s)) ds| = o(A~(1+0),

ENGSEFNEN
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Now, integrate by parts to obtain

L i\1—£2
1—¢ 5 NG () ny A
iA /0 e3(s)G*(s)ds = o —b) b+—%_ cos(ly2_) —b_ PR cos(ly34)
Z‘)\lff

l1 r
» _
T (b —b) /o b cos(sse) b COS(S””] Gole)ds
I 14 4(1 -
=t [ 16 = O |2 o) — 2 cote )
| P r_
10 hr
_Z/\—/ = cos(l15e4) — s COS(ll%)] Gi(s)ds,
0 _

sy (by —b-)

%_%+(b+ - b_) | 2+
1—¢ AN TR b GR (1) L2 o
iA / 7(s)G?(s)ds = =) | cos(ly_) P cos(ly74)
1—¢
I b / [ os(ss_) — = cos(s%_k)} G2(s)ds,
rn_ %+ + - b P s
1—¢ 4( _ NG () - g
iA / s(s)G*(s)ds = PR (A by PN cos(lyse4) — b e cos(lys_)
iat—¢ P 4
T b b)) / { — cos(sxy) — b_z cos(sz_)] G, (s)ds.
Next, by (3.51) and G%,G* € H} (0,1 ([ 1])s

W= [ sty < ‘M’Q(l)) 4 25 conlles) =0 coslo) |

H_A (b+ —b_ r_ Ay
it h P _ 9 —(140)
+|— by — cos(ss_) — b_— cos(ssy) | G5(s)ds| < o(A ),
sz (by —b-) Jo - e
(3.52) h INTEGH(L) [ ny
i/\174/0 es(s)G(s)ds| < ‘}”{Jr(b*F_b) L@ cos(lysy) — Zcos(h% )”
bl [ [ eostties) = 2 costtoe )| @hsyas| < ota )
0 =0 o cos(lizey) — —=cos(ly3e-)| Gy(s)ds| <o )
h N b G2 (1y) [
'Alff/ 2 d ¢ + 1 7+ lise ) — 2= I
i ; e7(s)G(s)ds (b —b ) | cos(lys_) PR cos(lysy)
-y1—¢ 15
+ M/ dad cos(ssx_) — il cos(sxy)| G2(s)ds| < o(A~H0),
sy (by —b) Jo |- oy
(3:39) e [ 4 NG () x s
i\1— < |22 T\ gy 2= _p 2t .
A /0 es(8)G*(s)ds| < ‘%%+(b+ . [b+ PN cos(lysp) — b oy cos(ly )H
+ W/ll b £cos(s% )—b ﬁcos(s% )| GH(s)ds| < o(A~(1F9)
ey (by —b) Jo | oy R e B .
Finally, (3.50) follows from (3.44) and substituting (3.51), (3.52) and (3.53) into (3.40) and (3.41). O

Lemma 3.12. Assume (LD —E) . Let £ =0 (if (Hgxp) holds) or { = 4w (Z—f) —4 (if (Hpo1) holds). Then,
the solution (v, z,p,q,y,y") of the system (3.21)-(3.22) satisfies the following estimate

(3.54) |Ap(l1)] = o(1).

Proof. Since £ > 0, it is easy to see that |[Ap(l1)| = O(1) from (3.37). Now assume that (3.54) does not hold.
Then, there exists a positive constant cst and a subsequence such that |Ap(l1)| > est. By (3.50),

cos(lysey) — cos(lyse_) = O(A_g) and by cos(lysey) —b_cos(ly_) = 0()\_£)7
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from which, the following is obtained

M) (S260) = (2000 - o= (1 31).

From (3.44), det(M(b4,b_)) = by — b_ # 0, and thus,
cos(lyser) = o(A"7) and cos(lyx_) = o(ATT).

This together with (3.43) imply that there exists nl,nl € Z such that

2nk +1
)\:M (A1) and A= - O(Afﬁ)
20’+l1 20'_11
1 1

Since A\ is large enough, i.e., A ~ (27;;:;1)” ~ (2;1;:1)”,

(271_1F + )w e 2nt +1)m e

—_— A = — AT,

201l +o(A7) 20 1 +o(A7)
and therefore,
3.55 ol +1) - (2n! +1)7E = o(A~%).
+

g_

o Assume that (Hgxp) holds and take ¢ = 0. Then, by (3.55)

2 é- —(2n_+1
&
It is known that [(2n} +1)6- — (2nL 4+ 1)&4| > 1 since (2nl 4+ 1)&, is an even number and (2n) + 1)¢_ is an

odd number, or (2nL +1)&; is an odd number and (2n} + 1)¢_ is an even number. However, this contradicts
with 5% < o(1). Consequently, (3.54) is obtained as (Hgxp) holds.

1 1
e Assume (Hp,1) and choose ¢ = 4w (Z—j) — 4. Since \ ~ (Q;L;:_l?ﬂ ~ (QZ;_J??T{

and by (3.55),

2nt +1 (ot
c MLl o(e)
o 2n2 +1
However, the contradiction ¢ (U—* A) < o(1) is immediate by (Hpo1) with the sequence A = ((2n} + 1,2nL +

1))nen. Consequently, (3.54) is obtained as (Hpo1) holds.
U

Proof of Theorem 3.5. Assume (Hgxp). Then, (3.28), (3.34) and (3.54) results in ||U||%,, = o(1), which
contradicts by (3.19). Consequently, the condition (N2) holds true.
Proof of Theorem 3.6. Assume (Hpo1) and take ¢ = 4w (Z+) — 4. Then, (3.28), (3.34) and (3.54) result

in||U||xp, = o(1), which contradicts by (3.19). Consequently, the condition (N2) holds true.

4. TLLUSTRATION OF THE HYPOTHESIS (Hpo)

In this section, some examples are provided for the hypothesis (Hpo1) to hold true. For this purpose, we
start with the notion of badly approximable real numbers.

Definition 4.1. [10, Definition 1.3] A real number £ is badly approximable if there is a positive constant c(§)
such that for every rational number g #+&,

p|_ <
(4.1) ‘5—’ >%.

q q
It is well known (see [10, Theorem 1.1 and Corollary 1.2]) that rational and irrational quadratic numbers are
badly approximable. However the set B of badly approximable numbers is larger since ¢ € B if and only if
the sequence{x,, }nen is bounded, denoting [xg,x1,- -+ , Ty, -] its expansion as a continued fraction, see [10,
Theorem 1.9]. Note also that the Lebesgue measure of B is equal to zero.
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Now, by Definition 4.1, it safe to deduce that if Z—f is a badly approximable irrational number, (Hpo)
holds with w(g—f) = 2, and consequently, Theorem 3.6 yields a polynomial energy decay in t~/2. The case
Z—J_r ¢ B, though, requires the notion of the irrationality measure (sometimes called the Liouville-Roth constant

or irrationality exponent). For this, recall the following result from [11].

Definition 4.2. Let £ be an irrational real number. Then, the real number p > 1 is called to be the irrationality
measure of &, if there exists a positive constant C (&, u,€) for every positive real number € such that

p| _ C(& p,e)
e e

The irrationality exponent p(§) of € is defined as the infimum of the irrationality measures of €.

(4.2) , Vp,q € Z with ¢ > 1.

Notice that p(§) is always > 2, see [10, Theorem E.2]. A direct consequence of this definition is that if
7+ ¢ B is an irrational real number such that its irrationality exponent p(€) is finite, then (Hpo1) holds with
w(Zt) = p(Z:) + ¢ for any € > 0. Let us then give some examples of irrational real numbers with finite
irrationality exponent. First by the Roth’s theorem, for every algebraic number of degree > 2, u(§) = 2, see
[10]. However, for many irrational real numbers &, the exact value of p(§) is not explicitly known but some
upper bound for their irrationality exponent is available, see Table 1. Note that v(£) is an upper bound of u(§)

if u(&) < v(§), therefore, we automatically have
g P C(€ p.e)
q

q”(f)+5 ’
for all € > 0. Consequently if v(€) is finite, (Hpo1) holds with w(Z+) = v(Z+) + ¢, for any € > 0.
Now, in order to give other illustrations stated in the literature, an equivalent formulation of the irrationality
measure, frequently used as the definition of the irrationality measure, may be needed, e.g. see [51, 55].

> Vp,q € Z with ¢ > 1,

Lemma 4.3. Fiz an irrational real number € and a real number p > 1. Then, the following are equivalent
(1) For every positive real number ¢, there exists a positive constant C(&, p, &) such that (4.2) holds.
(2) For every positive real number €, there exists a positive integer N (&, u, ) such that

(4.3) e V.0 € Z with g 2 N(E,1,9).
q
Proof. “(2) = (1):” Fix ¢ > 0 and suppose that (1) does not hold. Then, for all n € N*, there exists p,, ¢, € Z

with g, > 1 such that

q,UF‘rE ’

Pn 1 *
- < —F, Vn € N*.
’5 Qn | nqzth
This trivially implies that
1
‘g_pn va VTZEN*,
an n
and consequently, 2= converges to £ as n goes to infinity. Therefore, ¢, (as well as p,,) approaches infinity as

an
n goes to infinity. For large enough n , ¢, will be greater than N (&, u,¢). As (2) holds, by (4.3), the following

is deduced )

—) <
e

p 1 *
576 SW’ Vn € N*:q, > N(§, s €),

which leads to a contradiction by letting n go to infinity.
“(1) = (2):” For a fixed € > 0, assume (1) with §. Then, there exists a positive constant C(, p, 5) such that

C b ’g
’5—”‘ > CorE) v gezwithgz 1,
q qr 2
which is equivalent to
C 9 7§ % .
(4.4) ‘g—p'>(€fi‘+§)q7 Vp,q € Z with ¢ > 1.
q q

Since C(&, p?, %)q% approaches infinity as ¢ goes to infinity, restrict ourselves to ¢ such that

€\ =
C(fa H, 5)‘]2 2 ]-»
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£ upper bound of u (€) | Reference
T 7.10320... [55]
2 or T 5.09541... [56]
m(2) 357455391 33]
n(3) 5.116201 B
¢(3) Apérys constant 5.513891 [44]
Lng(2) g-harmonic series 2.9384 [34]
he(1) g-harmonic series 2.4650 [57]
To(b™") = tub" ', b>2and
- 4 1]
ty, is the n — th term of the True-Morse sequence

TABLE 1. Upper bounds of some irrationality exponents

or equivalently
E._2
q Z C(gnuai) €.
By choosing N (&,¢) > C(&, u, %)_5, (4.4)implies (4.3) for ¢ > N(¢,¢). O
In relation to Remark 3.4, the following equivalent statements can be formulated

Lemma 4.4. Let us fiz £ an irrational real number and a real number v > 1. Then the following results are
equivalent:
(1) There exists a positive constant C(&,v) such that

fp‘>C’(§V,1/), Vp,q € Z with g > 1.

q q

(2) For all sequences A = (D, qn)nen € (N x NN with p, ~ q, for sufficiently large n, there exist a positive
constant ¢y (&, v, A) and a positive integer Ny (&, v, A) such that

> C1 (g,I/,A)

g- .
an

) VnZNl(gaV7A)'
dn

(3) For all sequences A = (pp, n)nen € (N x N*)N for which 2@ approaches £ as n goes to infinity, there exist
a positive constant ca (§,v,A) and a positive integer No (§,v, A) such that

b @i
In an

Proof. Obviously (1) = (2) = (3). Hence it suffices to show that (3) = (1). We prove this by a contradiction
argument. Assume that (3) holds but not (1). Then, for all n € N* there exists p,, ¢, € Z with ¢, > 1 such
that

13 , Vn > Na (&, v,A).

Pn *
f—q—n SinqﬁJrE’ Vn € N*.
As in Lemma 4.3, this trivially implies that % approaches £ as n goes to infinity. Combining this with (3)
results in
elbnh) g SL, Vn € N* 1 g, > No(§, v, A),
I In | Mgy
where A = ((pn, ¢n))nen- This leads to a contradiction by letting n go to infinity. O

This result shows in particular that if (Hpe1) holds, w(Z+) is an irrationality mesure for Z*. Moreover,

this result also shows that the condition (4.2) in the definition of an irrationality measure can be replaced by
a condition on sequences (as in (2) or (3) above).

Finally, upper bounds of some irrationality exponents are presented in Table 1. To keep it short, only a few
of them are provided. The interested readers can refer to, e.g.[51], for various other upper bounds.
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Remark 4.5. As a final remark, notice that there exist irrational numbers & for which u(§) = oco. These

numbers are called Liouville numbers. For example, L = Z b=* is a Liouville number. Therefore if Z—f is a

k=1
Liouville number, the decay rate of the energy of the system (P/E) is still an open problem.

5. CONCLUSIONS AND OPEN PROBLEMS

In this paper, two different transmission problems are investigated: (i) a transmission problem of an Elastic-
Piezoelectric-Elastic design with only one local damping acting on the longitudinal displacement of the center
line of the piezoelectric layer and (ii) a transmission problem of a Piezoelectric-Elastic design with only one
local damping acting on the elastic part. An exponential stability result is immediate for (i). However, for (ii),
the nature of the stability (polynomial or exponential) entirely depends on the arithmetic nature of a quotient
involving all the physical parameters of the system.

An interesting open problem is the stability of the following Piezoelectric-Elastic-Piezoelectric design

plvtlt - Ow;z + 715117:}330 + bl(w)vt1 =0, (z,t) € (07[1) X (07 o)

/le%t - Blp:}m +7161'Ualcz =0, (x7t) € (Oall) X (0,00),
Ut — CLUgy + ba(z)ur = 0, (z,t) € (I1,12) x (0,00),
p2vt2t - dvix + 'YQﬂpr?:c + bg(l’)UtQ =0, (I,t) € (127L) X (0’ OO),
(127, — Baply, + V2B202, = 0, (w,t) € (I2, L) x (0, 00),

v1(0,t) = p(0,t) = v3(L,t) = p*(L,t) = 0,

v1<l17t> = u(llat)>

Oéi}alj(ll,t) — ’}/161p316(l1,t) = cluz(ll,t),

Bipy (I, t) = mprvy(la,t),

’U2(l2,t) = U(ZQ,t),

d’l}g(lz, t) — ’YQﬂng,(lQ, t) = Cl’LLI(lg, t),

Bapa(la, t) = v2B202 (2, 1), t € (0, 00),
('Ulvpl’ u, 1}2,p2)(-,0) = (Ué,pé,UQ,’l}g,p%)(')7

(Utl’p%’ Ut U??Iﬁ)('a 0) = (’U%:pi U, U%vp%)(')

with the assumptions by = 0, by € L>(0,11), bs € L*>(l2, L), and

bi(x) >b1o>0 in (r1,m2) C (0,41), and bi(z) =0, =€ (0,11)\(r1,72),
bs(x) > bso >0 in (rs,76) C (I2, L), and b3(x) =0 in (I3, L)\(rs,76)-

By adopting analogous arguments as in Section 2, we conjecture that one may prove that the system (P/E/P)
is exponentially stable. Furthermore, by assuming that b; = b3 = 0 and by € L*°(ly,15) such that

bQ(IL‘) > bg’o >0 in (7“3,7“4) C (lhlg), and bz(x) =0 in (ll7l2)\(’l’3,7”4),

(P/E/P)

analogous stability results as in Section 3 may also be obtained.

Another open problem, which deserves to be investigated, is the stability of the Elastic-Piezoelectric-Elastic
design with two dampings terms acting only on the elastic part

Ut — ClUgy + k1 (2)ur = 0, (x,t) € (0,11) x (0, 00),
Pt — gz + YBPzz = 0, ($vt) € (l17 l2) X (07 OO),
MUpte — 5pzz + "Yﬂvmz = 0, (x,t) € (117 ZQ) X (0, OO),
Ytt — C2Yzx + k2(x)yt = 07 (.’E,t) € (127 L) X (01 OO),

u(0,t) = y(L,t) =0,

’U(ll,t) = u(ll,t),

U(l27t) = y(127t)a

O‘vm(llvt) — vBp. (L1, T(

( t) = C1u ll,t

avg(l2,t) — vBpe(l2,t) = caya(l2,t
(l,)
t)

)’
);

b

ﬁpm(lht) = P)/ﬁv:v Iy,
Bpa:(l%t) = ’Yﬁvw(l%
(u7v7pay7ut7vt7py7yt)("0)) = (uoaU07p07y0au17vlaplvy1)(')7

t € (0,00),

)
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with k1 € L*>(0,{1) and ke € L*(l3, L) such that

ki(z) > ki10>0 in (r1,72) C(0,11), and k1(x) =0 in (0,i1)\(r1,72),
ko(x) > koo >0 in (rs,76) C (I2, L), and ko(x) =0 in (I, L)\(rs5,76)-
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