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In this paper, the stability of longitudinal vibrations for transmission problems of two smart-system designs are studied: (i) a serially-connected Elastic-Piezoelectric-Elastic design with a local damping acting only on the piezoelectric layer and (ii) a serially-connected Piezoelectric-Elastic design with a local damping acting on the elastic part only. Unlike the existing literature, piezoelectric layers are considered magnetizable, and therefore, a fully-dynamic PDE model, retaining interactions of electromagnetic fields (due to Maxwell's equations) with the mechanical vibrations, is considered. The design (i) is shown to have exponentially stable solutions. However, the nature of the stability of solutions of the design (ii), whether it is polynomial or exponential, is dependent entirely upon the arithmetic nature of a quotient involving all physical parameters. Furthermore, a polynomial decay rate is provided in terms of a measure of irrationality of the quotient. Note that this type of result is totally new (see Theorem 3.6 and Condition (H Pol )). The main tool used throughout the paper is the multipliers technique which requires an adaptive selection of cut-off functions together with a particular attention to the sharpness of the estimates to optimize the results.

Introduction

Piezoelectric materials are multi-functional smart materials (most notably Lead Zirconate Titanate) used to develop electric displacement that is directly proportional to an applied mechanical stress [START_REF] Smith | Smart Material Systems[END_REF]. They can be used as actuators/sensors, and also be integrated to a mother host structure [START_REF] Shi | MEMS Based Broadband Piezoelectric Ultrasonic Energy Harvester (PUEH) for Enabling Self-Powered Implantable Biomedical Devices[END_REF]. Due to their small size and high power density, they have become more and more promising in industrial applications such as implantable biomedical devices and sensors [START_REF] Dagdeviren | Recent Progress in Flexible and Stretchable Piezoelectric Devices for Mechanical Energy Harvesting, Sensing and Actuation[END_REF][START_REF] Dagdeviren | Methods and Apparatus for Imaging with Conformable Ultrasound Patch[END_REF], wearable human-machine interface sensors [START_REF] Dong | Wearable human-machine interface based on PVDF piezoelectric sensor[END_REF], and nanopositioners and micro-sensors due to the excellent advantages of the fast response time, large mechanical force, and extremely fine resolution [START_REF] Ru | Nanopositioning Technologies: Fundamentals and Applications[END_REF].

In deriving a mathematical model for the equations of motion on a piezoelectric beam, actuated by a voltage source, three major effects and their interrelations need to be considered: mechanical, electrical, and magnetic. Mechanical effects are mostly modeled through Kirchhoff, Euler-Bernoulli, or Mindlin-Timoshenko small (linear) [START_REF] Lagnese | Boundary Stabilization of Thin Plates[END_REF] or large (nonlinear) [START_REF] Alaoui | Boundary Feedback Stabilization of Nonlinear Piezoelectric Extensible Beams[END_REF] displacement assumptions, where the constitutive relations between the nonzero stress and strain tensors are used to model longitudinal displacements of the centerline (stretching/compression), transverse displacements (bending), and rotations of the beam. It is also reported that the small displacement assumptions lead to the bending and rotational motions completely immune the applied voltage [START_REF] Morris | Strong stabilization of piezoelectric beams with magnetic effects[END_REF]. These tensors are coupled to the electric/magnetic displacements and electric/magnetic field tensors. There are mainly three approaches to include electromagnetic effects due the Maxwell's equations: electrostatic, quasi-static, and fully-dynamic [25, p. 336]. Electrostatic and quasi-static approaches are widely used in voltage-controlled piezoelectric beam models -see e.g. [START_REF] Smith | Smart Material Systems[END_REF] and the references therein. These models completely exclude magnetic effects and their coupling with electrical and mechanical effects. Even though the electro-static and quasi-static approaches are sufficient for defining piezoelectricity, electromagnetic waves generated by mechanical fields need to be accounted for in the calculation of radiated electromagnetic power 1 arXiv:2303.05882v1 [math.AP] 10 Mar 2023 from a vibrating piezoelectric acoustic device, e.g. see [START_REF] Yang | An Introduction to the Theory of Piezoelectricity[END_REF] and the references therein. For this reason, the fully dynamic models of piezoelectric beams are needed to be understood well. In fact, the dynamic effects for (acoustic) magnetizable piezoelectric beams are pronounced and must be taken into account in the modeling [START_REF] Morris | Strong stabilization of piezoelectric beams with magnetic effects[END_REF][START_REF] Voss | Stabilization and shape control of a 1D piezoelectric Timoshenko beam[END_REF].

Denote v(x, t) and p(x, t) by the longitudinal vibrations of the center line of the beam and the total charge accumulated at the electrodes of a single piezoelectric beam. Assuming that the beam is fixed at the left end x = 0 and free at the right end x = L, the equations of motion is a system of partial differential equations [START_REF] Morris | Strong stabilization of piezoelectric beams with magnetic effects[END_REF] as the following (1.1)

              
ρv tt -αv xx + γβp xx = 0, (x, t) ∈ (0, L) × (0, ∞) µp tt -βp xx + γβv xx = 0, v(0, t) = p(0, t) = 0, αv x (L, t) -γβp x (L, t) = g(t), βp x (L, t) -γβv x (L, t) = -V (t), t ∈ (0, ∞) (v, p, v t , p t )(x, 0) = (v 0 , p 0 , v 1 , p 1 ), x ∈ [0, L] where ρ, α, β, γ, and µ are mass density per unit volume, elastic stiffness, impermeability, piezoelectric constant, and magnetic permeability of the beam, respectively, and g(t) and V (t) are strain and voltage actuators, and

(1.2)

α 1 := α -γ 2 β > 0.
By the electrostatic approach, the model above is simplified to a single wave equation model by taking µ ≡ 0 and p t = 0, considering g(t) ≡ 0, and (1.2), e.g. see [START_REF] Morris | Modeling and stabilizability of voltage-actuated piezoelectric beams with magnetic effects[END_REF],

(1.3)    ρv tt -α 1 v xx = 0, (x, t) ∈ (0, L) × (0, ∞) v(0, t) = 0, α 1 v x (L, t) = γV (t) t ∈ (0, ∞) (v, v t )(x, 0) = (v 0 , v 1 ), x ∈ [0, L].
The model by the quasi-static approach is the same as (1.

3) yet p t = 0. The exact observability/stabilizability and the type of stability of the solutions (1.1) of the PDE model by each approach differs substantially. For example, the PDE model obtained by electrostatic/quasi-static approach is the boundary damped wave equation in (1.3), and it is known to be exactly observable/exponentially stabilizable with one state measurement v t (x, t) on the boundary x = L, e.g. see [START_REF] Chen | Energy decay estimates and exact boundary value controllability for wave equation in a bounded domain[END_REF][START_REF] Lagnese | Decay of solutions of wave equations in a bounded region with boundary dissipation[END_REF]. In deep contrast to this result, the PDE model obtained by the the fully-dynamic approach in (1.1) can not be exactly observable/exponentially stabilizable for almost all choices of material parameters with only one state measurement, v t (x, t) or p t (x, t), on the boundary x = L, e.g. see [START_REF] Morris | Strong stabilization of piezoelectric beams with magnetic effects[END_REF][START_REF] Morris | Modeling and stabilizability of voltage-actuated piezoelectric beams with magnetic effects[END_REF]. Explicit polynomial decay estimates are obtained for more regular initial data and for a small class of materials satisfying certain number-theoretical conditions [START_REF] Morris | Modeling and stabilizability of voltage-actuated piezoelectric beams with magnetic effects[END_REF][START_REF] Özer | Further stabilization and exact observability results for voltage-actuated piezoelectric beams with magnetic effects[END_REF]. The same model (1.1) is considered in [START_REF] Ramos | Exponential stability and numerical treatment for piezoelectric beams with magnetic effect[END_REF] for the open-loop sensor configuration (i.e. g(t), V (t) ≡ 0) with a dissipative damping term δv t with δ > 0, acting only in the first equation of (1.1). It is also reported that two nonzero state feedback measurements v t (L, t) (tip velocity) and p t (L, t) (total current on the electrodes) are necessary to achieve exact observability/exponential stabilizability [START_REF] Ramos | Equivalence between exponential stabilization and boundary observability for piezoelectric beams with magnetic effect[END_REF][START_REF] Özer | Uniform boundary observability of Finite Difference approximations of non-compactly-coupled piezoelectric beam equations[END_REF]. This underlines the fact that the two boundary damping terms or one viscous damping term are both able to exponentially dissipate non-stabilizing (high-frequency) magnetic effects. There is also a large literature considering the model (1.1) under thermal effects, fractional-type damping, and distributed or boundary-type memory and delay terms, see [START_REF] Afilal | Piezoelectric beams with magnetic effect and localized damping[END_REF]- [START_REF] An | Stability of piezoelectric beams with magnetic effects of fractional derivative type and with/without thermal effects[END_REF], [START_REF] Santos | On global attractors for a novel nonlinear piezoelectric beam model with magnetic effects and long-range memory[END_REF]- [START_REF] Feng | Long-time behavior of a nonlinearly damped Rao-Nakra sandwich beam[END_REF], [START_REF] Soufyane | Energy decay for a weakly nonlinear damped piezoelectric beams with magnetic effects and a nonlinear delay term[END_REF][START_REF] Zhang | Stability of multi-dimensional nonlinear piezoelectric beam with viscoelastic infinite memory[END_REF] and the references therein.

A serially-connected smart system is an elastic structure consisting of longitudinally attached fully-elastic and piezoelectric layers, see Figs. 1 and2. Use of piezoelectric materials for a serially-connected design in various transmission mechanisms of aerospace, aviation, automobile, ships, and robots has boosted substantially in the last decade, see [13,[START_REF] Ling | Kinetostatic and Dynamic Modeling of Flexure-Based Compliant Mechanisms: A Survey[END_REF] and the references therein. A rigorous mathematical treatment for a transmission problem of a three serially-connected purely-elastic waves/strings/beams is provided in [START_REF] Fatori | Exponential decay of serially connected elastic wave[END_REF]. Indeed, if the outer wave equations have both viscous damping terms, an exponential stability result is shown to be immediate. Several authors have also studied transmission problems of serially-connected strings/beams with e.g. a thermoelastic material [START_REF] Marzocchi | Asymptotic behaviour and exponential stability for a transmission problem in thermoelasticity[END_REF] or a viscoelastic material [START_REF] Rivera | The Transmission Problem of Viscoelastic Waves[END_REF].

To the best of our best knowledge, serially-connected transmission systems involving elastic and magnetizable piezoelectric systems are not treated mathematically in the literature, especially with Condition (H Pol ), which appears in Section 3.3. The goal of this paper is to fix this gap by considering two particular designs, for which we obtain novel decay rates of the energy, see Theorems 2.6, 3.5 and 3.6. The first design, whose PDE model is described below in (E/P/E), is the transmission problem of an Elastic-Piezoelectric-Elastic system, as in Fig.

Figure 1. Serially-connected Elastic-Piezoelectric-Elastic transmission system clamped at both ends. The piezoelectric material itself is an elastic material covered by electrodes at their top and bottom surfaces, and connected to an external electric circuit. As the elastic layers stretches or shrinks, the piezoelectric beam stretches or shrinks as well, and therefore, charges separate and line up in the vertical direction, and electric field (voltage) is induced in the electrodes. The overall motions on the system are considered to be only longitudinal.

1, with only one local damping acting on the longitudinal displacement of the center line of the piezoelectric material: The second design, whose PDE model is described below in (P/E), is for the transmission problem of a Piezoelectric-Elastic system, as in Fig. 2, with only one local damping acting on the elastic part:

(E/P/E)                                        u tt -c 1 u xx = 0, (x, t) ∈ (0, l 1 ) × (0, ∞), ρv tt -αv xx + γβp xx + d 2 (x)v t = 0, (x, t) ∈ (l 1 , l 2 ) × (0, ∞), µp tt -βp xx + γβv xx = 0, (x, t) ∈ (l 1 , l 2 ) × (0, ∞), y tt -c 2 y xx = 0, (x, t) ∈ (l 2 , L) × (0, ∞), u(0, t) = y(L, t) = 0, v(l 1 , t) = u(l 1 , t), v(l 2 , t) = y(l 2 , t), αv x (l 1 , t) -γβp x (l 1 , t) = c 1 u x (l 1 , t), αv x (l 2 , t) -γβp x (l 2 , t) = c 2 y x (l 2 , t), βp x (l 1 , t) = γβv x (l 1 , t), βp x (l 2 , t) = γβv x (l 2 , t), t ∈ (0, ∞), (u, v, p, y, u t , v t , p t , y t )(•, 0) = (u 0 , v 0 , p 0 , y 0 , u 1 , v 1 , p 1 , y 1 )(•) where 0 < l 1 < l 2 < L, c 1 , c 2 > 0 and d 2 ∈ L ∞ (l 1 , l 2 ), such that (LD -P) d 2 (x) ≥ d 2,0 > 0 in (a 2 , b 2 ) ⊂ (l 1 , l 2 ), and d 2 (x) ≥ 0 in (l 1 , l 2 )\(a 2 , b 2 ).
(P/E)                        ρv tt -αv xx + γβp xx = 0, (x, t) ∈ (0, l 1 ) × (0, ∞), µp tt -βp xx + γβv xx = 0, (x, t) ∈ (0, l 1 ) × (0, ∞), y tt -c 2 y xx + d 1 (x)y t = 0, (x, t) ∈ (l 1 , L) × (0, ∞), v(0, t) = p(0, t) = y(L) = 0, v(l 1 , t) = y(l 1 , t), αv x (l 1 , t) -γβp x (l 1 , t) = c 2 y x (l 1 , t), βp x (l 1 , t) = γβv x (l 1 , t), t ∈ (0, ∞), (v, p, y, v t , p t , y t )(•, 0) = (v 0 , p 0 , y 0 , v 1 , p 1 , y 1 )(•), where 0 < l 1 < L, c 2 > 0 and d 1 ∈ L ∞ (l 1 , L) such that (LD -E) d 1 (x) ≥ d 1,0 > 0 in (a 1 , b 1 ) ⊂ (l 1 , L), and d 1 (x) ≥ 0 in (l 1 , L)\(a 1 , b 1 ).
The paper is organized as follows. In Section 2, first, well-posedness and the exponential stability of the model (E/P/E) are studied under the conditions (LD -P) on the damping function d 2 . In Section 3, the well-posedness and the strong stability of (P/E) system are analyzed under the conditions (LD -E) on the damping function d 1 . Moreover, the decay rate of the energy depends on the arithmetic nature of a quotient involving all physical parameters of the system. More precisely, if the quotient is a rational number different from 2n+-1 2n--1 , for all n + , n -∈ N (see (SC) in Theorem 3.3), the energy is proved to decay exponentially. If the quotient is an irrational number, the energy is proved to decrease polynomially if the irrationality measure of this quotient is finite. The proof of the main results are all based on the multipliers technique, requiring an adapted choice of cut-off functions, and a particular attention to the sharpness of the estimates to optimize the results.

It is crucial to note that, as a consequence of our arguments developed in section 2, the electrostatic/quasistatic design, identical to the design in [START_REF] Fatori | Exponential decay of serially connected elastic wave[END_REF], with a local damping only acting in the middle layer can be shown to be exponentially stable, see Remark 2.15. This is a major improvement of the results in [START_REF] Fatori | Exponential decay of serially connected elastic wave[END_REF] since the exponential stability result is only achieved by fully-distributed viscous damping terms for the outer layers.

Stability results for the (E/P/E) system

Note that the assumption (LD -P) applies to all results in this section. For simplicity, the repetition is avoided unless it is necessary to state.

2.1. Well-Posedness. This section is devoted to establish the well-posedness of the system (E/P/E) by a semigroup approach. The natural energy of system (E/P/E) is defined by

E(t) = 1 2 l1 0 |u t | 2 + c 1 |u x | 2 dx+ 1 2 l2 l1 ρ|v t | 2 + α 1 |v x | 2 + µ|p t | 2 + β|γv x -p x | 2 dx+ 1 2 L l2 |y t | 2 + c 2 |y x | 2 dx. Lemma 2.1.
The energy E(t) is dissipative along the regular solutions (u, v, p, y) of the system (E/P/E), i.e.

(2.1)

d dt E(t) = - l2 l1 d 2 |v t | 2 dx.
Proof. First, multiplying (E/P/E) 1 by u t , integrate by parts over (0, l 1 ), and take the real part to get

(2.2) 1 2 d dt l1 0 |u t | 2 dx + c 1 2 d dt l1 0 |u x | 2 dx -c 1 u x (l 1 , t)u t (l 1 , t) = 0.
Next, multiply (E/P/E) 2 by v t , integrate by parts over (l 1 , l 2 ), and take the real part to get 

(2.3) ρ 2 d dt l2 l1 |v t | 2 dx + α 2 d dt l2 l1 |v x | 2 dx -α v x (l 2 , t)v t (l 2 , t) + α v x (l 1 , t)v t (l 1 , t) -γβ l2 l1 p x v xt dx + γβ p x (l 2 , t)v t (l 2 , t) -γβ p x (l 1 , t)v t (l 1 , t) = - l2 l1 d 2 |v t | 2 dx.
ρ|v t | 2 + α 1 |v x | 2 + µ|p t | 2 + β|γv x -p x | 2 dx + (αv x (l 1 , t) -γβp x (l 1 , t)) v t (l 1 , t) -(αv x (l 2 , t) -γβp x (l 2 , t)) v t (l 2 , t) = - l2 l1 d 2 |v t | 2 dx.
In the final step of the proof, add (2.2), (2.5) and (2.6), use the continuity conditions (E/P/E) 6 and (E/P/E) 7 and the transmission conditions (E/P/E) 8 and (E/P/E) 9 . Hence, (2.1) follows.

In order to have a unique solution to (E/P/E), the following Hilbert spaces are introduced. For any real numbers a, b such that a < b,

L 2 * (a, b) = f ∈ L 2 (a, b); b a f dx = 0 , H 1 L (a, b) = f ∈ H 1 (a, b); f (a) = 0 , H 1 * (a, b) = H 1 (a, b) ∩ L 2 * (a, b), H 1 R (a, b) = f ∈ H 1 (a, b); f (b) = 0 .
The energy space H is now defined by

H = u, u 1 , v, z, p, q, y, y 1 ∈ H 1 L (0, l 1 ) × L 2 (0, l 1 ) × H 1 (l 1 , l 2 ) × L 2 (l 1 , l 2 ) × H 1 * (0, l 1 ) × L 2 * (l 1 , l 2 )× H 1 R (l 2 , L) × L 2 (l 2 , L) : u(l 1 ) = v(l 1 ), y(l 2 ) = v(l 2 )
, and for U = u, u 1 , v, z, p, q, y, y 1 ∈ H, a norm on H can be chosen of the following form (2.7)

U 2 H = l1 0 c 1 |u x | 2 + |u 1 | 2 dx + l2 l1 α 1 |v x | 2 + ρ|z| 2 + β|γv x -p x | 2 + µ|q| 2 dx + L l2 c 2 |y x | 2 + |y 1 | 2 dx. noting that the standard norm on H is (2.8) U 2 s = u x 2 L 2 (0,l1) + u 1 L 2 (0,l1) + v x 2 L 2 (l1,l2) + v 2 L 2 (l1,l2) + z 2 L 2 (l1,l2) + p x 2 L 2 (l1,l2) + q 2 L 2 (l1,l2) + y x 2 L 2 (l2,L) + y 1 2 L 2 (l2,L) . Lemma 2.2.
The norm defined by (2.7) is equivalent to the standard norm (2.8) on H, i.e. for all U = u, u 1 , v, z, p, q, y, y 1 ∈ H, there exist two positive constants C 1 , C 2 , independent of U, such that

(2.9) C 1 U 2 s ≤ U 2 H ≤ C 2 U 2 s .
Proof. The inequality on the right with C 2 = max(c 1 , 1, α 1 + 2β max(γ 2 , 1), µ, ρ, c 2 ) is immediate by Young's inequality since

β γv x -p x 2 L 2 (l1,l2) ≤ 2βγ 2 v x 2 L 2 (l1,l2) + 2β p x 2 L 2 (l1,l2) ≤ 2β max(γ 2 , 1)( v x 2 L 2 (l1,l2) + p x 2 L 2 (l1,l2) ).
We have u(l 1 ) = l1 0 u x dx, and by the transmission condition u(l 1 ) = v(l 1 ),

v(x) = u(l 1 ) + x l1 v t (t) dt.
Applying Young's and Cauchy-Schwarz inequalities leads to

|u(l 1 )| 2 ≤ l 1 u x 2 L 2 (0,l1) , (2.10) |v(x)| 2 ≤ 2|u(l 1 )| 2 + 2(l 2 -l 1 ) v x 2 L 2 (l1,l2) . (2.11)
As(2.10) and (2.11) are considered together (2.12)

l2 l1 |v(x)| 2 dx ≤ 2(l 2 -l 1 ) max(l 1 , l 2 -l 1 ) :=c3 u x 2 L 2 (0,l1) + v x 2 L 2 (l1,l2) .
Next, Young's inequality is applied to get (2.13)

p x 2 L 2 (l1,l2) ≤ 2 p x -γv x 2 L 2 (l1,l2) + 2γ 2 v x 2 .
By combining (2.12) and (2.13)

U 2 s ≤ (1 + c 3 ) u x 2 L 2 (0,l1) + u 1 2 L 2 (0,l1) + (1 + 2γ 2 + c 3 ) v x 2 L 2 (l1,l2) + z 2 L 2 (l1,l2) +2 p x -v x 2 L 2 (l1,l2) + q 2 L 2 (l1,l2) + y x 2 L 2 (l2,L) + y 1 2 L 2 (l2,L)
. Hence,this leads to the left inequality of (2.9) with

C 1 = 1 max 1, (1 + c 3 )c -1 1 , (1 + 2γ 2 + c 3 )α -1 1 , ρ -1 , 2β -1 , µ -1 , c -1 2
with the domain

D(A EP E ) =              U = u, u 1 , v, z, p, q, y, y 1 ∈ H; u 1 ∈ H 1 L (0, l 1 ), z ∈ H 1 (l 1 , l 2 ), q ∈ H 1 * (l 1 , l 2 ), y 1 ∈ H 1 R (l 2 , L), u ∈ H 2 (0, l 1 ) ∩ H 1 L (0, l 1 ), v ∈ H 2 (l 1 , l 2 ), p ∈ H 2 (l 2 , l 1 ) ∩ H 1 * (l 1 , l 2 ), y ∈ H 2 (l 2 , L) ∩ H 1 R (l 2 , L), αv x (l 1 ) -γβp x (l 1 ) = c 1 u x (l 1 ), αv x (l 2 ) -γβp x (l 2 ) = c 2 y x (l 2 ), βp x (l 1 ) = γβv x (l 1 ), βp x (l 2 ) = γβv x (l 2 ), u 1 (l 1 ) = z(l 1 ), and y 1 (l 2 ) = z(l 2 )              . Remark 2.3. Using (1.
2), direct calculations show that the transmission conditions αv x (l 1 ) -γβp x (l 1 ) = c 1 u x (l 1 ) and βp x (l 1 ) = γβv x (l 1 ) are equivalent to the transmission conditions α 1 v x (l 1 ) = c 1 u x (l 1 ) and α 1 p x (l 1 ) = c 1 γu x (l 1 ), while the transmission conditions αv x (l 2 ) -γβp x (l 2 ) = c 2 y x (l 2 ) and βp x (l 2 ) = γβv x (l 2 ), are equivalent to the transmission conditions

α 1 v x (l 2 ) = c 2 y x (l 2 ) and α 1 p x (l 2 ) = c 2 γy x (l 2 ).
If (u, v, p, y) is a sufficiently regular solution of the system (E/P/E), it can be transformed into a first-order evolution equation on the Hilbert space H as the following (2.14)

U t = A EP E U, U (0) = U 0 ,
where U = (u, u 1 , v, v t , p, p t , y, y t ) and U 0 = (u 0 , u 1 , v 0 , v 1 , p 0 , p 1 , y 0 , y 1 ). By the arguments of Lemma 2.1, for all U = (u, u 1 , v, z, p, q, y, y 

U (t) = e tA EP E U 0 , t ≥ 0,
which leads to the well-posedness of (2.14). The following result is immediate.

Theorem 2.4. Letting U 0 ∈ H, the system (2.14) admits a unique weak solution U satisfying

U ∈ C 0 (R + , H). Moreover, if U 0 ∈ D(A EP E ), the system (2.14) admits a unique strong solution U satisfying U ∈ C 1 (R + , H) ∩ C 0 (R + , D(A EP E )).
2.2. Strong Stability. Now the following result is about the strong stability of (E/P/E).

Theorem 2.5. The C 0 -semigroup of contraction e tA EP E is strongly stable in H; i.e., for all U 0 ∈ H, the solution of (2.14) satisfies lim t→∞ e tA EP E U 0 H = 0.

Proof. Since the resolvent of A EP E is compact in H, it follows from the Arendt-Batty's theorem (see page 837 in [START_REF] Arendt | Tauberian theorems and stability of one-parameter semigroups[END_REF]) that the system (E/P/E) is strongly stable if and only if A EP E does not have pure imaginary eigenvalues, i.e. σ(A EP E ) ∩ iR = ∅. From Section 2.1, it is already know that 0 ∈ ρ(A EP E ). Therefore, only σ(A EP E ) ∩ iR * = ∅ must be proved. For this purpose, suppose that there exists a real number λ = 0 and U = (u, u 1 , v, z, p, q, y, y 1 ) ∈ D(A EP E ) such that (2.16)

A EP E U = iλU.
which is equivalent to the following system (2.17)

u 1 = iλu in (0, l 1 ), z = iλv in (l 1 , l 2 ), q = iλp in (l 1 , l 2 ), y 1 = iλy in (l 2 , L),

and

(2.18)

       λ 2 u + c 1 u xx = 0, x ∈ (0, l 1 ), ρλ 2 v + αv xx -γβp xx -d 2 z = 0, x ∈ (l 1 , l 2 ), µλ 2 p + βp xx -γβv xx = 0, x ∈ (l 1 , l 2 ), λ 2 y + c 2 y xx = 0, x ∈ (l 2 , L),
From (2.15), (LD -P) and (2.16),

(2.19) 0 = (iλU, U ) H = (A EP E U, U ) H = - l2 l1 d 2 |z| 2 dx.
On the other hand, from (2.17), (2.19), (LD -P) and the fact that λ = 0, we have (2.20)

d 2 z = 0 in (l 1 , l 2 ) and consequently z = v = 0, x ∈ (a 2 , b 2 ). By α = α 1 + γ 2 β and (2.20) in (2.18) 2 , (2.21) ρλ 2 v + α 1 v xx + γ (γβv xx -βp xx ) = 0, x ∈ (l 1 , l 2 ).
Combining (2.18) 3 and (2.21) leads to

(2.22) λ 2 (ρv + γµp) + α 1 v xx = 0, x ∈ (l 1 , l 2 ).
Next, by (2.20) in (2.22) and λ = 0 we get p = 0 in (a 2 , b 2 ), the third equation in (2.17) yields

(2.23)

p = q = 0 in (a 2 , b 2 ). Since v, p ∈ H 2 (l 1 , l 2 ) ⊂ C 1 ([a 2 , b 2 ]), (2.24) v(ζ) = v x (ζ) = p(ζ) = p x (ζ) = 0, ζ ∈ {a 2 , b 2 }.
Now, combining (2.22) and (2.18) 3 , the following reduced system is obtained

v xx = -λ 2 α -1 1 (ρv + γµp) , x ∈ (l 1 , l 2 ) (2.25) p xx = -λ 2 α -1 1 γρv + µαβ -1 p , x ∈ (l 1 , l 2 ). (2.26) Let U piezo = (v, v x , p, p x ) . From (2.24), U piezo (b 2 ) = 0. Now, the system (2.25)-(2.26) can be written in (b 2 , l 2 ) as the following (2.27) (U piezo ) x = BU piezo in (b 2 , l 2 ),
where

B =     0 1 0 0 -ρα -1 1 λ 2 0 -γµα -1 1 λ 2 0 0 0 0 1 -ργα -1 1 λ 2 0 -µαβ -1 α -1 1 λ 2 0     .
The solution of the differential equation (2.27) is given by

(2.28) U piezo (x) = e B(x-b2) U piezo (b 2 ) = 0 in (b 2 , l 2 ).
Analogously, it can be proved that

U piezo = 0 in (l 1 , a 2 ). Consequently, v = p = 0 in (l 1 , l 2 ). Since v, p ∈ H 2 (l 1 , l 2 ) ⊂ C 1 ([l 1 , l 2 ]), (2.29) v(ζ) = v x (ζ) = p(ζ) = p x (ζ) = 0 where ζ ∈ {l 1 , l 2 }.
By U ∈ D(A EP E ), the continuity and transmission conditions,

(2.30)

u(0) = u(l 1 ) = u x (l 1 ) = y(l 2 ) = y x (l 2 ) = y(L) = 0.
Finally, by (2.18) 1 , (2.18) 4 and (2.30) it is easy to conclude that u = 0 in (0, l 1 ) and y = 0 in (l 2 , L). Hence, U = 0. The proof is thus complete.

Exponential Stability.

The aim of the subsection is to prove the exponential stability of System (E/P/E) under the sole assumption (LD -P). The main result of this section is the following theorem.

Theorem 2.6. If (LD -P) holds, the C 0 -semigroup of contractions (e tA EP E ) t≥0 is exponentially stable, i.e. there exists M ≥ 1 and ω > 0 such that

(2.31) e tA EP E U 0 H ≤ M e -ωt U 0 H , ∀U 0 ∈ H.
Before diving into the technicality of the proof of Theorem E/P/E, recall from, e.g. [START_REF] Huang | Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces[END_REF], [START_REF] Prüss | On the spectrum of C 0 -semigroups[END_REF], that a C 0 -semigroup of contractions e tA EP E t≥0 on H must satisfy two conditions (3.17

) if (M1) iR ⊂ ρ (A EP E ) (M2) sup λ∈R (iλI -A EP E ) -1 L(H) < +∞.
Since we already proved in Theorem 2.5 that iR ⊂ ρ(A EP E ), condition (M1) is satisfied. Now only the condition (M2) must be proved. We follow a contradiction argument, for this purpose, suppose that (M2) is false, then there exists

{(λ n , U n )} n≥1 ⊂ R * × D(A EP E ) with (2.32) |λ n | → ∞ and U n H = u n , u 1,n , v n , z n , p n , q n , y n , y 1,n H = 1, such that (2.33) (iλ n I -A EP E ) U n = F n := f 1,n , f 2,n , f 3,n , f 4,n , f 5,n , f 6,n , f 7,n , f 8,n → 0 in H.
For simplicity, let the index n be dropped. Then, (2.33) is equivalent to

(2.34)        iλu -u 1 = f 1 → 0 in H 1 L (0, l 1 ), iλv -z = f 3 → 0 in H 1 (l 1 , l 2 ), iλp -q = f 5 → 0 in H 1 * (l 1 , l 2 ), iλy -y 1 = f 7 → 0 in H 1 R (l 2 , L), and (2.35)        iλu 1 -c 1 u 1 xx = f 2 → 0 in L 2 (0, l 1 ), iλρz -αv xx + γβp xx + d 2 z = ρf 4 → 0 in L 2 (l 1 , l 2 ), iλµq -βp xx + γβv xx = µf 6 → 0 in L 2 (l 1 , l 2 ), iλy 1 -c 2 y xx = f 8 → 0 in L 2 (l 2 , L).
Merging (2.34) and (2.35), a more compact system of equations is obtained

(2.36)        λ 2 u + c 1 u xx = F 1 , λ 2 ρv + αv xx -γβp xx -iλd 2 v = F 2 , λ 2 µp + βp xx -γβv xx = F 3 , λ 2 y + c 2 y xx = F 4 ,
where (2.37)

F 1 = -f 2 + iλf 1 , F 2 = -ρf 4 + d 2 f 3 + iλρf 3 , F 3 = -µf 6 + iλµf 5 and F 4 = -(f 8 + iλf 7 ). By α = α 1 + γ 2 β in (2.36) 2 , λ 2 ρv + α 1 v xx + γ (γβv xx -βp xx ) -iλdv = F 2 .
Now, combining (2.36) 3 and the above equality lead to

α 1 v xx = -λ 2 ρv -γλ 2 µp + iλd 2 v + F 2 + γF 3 .
Inserting the above equation in (2.36) 3 , the system is reduced to

(2.38)        λ 2 u + c 1 u xx = F 1 , λ 2 ρv + α 1 v xx + γµλ 2 p -iλd 2 v = F 5 , λ 2 µαp + α 1 βp xx + ργβλ 2 v -iλγβd 2 v = F 6 , λ 2 y + c 2 y xx = F 4 ,
where (2.39)

F 5 = F 2 + γF 3 and F 6 = αF 3 + γβF 2 .
At this moment, the following series of technical lemmas, as consequences of the dissipativity property of the solutions (u, u 1 , v, z, p, q, y, y Note that for all 0 < ε < b2-a2 4 , the following cut-off functions are fixed

d 2 |z| 2 dx = -( A EP E U, U H ) = (iλI -A EP E )U, U H = F, U H = o(1
• θ k ∈ C 2 ([l 1 , l 2 ]), k ∈ {1, 2} such that 0 ≤ θ k (x) ≤ 1, for all x ∈ [l 1 , l 2 ] and θ k (x) = 1 if x ∈ [a 2 + kε, b 2 -kε], 0 if x ∈ [l 1 , a 2 + (k -1)ε] ∪ [b 2 + (1 -k)ε, l 2 ].
Observe that θ 1 ≡ 1 on the support of θ 2 .

Lemma 2.8. The solution (u, u 1 , v, z, p, q, y, y 

λ 2 ρβ l2 l1 θ 1 vpdx -α 1 β l2 l1 θ 1 v x p x dx -α 1 β l2 l1 θ 1 v x pdx +γµβ l2 l1 θ 1 |λp| 2 dx -iλβ l2 l1 d 2 θ 1 vpdx = β l2 l1 θ 1 F 5 pdx.
It is known that U H = 1 and F H = o(1), which implies in particular that (λp) is uniformly bounded in L 2 (l 1 , l 2 ) due to (2.34) 3 ). Therefore, by Cauchy-Schwarz inequality, Lemma 2.7, the definition of θ 1 the following is deduced

λ 2 ρβ l2 l1 θ 1 vpdx = o(1), l2 l1 θ 1 v x pdx = O(λ -1 ) = o(1), iλβ l2 l1 d 2 θ 1 vpdx = o(λ -1 ), l2 l1 θ 1 F 5 pdx = o(1).
Inserting the above estimates into (2.43) and taking the real part leads to (2.44)

γµβ l2 l1 θ 1 |λp| 2 dx -α 1 β l2 l1 θ 1 v x p x dx = o(1).
Analogously, multiply (2.38) 3 by -θ 1 v, integrate over (l 1 , l 2 ) by parts to get (2.45)

-λ 2 µα l2 l1 θ 1 pvdx + α 1 β l2 l1 θ 1 p x vdx + α 1 β l2 l1 θ 1 p x v x dx -ργβ l2 l1 θ 1 |λv| 2 dx + iλγβ l2 l1 θ 1 d 2 |v| 2 dx = - l2 l1 θ 1 F 6 vdx.
By the definition of θ 1 , U H = 1, F H = o(1), Cauchy-Schwarz inequality, Lemma 2.7

(2.46) 

λ 2 µα l2 l1 θ 1 pvdx = o(1), l2 l1 θ 1 p x vdx = o(λ -1 ) and l2 l1 θ 1 F 6 vdx = o(1
-ρ l2 l1 θ 1 |λv| 2 dx + α 1 l2 l1 θ 1 v x vdx + α 1 l2 l1 θ 1 |v x | 2 dx -γµ l2 l1 θ 1 λ 2 pvdx +iλγβ l2 l1 θ 1 d 2 |v| 2 dx = - l2 l1 θ 1 F 5 vdx.
By Cauchy-Schwarz inequality, Lemma 2.7, the definition of θ 1 , U H = 1, and F H = o(1), the following hold 

l2 l1 θ 1 v x vdx = o(λ -1 ), l2 l1 θ 1 λ 2 pvdx = o(
-µα l2 l1 θ 2 |λp| 2 dx + α 1 β l2 l1 θ 2 p x pdx + α 1 β l2 l1 θ 2 |p x | 2 dx -ργβ l2 l1 λ 2 θ 2 vpdx +iλγβ l2 l1 d 2 θ 2 vpdx = - l2 l1 F 6 θ 2 pdx.
By Cauchy-Schwarz inequality, Lemmas 2.7, 2.9, the definition of θ 2 , U H = 1, and Finally, inserting the above estimates into (2.51) and by Lemma 2.8, the first estimate, and therefore the second estimate, in (2.50) are obtained.

F H = o(1), l2 l1 θ 2 p x pdx = o(λ -1 ), l2 l1 λ 2 θ 2 vpdx = o(1), iλ
Lemma 2.11. Let g ∈ C 1 ([l 1 , l 2 ]
). The solution (u, u 1 , v, z, p, q, y, y 1 ) of the system (2.34)-(2.35) satisfies the following estimate

(2.52) l2 l1 g ρ|λv| 2 + α|v x | 2 + µ|λp| 2 + β|p x | 2 dx -2γβ l2 l1 g p x v x dx + J 1 (l 1 ) -J 1 (l 2 ) = J 2 (l 2 ) -J 2 (l 1 ) + o(1)
where ζ ∈ {l 1 , l 2 } and (2.53) J 1 (ζ) = g(ζ) ρ|λv(ζ)| 2 + α|v x (ζ)| 2 + µ|λp(ζ)| 2 + β|p x (ζ)| 2 -2γβ (g(ζ)p x (ζ)v x (ζ)) , J 2 (ζ) = 2 iλρg(ζ)f 3 (ζ)v(ζ) + 2 iλµg(ζ)f 5 (ζ)p(ζ) .
Proof. First, multiply (2.36) 2 by -2gv x , and integrate over (l 1 , l 2 ) to get

-ρ l2 l1 g |λv| 2 x dx -α l2 l1 g |v x | 2 x dx + 2γβ l2 l1 gp xx v x dx +2 iλ l2 l1 gd 2 vv x dx = -2 l2 l1 gF 2 v x dx .
By several integration by parts and the definition of F 2 in (2.37), the following is obtained

(2.54) l2 l1 g ρ|λv| 2 + α|v x | 2 dx -g(l 2 ) ρ|λv(l 2 )| 2 + α|v x (l 2 )| 2 + g(l 1 ) ρ|λv(l 1 )| 2 + α|v x (l 1 )| 2 -2γβ l2 l1 g p x v x dx -2γβ l2 l1 gp x v xx dx + 2γβ (g(l 2 )p x (l 2 )v x (l 2 )) -2γβ (g(l 1 )p x (l 1 )v x (l 1 )) -2 iλ l2 l1 gd 2 vv x dx = 2 l2 l1 g(f 4 + d 2 f 3 )v x dx -2 iλρ l2 l1 (f 3 g) x vdx + 2 iλρg(l 2 )f 3 (l 2 )v(l 2 ) -2 iλρg(l 1 )f 3 (l 1 )v(l 1 ) . Since v x is uniformly bounded in L 2 (l 1 , l 2 ) and F H = o(1)
, by Cauchy-Schwarz inequality and Lemma 2.7

iλ l2 l1 gd 2 vv x dx = o(1), Re l2 l1 g(f 2 + d 2 f 3 )v x dx = o(1), iλρ l2 l1 (f 3 g) x vdx = o(1).
Substituting the estimatation above into (2.54) leads to (2.55)

l2 l1 g ρ|λv| 2 + α|v x | 2 dx -g(l 2 ) ρ|λv(l 2 )| 2 + α|v x (l 2 )| 2 + g(l 1 ) ρ|λv(l 1 )| 2 + α|v x (l 1 )| 2 -2γβ l2 l1 g p x v x dx -2γβ l2 l1 gp x v xx dx + 2γβ (g(l 2 )p x (l 2 )v x (l 2 )) -2γβ (g(l 1 )p x (l 1 )v x (l 1 )) = 2 iλρg(l 2 )f 3 (l 2 )v(l 2 ) -2 iλρg(l 1 )f 3 (l 1 )v(l 1 ) + o(1).
Analogously, multiply (2.36) 3 by -2gp x and integrate over (l 1 , l 2 ) to obtain and taking the real part, we get

-µ l2 l1 g(|λp| 2 ) x dx -β l2 l1 g |p x | 2 x dx + 2γβ l2 l1 gv xx p x dx = -2 l2 l1 gF 3 p x dx .
By several integration by parts and the definition of F 3 given in (2.37), the following holds (2.56)

l2 l1 g µ|λp| 2 + β|p x | 2 dx -g(l 2 ) µ|λp(l 2 )| 2 + β|p x (l 2 )| 2 + g(l 1 ) µ|λp(l 1 )| 2 + β|p x (l 1 )| 2 +2γβ l2 l1 gv xx p x dx = 2 l2 l1 gf 6 p x dx -2 iλµ l2 l1 (gf 5 ) x pdx +2 iλµg(l 2 )f 5 (l 2 )p(l 2 ) -2 iλµg(l 1 )f 5 (l 1 )p(l 1 ) .
Since p x and λp are uniformly bounded in L 2 (l 1 , l 2 ) and F H = o(1), Cauchy-Schwarz inequality is implemented to obtain Substituting the estimates above into (2.56) results in (2.57)

l2 l1 g µ|λp| 2 + β|p x | 2 dx -g(l 2 ) µ|λp(l 2 )| 2 + β|p x (l 2 )| 2 + g(l 1 ) µ|λp(l 1 )| 2 + β|p x (l 1 )| 2 +2γβ l2 l1 gv xx p x dx = 2 iλµg(l 2 )f 5 (l 2 )p(l 2 ) -2 iλµg(l 1 )f 5 (l 1 )p(l 1 ) + o(1).
Finally, adding (2.55) and (2.57), the desired result (2.52) is obtained.

Lemma 2.12. The solution (u, u 1 , v, z, p, q, y, y 1 ) of the system (2.34)-(2.35) satisfies the following estimates Proof. First, define two cut-off functions

θ 3 , θ 4 ∈ C 2 ([l 1 , l 2 ]) such that 0 ≤ θ 3 , θ 4 ≤ 1 for all x ∈ [l 1 , l 2 ] and
(2.59)

θ 3 (x) = 1 if x ∈ [l 1 , a 1 + 2ε], 0 if x ∈ [a 2 -2ε, l 2 ]
, and

θ 4 (x) = 0 if x ∈ [l 1 , a 1 + 2ε], 1 if x ∈ [a 2 -2ε, l 2 ].
By taking g(x) = (x -l 1 )θ 3 (x) + (x -l 2 )θ 4 (x), it is easy to see that g (x) = θ 3 (x) + θ 4 (x) + (x -l 1 )θ 3 (x) + (x -l 2 )θ 4 (x) and g(l 1 ) = g(l 2 ) = 0.

Setting g = (x -l 1 )θ 3 + (x -l 2 )θ 4 and considering g defined above in (2.52) lead to (2.60) 

l2 l1 (θ 3 + θ 4 ) ρ|λv| 2 + α|v x | 2 + µ|λp| 2 + β|p x | 2 dx -2γβ l2 l1 (θ 3 + θ 4 )p x v x dx - l2 l1 g ρ|λv| 2 + α|v x | 2 + µ|λp| 2 + β|p x | 2 dx :=I1 + 2γβ l2 l1 gp x v x dx :=I2 +o (1) 
(θ 3 + θ 4 ) α|v x | 2 + β|p x | 2 dx -2γβ l2 l1 (θ 3 + θ 4 )p x v x dx = α 1 l4 l1 (θ 3 + θ 4 )|v x | 2 dx + β l4 l1 (θ 3 + θ 4 )|γv x -p x | 2 dx.
Therefore, substitution of (2.61) and (2.62) into (2.60) result in

(2.63) l2 l1 (θ 3 + θ 4 ) ρ|λv| 2 + α 1 |v x | 2 + µ|λp| 2 + β|γv x -p x | 2 dx = o(1).
Finally, by (2.40), (2.42), (2.48), (2.50), the definitions of θ 3 and θ 4 in (2.63), the desired result (2.58) is obtained.

Lemma 2.13. The solution (u, u 1 , v, z, p, q, y, y 1 ) of the system (2.34)-(2.35) satisfies the following estimates

(2.64) |v(l 1 )| 2 = o(λ -2 ), |v(l 2 )| 2 = o(λ -2 ), |v x (l 1 )| 2 = o(1) and |v x (l 2 )| 2 = o(1). Proof. Define g ∈ C 1 ([l 1 , l 2 ]) such that (2.65) g(l 2 ) = -1, g(l 1 ) = 1, max x∈[l1,l2] |g(x)| = m g max x∈[l1,l2] |g (x)| = m g .
By using g in (2.52),

(2.66)

J 1 (l 1 ) -J 1 (l 2 ) = - l2 l1 g ρ|λv| 2 + α|v x | 2 + µ|λp| 2 + β|p x | 2 dx + 2γβ l2 l1 g p x v x dx + J 2 (l 2 ) -J 2 (l 1 ) + o(1),
which, together with (2.65) and (2.58), implies that

l2 l1 g ρ|λv| 2 + α|v x | 2 + µ|λp| 2 + β|p x | 2 dx = o(1) and l2 l1 g p x v x dx = o(1).
Substituting these estimates into (2.66) and by (2.53) leads to

M(l 1 ) + M(l 2 ) = 2γβ (p x (l 1 )v x (l 1 )) -2γβ (p x (l 2 )v x (l 2 )) + J 2 (l 2 ) -J 2 (l 1 ) + o(1)
where

(2.67) M(ζ) = ρ|λv(ζ)| 2 + α|v x (ζ)| 2 + µ|λp(ζ)| 2 + β|p x (ζ)| 2 ,
and therefore, (2.68) 

M(l 1 ) + M(l 2 ) ≤ 2γβ|p x (l 1 )||v x (l 1 )| + 2γβ|p x (l 2 )||v x (l 2 )| + |J 2 (l 2 )| + |J 2 (l 1 )| + o(1). Now, use the fact that f 3 ∈ H 1 (l 1 , l 2 ) ⊂ C([l 1 , l 2 ]), f 5 ∈ H 1 * (l 1 , l 2 ) ⊂ C([l 1 , l 2 ]),
2γβ|p x (ζ)||v x (ζ)| ≤ γ 2 β|v x (ζ)| 2 + β|p x (ζ)| 2 , |J 2 (ζ)| ≤ 1 2 ρ|λv(ζ)| 2 + 2ρ|f 3 (ζ)| 2 + 1 2 µ|λp(ζ)| 2 + 2µ|f 5 (ζ)| 2 ≤ 1 2 ρ|λv(ζ)| 2 + 1 2 µ|λp(ζ)| 2 + o(1)
, where ζ ∈ {l 1 , l 2 }. To get the desired result (2.64), substitute (2.70) into (2.68) and use α = α 1 + γ 2 β, (2.71)

2 j=1 ρ 2 |λv(l j )| 2 + µ 2 |λp(l j )| 2 + α 1 |v x (l j )| 2 ≤ o(1).
Lemma 2.14. The solution (u, u 1 , v, z, p, q, y, y 1 ) of the system (2.34)-(2.35) satisfies the following estimates

(2.72) l1 0 |λu| 2 + c 1 |u x | 2 = o(1)
and

L l2 |λy| 2 + c 2 |y x | 2 dx = o(1).
Proof. First, multiply (2.36) 1 and (2.36) 4 by -2xu x and -2(x -L)y x , and integrate over (0, l 1 ) and (l 2 , L), respectively. Since F H = o(1), and u x and y x are uniformly bounded in L 2 (0, l 1 ) and L 2 (l 2 , L), respectively,

- l1 0 x |λu| 2 x dx -c 1 l1 0 x |u x | 2 x = 2 l1 0 xf 2 u x dx =o (1) 
+2 iλ

l1 0 xf 1 u x dx and - L l2 (x -L) |λy| 2 x dx -c 2 L l2 (x -L) |y x | 2 x = 2 L l2 (x -L)f 8 y x dx =o(1) +2 iλ L l2 (x -L)f 7 y x dx .
Since F H = o(1), and (λu) and (λy) are uniformly bounded in L 2 (0, l 1 ) and L 2 (l 2 , L), respectively, (2.73)

l1 0 |λu| 2 + c 1 |u x | 2 dx -l 1 |λu(l 1 )| 2 + c 1 |u x (l 1 )| 2 = -2 iλ l1 0 (xf 1 ) x udx =o(1) +2 iλl 1 f 1 (l 1 )u(l 1 ) + o(1)

and

(2.74)

L l2 |λy| 2 + c 2 |y x | 2 dx + (l 2 -L) |λy(l 2 )| 2 + c 2 |y x (l 2 )| 2 = -2 iλ L l2 ((x -L)f 7 ) x ydx =o(1) -2 iλ(l 2 -L)f 7 (l 2 )y(l 2 ) + o(1).
Recalling Remark 2.3, u(l 1 ) = v(l 1 ), v(l 2 ) = y(l 2 ), (2.64) and the facts that

|f 1 (l 1 )| ≤ l1 0 |f 1 x |dx = o(1) and |f 7 (l 2 )| ≤ L l2 |f 7 x |dx = o(1),
the following is obtained

|λu(l 1 )| 2 + c 1 |u x (l 1 )| 2 = o(1), |λy(l 2 )| 2 + c 2 |y x (l 2 )| 2 = o(1), iλl 1 f 1 (l 1 )u(l 1 ) = o(1), iλ(l 2 -L)f 7 (l 2 )y(l 2 ) = o(1).
Finally, substitution of the estimates above into (2.73) and (2.74), the desired result (2.72) is obtained. Now, we are ready to finally prove Theorem 2.6. Proof of Theorem 2.6. By (2.58) and (2.72), we obtain that U H = o(1). This contradicts that U H = 1. Hence, (M2) holds true, and this makes the proof complete.

Remark 2.15. Note that the electrostatic/quasi-static approaches in modeling piezoelectric beams discard the dynamic electromagnetic effects, i.e. µ ≡ 0 in (E/P/E). Therefore, the reduced model becomes identical to the one obtained in [START_REF] Fatori | Exponential decay of serially connected elastic wave[END_REF], where two fully-distributed viscous damping terms for the outer wave equations are considered to achieve exponential stability. However, through the analysis of the section, it can be shown that only a local damping acting in the middle layer can also lead to an exponential stability result with the assumption (LD -P). The proof is exactly the same (even simpler) as the one presented above yet it left to the reader. This is a major improvement of the earlier result.

3.

Stability results for the system (P/E) Note that the assumption (LD -E) applies to all results in this section. For simplicity, the repetition of the assumption in the results below is avoided unless it is necessary to state.

3.1. Well-Posedness. In this section, the well-posedness of the system (P/E) is established by a semigroup approach. The natural energy of the system (P/E) is defined by

E P E (t) = 1 2 l1 0 ρ|v t | 2 + α 1 |v x | 2 + µ|p t | 2 + β|γv x -p x | 2 dx + 1 2 L l1 |y t | 2 + c 2 |y x | 2 dx.
It is straightforward to show that the energy E P E (t) is dissipative along the smooth enough solutions of (P/E), i.e.

(3.1)

dE P E (t) dt = - L l1 d 1 |y t | 2 dx.

Define the energy space H P E

H P E := (v, z, p, q, y, y

1 ) ∈ H 1 L (0, l 1 ) × L 2 (0, l 1 ) 2 × H 1 R (l 1 , L) × L 2 (l 1 , L), v(l 1 ) = y(l 1 )
equipped by the norm

(3.2) U 2 
H P E = l1 0 α 1 |v x | 2 + ρ|z| 2 + β|γv x -p x | 2 + µ|q| 2 dx + L l1 c 2 |y x | 2 + |y 1 | 2 dx, ∀U = (v
, z, p, q, y, y 1 ) ∈ H P E . This norm is equivalent to the standard norm of H P E (the arguments in the proof of Lemma 2.2 can be followed mutatis mutandis). Define the unbounded linear operator A P E : D(A P E ) ⊂ H P E → H P E by

A P E         v z p q y y 1         =         z 1 ρ (αv xx -γβp xx ) q 1 µ (βp xx -γβv xx ) y 1 c 2 y xx -d 1 y 1         , ∀U = (v, z, p, q, y, y 1 ) ∈ D(A P E )
with the domain

D(A P E ) = U := (v, z, p, q, y, y 1 ) ∈ H P E ; z, q ∈ H 1 L (0, l 1 ), y 1 ∈ H 1 R (0, l 1 ), v, p ∈ H 2 (0, l 1 ) ∩ H 1 L (0, l 1 ), y ∈ H 2 (l 1 , L) ∩ H 1 R (l 1 , L), αv x (l 1 ) -γβp x (l 1 ) = c 2 y x (l 1 ), βp x (l 1 ) = γβv x (l 1 ), y 1 (l 1 ) = z(l 1 )
. Remark 3.1. Obviously as in the previous section, the transmission conditions αv x (l 1 ) -γβp x (l 1 ) = c 2 y x (l 1 ), and βp x (l 1 ) = γβv x (l 1 ), are equivalent to the transmission conditions α 1 v x (l 1 ) = c 2 y x (l 1 ), and α 1 p x (l 1 ) = c 2 γy x (l 1 ).

If (v, p, y) is a sufficiently regular solution of the system (P/E), the system can be transformed into the first order evolution equation on the Hilbert space

H P E (3.3) U t = A P E U, U (0) = U 0 ,
with U = (v, v t , p, p t , y, y t ) and U 0 = (v 0 , v 1 , p 0 , p 1 , y 0 , y 1 ). By the analogous arguments in Subsection 2.1, the solution of the Cauchy problem (3.3) admits the following representation U (t) = e tA P E U 0 , t ≥ 0, which leads to the well-posedness for (3.3).

Theorem 3.2. Let U 0 ∈ H P E , the system (3.3) admits a unique weak solution U satisfying

U ∈ C 0 (R + , H P E ).
Moreover, if U 0 ∈ D(A P E ), the system (3.3) admits a unique strong solution U satisfying

U ∈ C 1 (R + , H P E ) ∩ C 0 (R + , D(A P E )).
3.2. Strong Stability. In this section, the strong stability of the system (P/E) is investigated. Here is the main result.

Theorem 3.3. The C 0 -semigroup of contraction e tA P E is strongly stable in H P E , i.e., for all U 0 ∈ H P E , the solution of (3.3) satisfies lim t→∞ e tA P E U 0 H P E = 0, if and only if

(SC) σ + σ - = 2n + -1 2n --1 , ∀n + , n -∈ N
where the two positive real numbers σ + and σ -are defined by

(3.4) σ + := (ρβ + µα) + (ρβ -µα) 2 + 4γ 2 β 2 µρ 2βα 1 and σ -:= (ρβ + µα) -(ρβ -µα) 2 + 4γ 2 β 2 µρ 2βα 1 .
Proof. It follows from the Arendt-Batty theorem (see page 837 in [START_REF] Arendt | Tauberian theorems and stability of one-parameter semigroups[END_REF]), since the resolvent of A P E is compact in H P E , the system (P/E) is strongly stable if and only if A P E does not have pure imaginary eigenvalues, i.e. σ(A P E ) ∩ iR = ∅. By Section 3.1, 0 ∈ ρ(A P E ) is immediate. However, σ(A P E ) ∩ iR * = ∅ must be proved. For this purpose, for a real number λ = 0 and U = (v, z, p, q, y, y 1 ) ∈ D(A P E ), consider (3.5)

A P E U = iλU,
which is equivalent to the following system (3.6) z = iλv in (0, l 1 ), q = iλp in (0, l 1 ), and y 1 = iλy in (l 1 , L), and

(3.7)    ρλ 2 v + αv xx -γβp xx = 0, µλ 2 p + βp xx -γβv xx = 0, x ∈ (0, l 1 ), λ 2 y + c 2 y xx -d 1 y 1 = 0, x ∈ (l 1 , L),
From the identity 

(A P E U, U ) H P E = - L l1 d 1 |y 1 | 2 dx,
   v xx = -λ 2 α -1 1 (ρv + γµp) , p xx = -λ 2 α -1 1 γρv + µαβ -1 p , x ∈ (0, l 1 ), v(0) = p(0) = v(l 1 ) = v x (l 1 ) = p x (l 1 ) = 0.
By differentiating (3.10) 1 twice, using (3.10) 2 and (3.10) 3 , the following system is obtained (3.11)

α 1 βv xxxx + λ 2 (ρβ + µα)v xx + µρλ 4 v = 0, v(0) = v xx (0) = v(l 1 ) = v x (l 1 ) = v xxx (l 1 ) = 0.
The characteristic polynomial corresponding to (3.11) is

(3.12) q(κ) = α 1 βκ 4 + λ 2 (ρβ + µα)κ 2 + µρλ 4 .
and therefore, define q 0 (m) := α 1 βm 2 + λ 2 (ρβ + µα)m + µρλ 4 .

Since (ρβ + µα) 2 -4βα 1 µρ = (ρβ -µα) 2 + 4γ 2 β 2 µρ > 0, the polynomial q 0 has two distinct real roots m -and m + : m + = -σ 2 + λ 2 and m -= -σ 2 -λ 2 where σ + and σ -are defined by (3.4). Observe that m + < 0, and by α > γ 2 β, m -< 0 is immediate. Setting κ + := √ -m + and κ -:= √ -m -, q has in total of four roots iκ + , -iκ + , iκ -, -iκ -. Hence, the general

solution of (3.11) is v(x) = c 1 sin(κ + x) + c 2 cos(κ + x) + c 3 sin(κ -x) + c 4 cos(κ -x)
where 

c j ∈ C, j = 1, • • • ,
M (c 1 , c 3 ) = (0, 0) , where M = κ + cos(κ + l 1 ) κ -cos(κ -l 1 ) κ 3 + cos(κ + l 1 ) κ 3 -cos(κ -l 1 ).
It is easy to see that det(M ) = κ -κ + (κ 2 -κ 2 + ) cos(κ -l 1 ) cos(κ + l 1 ). Utilizing κ 2 +κ 2 -= 0, it is observed that det(M ) vanishes if and only if cos(κ + l 1 ) = 0 or cos(κ -l 1 ) = 0. We split this into three cases: Case 1: Consider cos(κ -l 1 ) = 0 and cos(κ + l 1 ) = 0. It follows from (3.13) 1 and (3.13) 2 that c 1 = c 3 = 0. Consequently, U = 0. Case 2: Consider cos(κ -l 1 ) = 0 and cos(κ + l 1 ) = 0. It follows from (3.13) 1 and (3.13) 2 that c 1 = c 3 = 0. Consequently, U = 0. Case 3 Consider cos(κ + l 1 ) = 0 and cos(κ -l 1 ) = 0. Then, there exists n + , n -∈ N such that (3.14) κ

+ = 2n + + 1 2l 1 π and κ -= 2n -+ 1 2l 1 π.
By c 2 = c 4 = 0, and (3.13) where σ + and σ -are defined by (3.4). Hence, σ (A P E ) ∩ iR = ∅ if and only if (SC) holds.

Exponential and Polynomial Stability Results

. The aim of this subsection is to prove the exponential and the polynomial stabilities of the system (P/E) if (LD -E) holds and under an appropriate assumption on the ratio σ+ σ-, which depends on its arithmetic nature. Let us consider the following hypotheses (H Exp ) Assume that σ+ σ-∈ Q is such that σ+ σ-= ξ+ ξ-where gcd(ξ + , ξ -) = 1, and ξ + , ξ -are even and odd integers, respectively, or the other way around. (H Pol ) Assume that σ+ σ-is an irrational number. Then, suppose that there exists σ+ σ-≥ 2, depending on σ+ σ-, such that for all sequences Λ = (ξ 1,n , ξ 2,n ) n∈N ∈ (N × N * ) N with ξ 1,n ∼ ξ 2,n for sufficiently large n, there exist a positive constant c σ+ σ-, Λ and a positive integer N σ+ σ-, Λ , depending on σ+ σ-and the sequence Λ, such that

σ + σ - - ξ 1,n ξ 2,n > c σ+ σ-, Λ ξ σ + σ - 2,n , ∀n ≥ N σ + σ - , Λ .
Remark 3.4. (i) Note that it will be shown in section 4 that the number

σ+ σ-
is indeed an irrationality measure of the quotient σ+ σ-. More explanations on this notion will be under way as well as examples and some references. (ii) Note also that (H Exp ) or (H Pol ) implies that (SC) holds.

The main results of this section are the following theorems. Theorem 3.5. Assume that (LD -E) and (H Exp ) hold. Then, the C 0 -semigroup of contractions (e tA P E ) t≥0 is exponentially stable, i.e. there exist M ≥ 1 and ω > 0 such that (3.17)

e tA P E U 0 H P E ≤ M e -ωt U 0 H P E , ∀U 0 ∈ H P E .
Theorem 3.6. Assume that (LD -E) and (H Pol ) hold. Then, there exists a constant C > 0 such that the energy of the system (P/E) satisfies the following estimate for all t > 0 (3.18)

e tA P E U 0 2 ≤ C t 2 4 σ + σ - -4 U 0 2 D(A P E ) , ∀U 0 ∈ D(A P E ),
By ( [START_REF] Huang | Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces[END_REF], [START_REF] Prüss | On the spectrum of C 0 -semigroups[END_REF] for Theorem 3.5), or ( [START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups[END_REF], [START_REF] Liu | Characterization of polynomial decay rate for the solution of linear evolution equation[END_REF] for Theorem 3.6), the C 0 -semigroup of contractions e tA P E t≥0 on H P E satisfies (3.17) or (3.18) if the following two conditions hold

(N1) iR ⊂ ρ (A P E ) , (N2) sup λ∈R 1 λ (iλI -A P E ) -1 L(H) < ∞ with = 0, for Theorem 3.5, = 4 
σ+ σ--4, for Theorem 3.6, Since it is already proved that iR ⊂ ρ(A P E ) (see Section 3.3), it remains to prove the condition (N2), for which a contradiction argument is applicable. Suppose that (N2) is false. Then, there exists a sequence

{(λ n , U n )} n≥1 ⊂ R * × D(A P E ) with (3.19) |λ n | → ∞ and U n H = v n , z n , p n , q n , y n , y 1,n H P E = 1 such that (3.20) λ n (iλ n I -A P E ) U n = G n := g 1,n
, g 2,n , g 3,n , g 4,n , g 5,n , g 6,n → 0 in H P E .

For simplicity, index n is dropped for the rest of the proof. Now, (3.20) is equivalent to

(3.21)    iλv -z = λ -g 1 → 0 in H 1 L (0, l 1 ), iλp -q = λ -g 3 → 0 in H 1 L (0, l 1 ), iλy -y 1 = λ -g 5 → 0 in H 1 R (l 1 , L) and (3.22)    iλρz -αv xx + γβp xx = ρλ -g 2 → 0 in L 2 (0, l 1 ), iλµq -βp xx + γβv xx = µλ -g 4 → 0 in L 2 (0, l 1 ), iλy 1 -c 2 y xx + d 1 y 1 = λ -g 6 → 0 in L 2 (l 1 , L).
Combining (3.21) 3 and (3.22) 3 leads to

(3.23) λ 2 y + c 2 y xx -iλd 1 y = λ -(-iλg 5 -d 1 g 5 -g 6 ).
Lemma 3.7. The solution (v, z, p, q, y, y 1 ) of the system (3.21)-(3.22) satisfies the following estimates

(3.24) L l1 d 1 |y 1 | 2 dx = o(λ -), L l1 d 1 |λy| 2 dx = o(λ -), b1 a1 |λy| 2 dx = o(λ -).

and

(3.25)

D |y x | 2 dx = o(λ -)
where D := (a 1 + , b 1 -) with a small enough > 0 such that < b1-a1 2 . Proof. The proof is split into two steps.

Step 1. For obtaining first estimate in (3.24), take the inner product of (3.20) and U in H P E , and use the fact that U H P E = 1 and

G H P E = o(1), (3.26) L l1 d 1 |y 1 | 2 dx = - A P E U, U H P E = (iλI -A P E )U, U H P E = 1 λ G, U H P E = o(λ -).
Next, multiply (3.21) 3 by √ d 1 , and use the first estimate in (3.24) and G H = o(1). This leads to the second estimate in (3.24). Finally, the second estimate in (3.24) with (LD -E) yields the last estimate in (3.24).

Step 2. For proving (3.25), let 0 < < b1-a1 2 and fix the cut-off function

θ 5 ∈ C 2 ([l 1 , L]) such that 0 ≤ θ 5 (x) ≤ 1 for all x ∈ [l 1 , L],
and 

θ 5 (x) = 1, if x ∈ [a 1 + , b 1 -], 0, if x ∈ [l 1 , a 1 ] ∪ [b 1 , L]. Now,
(iλg 5 + d 1 g 5 + g 6 )θ 5 ydx = o(λ -).
Substituting the above estimates into (3.27) and using (3.24) lead to

L l1 θ 5 |y x | 2 dx = o(λ -).
Finally, by the definition of θ 5 , the desired result (3.25) is obtained.

Lemma 3.8. The solution (v, z, p, q, y, y 1 ) of the system (3.21)-(3.22) satisfies the following estimates

(3.28) L l1 |λy| 2 + c 2 |y x | 2 dx = o(λ -2 ), (3.29) |λv(l 1 )| 2 = o(λ -2 ), |v x (l 1 )| 2 = o(λ -2 ) and |p x (l 1 )| 2 = o(λ -2 ).
Proof. The proof is split into three steps.

Step 1. Letting h 1 ∈ C 1 ([l 1 , L]), the following estimate is targeted to prove

(3.30) - L l1 h 1 |λy| 2 + c 2 |y x | 2 dx + h 1 (L) |λy(L)| 2 + c 2 |y x (L)| 2 -h 1 (l 1 ) |λy(l 1 )| 2 + c 2 |y x (l 1 )| 2 = 2 iλ 1-h 1 (l 1 )g 5 (l 1 )y(l 1 ) + o(λ -2 ).
First, multiply (3.23) by 2h 1 y x and integrate over (l 1 , L) to get

L l1 h 1 (|λy| 2 ) x + c 2 (|y x | 2 ) x dx -2 iλ L l1 d 1 h 1 yy x dx = -2 λ - L l1 (iλg 5 + d 1 g 5 + g 6 )h 1 y x dx .
As the Integration by parts is implemented, (

- L l1 h 1 |λy| 2 + c 2 |y x | 2 dx + h 1 (L) |λy(L)| 2 + c 2 |y x (L)| 2 -h 1 (l 1 ) |λy(l 1 )| 2 + c 2 |y x (l 1 )| 2 -2 iλ L l1 d 1 h 1 yy x dx = -2 λ - L l1 (d 1 g 5 + g 6 )hy x dx + 2 iλ 1- L l1 (h 1 g 5 ) x ydx +2 iλ 1-h 1 (l 1 )g 5 (l 1 )y(l 1 ) . Since y x is uniformly bounded in L 2 (l 1 , L) and G H P E = o(1) 3.31) 
, by Cauchy-Schwarz inequality and (3.24), the following estimates are immediate

-2 iλ L l1 d 1 h 1 yy x dx = o(λ -2 ), λ - L l1 (d 1 g 5 + g 6 )hy x dx = o(λ -), iλ L l1 (hg 5 ) x ydx = o(λ -). (3.32)
Finally, substituting these in in (3.31) lead to the desired equation (3.30).

Step 2. For this step, (3.28) is aimed to be proved. First, define the following cut-off functions

θ 6 , θ 7 ∈ C 2 ([l 1 , L]) by θ 6 (x) = 1 if x ∈ [l 1 , a 1 + ], 0 if x ∈ [a 2 -, L] and θ 7 (x) = 0 if x ∈ [l 1 , a 1 + ], 1 if x ∈ [a 2 -, L]. so that 0 ≤ θ 6 , θ 7 ≤ 1 for all x ∈ [l 1 , L].
Following the the same arguments as in Lemma 2.12, take h 1 (x) = (x -l 1 )θ 6 (x) + (x -L)θ 7 (x) in (3.30). This, combined with Lemma 3.7, results in (3.28).

Step 3. Finally, to prove (3.29), take h 1 (x) = x -L in (3.30) and use (3.28) to obtain

|λy(l 1 )| 2 + c 2 |y x (l 1 )| 2 = 2 -iλ 1-g 5 (l 1 )y(l 1 ) + o(λ -2 ).
It follows from Young's inequality that

|λy(l 1 )| 2 + c 2 |y x (l 1 )| 2 ≤ 2|λ -g 5 (l 1 )||λy(l 1 )| + o(λ -2 ) ≤ 2λ -2 |g 5 (l 1 )| 2 + 1 2 |λy(l 1 )| 2 + o(λ -2 ). Now, use g 5 ∈ H 1 R (l 1 , L) ⊂ C([l 1 , L]) and G H P E = o(1) to obtain |g 5 (l 1 )| = o(1)
. This, together with the estimate above, provides the following estimate

1 2 |λy(l 1 )| 2 + c 2 |y x (l 1 )| 2 ≤ o(λ -2 ).
Hence, (3.29) is concluded from recalling Remark (3.1).

For the next result, substitute (3.21) 1 and (3.21) 2 in (3.22) 1 and (3.22) 2 , respectively, so that the following system is obtained,

(3.33) ρλ 2 v + αv xx -γβp xx = -λ -ρg 2 + iλρg 1 µλ 2 p + βp xx -γβv xx = -λ -(µg 4 + iλµg 3 ).
Lemma 3.9. The solution (v, z, p, q, y, y 1 ) of the system (3.21)-(3.22) satisfies the following estimate

(3.34) ρ l1 0 |λv| 2 dx + µ l1 0 |λp| 2 + α 1 l1 0 |v x | 2 dx + β l1 0 |γv x -p x | 2 dx -2µl 1 |λp(l 1 )| 2 ≤ o(λ -2 ).
Proof. First, use the multipliers -2xv x and -2xp x for (3.33) 1 and (3.33) 2 , respectively, and integrate over (0, l 1 ) to get

-ρ l1 0 x(|λv| 2 ) x dx -α l1 0 x(|v x | 2 ) x dx + 2γβ l1 0 xp xx v x dx = 2 λ - l1 0 x ρg 2 + iλρg 1 v x dx , -µ l1 0 x(|λp| 2 ) x dx -β l1 0 x(|p x | 2 ) x dx + 2γβ l1 0 xv xx p x dx = 2 λ - l1 0 x(µg 4 + iλµg 3 )p x dx .
Next, integrate by parts the identities identities above, and use (3.29) and α

= α 1 + γ 2 β, (3.35) 
ρ l1 0 |λv| 2 dx + α 1 l1 0 |v x | 2 dx + γ 2 β l1 0 |v x | 2 dx -2γβ l1 0 p x v x dx -2γβ l1 0 xp x v xx dx = 2ρ λ - l1 0 xg 2 v x dx -2 iλ 1-ρ l1 0 xg 1 x vdx + o(λ -2 ), (3.36) 
µ l1 0 |λp| 2 dx -µ|λp(l 1 )| 2 + β l1 0 |p x | 2 dx + 2γβ l1 0 xv xx p x dx = 2µ λ - l1 0 xg 4 p x dx -2 iλ 1-µ l1 0 xg 3 x pdx + 2 iλ 1-l 1 µg 3 (l 1 )p(l 1 ) + o(λ -2 ).
Since G H P E = o(1), and v x , p x , λv, λp are uniformly bounded in L 2 (0, l 1 ),

λ - l1 0 xg 2 v x dx = o(λ -), 2 iλ 1-ρ l1 0 xg 1 x vdx = o(λ -), λ - l1 0 xg 4 p x dx = o(λ -), iλ 1-µ l1 0 xg 3 x pdx = o(λ -).
Thus, (3.35) and (3.36), together with the last two estimates, reduce to (3.37)

ρ l1 0 |λv| 2 dx + µ l1 0 |λp| 2 + α 1 l1 0 |v x | 2 dx + β l1 0 |γv x -p x | 2 dx -µl 1 |λp(l 1 )| 2 = 2 iλ 1-l 1 µg 3 (l 1 )p(l 1 ) + o(λ -2 ).
On the other hand, since

g 3 ∈ H 1 R (0, l 1 ) ⊂ C([0, l 1 ]
) and G H P E = o(1), by Young's inequality

2 iλ 1-l 1 µg 3 (l 1 )p(l 1 ) ≤ l 1 µ|λp(l 1 )| 2 + l 1 µλ -2 |g 3 (l 1 )| 2 ≤ l 1 µ|λp(l 1 )| 2 + o(λ -2 ).
Finally, substituting the estimate above in (3.37) lead to (3.34).

For the next result, another form of (3.33) is needed by considering α = α 1 + γ 2 β:

(3.38) λ 2 ρv + α 1 v xx + γµλ 2 p = λ -G 1 + iλ 1-G 2 , λ 2 µαp + α 1 βp xx + ργβλ 2 v = λ -G 3 + iλ 1-G 4 ,
where

(3.39) G 1 = -ρg 2 + γµg 4 , G 2 = -ρg 1 + γµg 3 , G 3 = -αµg 4 + ργβg 2 , G 4 = -αµg 3 + ργβg 1 .
Lemma 3.10. The solution (v, z, p, q, y, y 1 ) of the system 

                     e 1 (s) = cos(sκ + ) -cos(sκ -) b + -b - , e 2 (s) = b + cos(sκ -) -b -cos(sκ + ) b + -b - , e 3 (s) = - b + κ + sin(sκ -) -b -κ -sin(sκ + ) κ -κ + (b + -b -) , e 4 (s) = - κ -sin(sκ + ) -κ + sin(sκ -) κ -κ + (b + -b -) , e 5 (s) = b + cos(sκ + ) -b -cos(zκ -) b + -b - , e 6 (s) = -b + b - cos(sκ + ) -cos(zκ -) b + -b - , e 7 (s) = - b + b -(κ + sin(sκ -) -κ -sin(sκ + )) κ -κ + (b + -b -) , e 8 (s) = - b + κ -sin(sκ + ) -b -κ + sin(sκ -) κ -κ + (b + -b -)
, and

(3.43) κ -= λσ -κ + = λσ + , b + = α 1 κ 2 + -λ 2 ρ γµλ 2 and b -= α 1 κ 2 --λ 2 ρ γµλ 2 ,
where σ + and σ -defined in (3.4).

Proof. Firstly, note that (3.4) and (3.43) directly imply that

(3.44)                b + = αµ -ρβ + (αµ -ρβ) 2 + 4γ 2 β 2 µρ 2βγµ = 0, b -= αµ -ρβ -(αµ -ρβ) 2 + 4γ 2 β 2 µρ 2βγµ = 0, b + -b -= (αµ -ρβ) 2 + 4γ 2 β 2 µρ βγµ = 0, b + b -= - ρ µ = 0, κ + κ -= λ 2 σ + σ -= 0, and κ + κ - = σ + σ - = 0.
which, indeed, better explains the expressions of e i , i = 1,

• • • , 8 in (3.42). Let U P E = (v, v x , p, p x ) . By (3.29), (3.45) 
U P E (0) = (0, v x (0), 0, p x (0)),

U P E (l 1 ) = o(λ -( 4 +1) ), o(λ -4 ), p(l 1 ), o(λ -4 ) ,
and therefore, the system (3.38) can be written as 

N P E =      0 1 0 0 -λ 2 ρ α1 0 -λ 2 γµ α1 0 0 0 0 1 -λ 2 ργ α1 0 -λ 2 µα α1β 0      and G =     0 λ -G 1 + iλ 1-G 2 0 λ -G 3 + iλ 1-G 4     .
Notice that the eigenvalues κ of the matrix N P E are the roots of the following characteristic equation

ς(κ) = q(κ) α 1 β
where q(κ) is defined in (3.12). This characteristic equation has four distinct pure imaginary roots iκ -, -iκ -, iκ + , -iκ + where κ + and κ -are defined in (3.43). Since the eigenvalues of N P E are simple, N P E is a diagonalizable matrix, i.e., N P E can be written as N P E = P N P E 1 P -1 such that

P =     1 1 1 1 iκ + -iκ + iκ - -iκ - b + b + b - b - iκ + b + -iκ + b + iκ -b --iκ -b -     , N P E 1 =     iκ + 0 0 0 0 -iκ + 0 0 0 0 iκ - 0 0 0 0 iκ -     , and 
P -1 = 1 2(b + -b -)       -b - ib- κ+ 1 -i κ+ -b --ib- κ+ 1 i κ+ b + -ib+ κ- -1 i κ- b + ib+ κ- -1 -i κ-      
where b + and b -are defined in (3.43). Therefore, for all s ∈ R, E(s) := e N P E s = P e 

                                     E 11 (s) = E 22 (s) = b + cos(sκ -) -b -cos(sκ + ) b + -b - , E 12 (s) = b+κ+ sin(sκ-)-b-κ-sin(sκ+) κ-κ+(b+-b-) , E 13 (s) = cos(sκ + ) -cos(sκ -) b + -b - , E 14 (s) = κ-sin(sκ+)-κ+ sin(sκ-) κ-κ+(b+-b-) , E 21 (s) = κ + b -sin(sκ + ) -κ -b + sin(sκ -) b + -b - , E 23 (s) = κ-sin(sκ-)-κ+ sin(sκ+) b+-b- , E 32 (s) = b + b -(κ + sin(sκ -) -κ -sin(sκ + )) κ -κ + (b + -b -) , E 33 (s) = E 44 (s) = b+ cos(sκ+)-b-cos(sκ-) b+-b- , E 34 (s) = b + κ -sin(sκ + ) -b -κ + sin(sκ -) κ -κ + (b + -b -) , E 43 (s) = b-κ-sin(sκ-)-b+κ+ sin(sκ+) b+-b- , E 24 (s) = E 13 (s), E 31 (s) = -b + b -E 13 (s), E 41 (s) = -b + b -E 23 (s), E 42 (s) = -b + b -E 24 (s).
By the classical arguments from the theory of ordinary differential equations, the solution of (3.46) is given by

U P E (x) = e N P E (x-l1) U E (l 1 ) - l1 x
e N P E (x-s) G(s)ds.

with

U P E (0) = e -N P E l1 U P E (l 1 ) - l1 0 e -N P E s G(s)ds.
Next, substitute (3.45) and (3.47) and (3.49) into the above equation to obtain

    0 v x (0) 0 p x (0)     = E(-l 1 )     o(λ -( 4 +1) ) o(λ -4 ) p(l 1 ) o(λ -4 )     + l1 0 E(-s)     0 λ -G 1 (s) + iλ 1-G 2 (s) 0 λ -G 3 (s) + iλ 1-G 4 (s)     ds.
This together with (3.49) yields Lemma 3.11. The solution (v, z, p, q, y, y 1 ) of the system (3.21)-(3.22) satisfies the following asymptotic estimates

E 13 (-l 1 )p(l 1 ) = -E 11 (-l 1 )o(λ -( 4 +1) ) -E 12 (-l 1 )o(λ -4 ) -E 14 (-l 1 )o(λ -4 ) -λ - l1 0 E 12 (-s)G 1 (s) + E 14 (-s)G 3 (s) ds -iλ 1- l1 0 E 12 (-s)G 2 (s) + E 14 (-s)G 4 (s) ds, and 
E 33 (-l 1 )p(l 1 ) = -E 31 (-l 1 )o(λ -( 4 +1) ) -E 32 (-l 1 )o(λ -4 ) -E 34 (-l 1 )o(λ -4 ) -λ - l1 0 E 32 (-s)G 1 (s) + E 34 (-s)G 3 (s) ds -iλ 1- l1 0 E 32 (-s)G 2 (s) + E 34 (-s)G 4 (s) ds,
(3.50) (cos(l 1 κ + ) -cos(l 1 κ -)) λp(l 1 ) = o(λ -4 ), (b + cos(l 1 κ + ) -b -cos(l 1 κ -)) λp(l 1 ) = o(λ -4 ).
Proof. First, the following estimates are immediate by (3.42), (3.44), (3.39), and

G H P E = o(1), (3.51 
)

|e 2 (l 1 )o(λ -( 4 +1) )| = o(λ -( 4 +1) ), |e 3 (l 1 )o(λ -4 )| = o(λ -( 4 +1) ), |e 4 (l 1 )o(λ -4 )| = o(λ -( 4 +1) ), |e 6 (l 1 )o(λ -( 4 +1) )| = o(λ -( 4 +1) ), |e 7 (l 1 )o(λ -4 )| = o(λ -( 4 +1) ), |e 8 (l 1 )o(λ -4 )| = o(λ -( 4 +1) ), λ - l1 0 e 3 (s)G 1 (s) + e 4 (s)G 3 (s) ds = o(λ -(1+ ) ), λ - l1 0 e 7 (s)G 1 (s) + e 8 (s)G 3 (s) ds = o(λ -(1+ ) ).
Now, integrate by parts to obtain

iλ 1- l1 0 e 3 (s)G 2 (s)ds = iλ 1-G 2 (l 1 ) κ -κ + (b + -b -) b + κ + κ - cos(l 1 κ -) -b - κ - κ + cos(l 1 κ + ) - iλ 1- κ -κ + (b + -b -) l1 0 b + κ + κ - cos(sκ -) -b - κ - κ + cos(sκ + ) G 2 s (s)ds, iλ 1- l1 0 e 4 (s)G 4 (s)ds = iλ 1-G 4 (l 1 ) κ -κ + (b + -b -) κ - κ + cos(l 1 κ + ) - κ + κ - cos(l 1 κ -) - iλ 1- κ -κ + (b + -b -) l1 0 κ - κ + cos(l 1 κ + ) - κ + κ - cos(l 1 κ -) G 4 s (s)ds, iλ 1- l1 0 e 7 (s)G 2 (s)ds = iλ 1-b + b -G 2 (l 1 ) κ -κ + (b + -b -) κ + κ - cos(l 1 κ -) - κ - κ + cos(l 1 κ + ) - iλ 1-b + b - κ -κ + (b + -b -) l1 0 κ + κ - cos(sκ -) - κ - κ + cos(sκ + ) G 2 s (s)ds, iλ 1- l1 0 e 8 (s)G 4 (s)ds = iλ 1-G 4 (l 1 ) κ -κ + (b + -b -) b + κ - κ + cos(l 1 κ + ) -b - κ + κ - cos(l 1 κ -) - iλ 1- κ -κ + (b + -b -) l1 0 b + κ - κ + cos(sκ + ) -b - κ + κ - cos(sκ -) G 4 s (s)ds. Next, by (3.51) and G 2 , G 4 ∈ H 1 L (0, l 1 ) ⊂ C([0, l 1 ]), (3.52 
)

iλ 1- l1 0 e 3 (s)G 2 (s)ds ≤ iλ 1-G 2 (l 1 ) κ -κ + (b + -b -) b + κ + κ - cos(l 1 κ -) -b - κ - κ + cos(l 1 κ + ) + iλ 1- κ -κ + (b + -b -) l1 0 b + κ + κ - cos(sκ -) -b - κ - κ + cos(sκ + ) G 2 s (s)ds ≤ o(λ -(1+ ) ), iλ 1- l1 0 e 4 (s)G 4 (s)ds ≤ iλ 1-G 4 (l 1 ) κ -κ + (b + -b -) κ - κ + cos(l 1 κ + ) - κ + κ - cos(l 1 κ -) + iλ 1- κ -κ + (b + -b -) l1 0 κ - κ + cos(l 1 κ + ) - κ + κ - cos(l 1 κ -) G 4 s (s)ds ≤ o(λ -(1+ ) ), (3.53 
) Proof. Since ≥ 0, it is easy to see that |λp(l 1 )| = O(1) from (3.37). Now assume that (3.54) does not hold.

iλ 1- l1 0 e 7 (s)G 2 (s)ds ≤ iλ 1-b + b -G 2 (l 1 ) κ -κ + (b + -b -) κ + κ - cos(l 1 κ -) - κ - κ + cos(l 1 κ + ) + iλ 1-b + b - κ -κ + (b + -b -) l1 0 κ + κ - cos(sκ -) - κ - κ + cos(sκ + ) G 2 s (s)ds ≤ o(λ -(1+ ) ), iλ 1- l1 0 e 8 (s)G 4 (s)ds ≤ iλ 1-G 4 (l 1 ) κ -κ + (b + -b -) b + κ - κ + cos(l 1 κ + ) -b - κ + κ - cos(l 1 κ -) + iλ 1- κ -κ + (b + -b -) l1 0 b + κ - κ + cos(sκ + ) -b - κ + κ - cos(sκ -) G 4 s (s)ds ≤ o(λ -(1+ ) ).
Then, there exists a positive constant cst and a subsequence such that |λp(l 1 )| ≥ cst. By (3.50), cos(l

1 κ + ) -cos(l 1 κ -) = o(λ -4 ) and b + cos(l 1 κ + ) -b -cos(l 1 κ -) = o(λ -4 ),
from which, the following is obtained

M(b + , b -) cos(l 1 κ + ) cos(l 1 κ -) = o(λ -4 ) o(λ -4 ) , and M(b + , b -) = 1 -1 b + -b - . From (3.44), det(M(b + , b -)) = b + -b -= 0, and thus, cos(l 1 κ + ) = o(λ -4 ) and cos(l 1 κ -) = o(λ -4 ).
This together with (3.43) imply that there exists n

1 + , n 1 -∈ Z such that λ = (2n 1 + + 1)π 2σ + l 1 + o(λ -4 ) and λ = (2n 1 -+ 1)π 2σ -l 1 + o(λ -4 ).
Since λ is large enough, i.e., λ ∼

(2n 1 + +1)π 2σ+l1 ∼ (2n 1 -+1)π 2σ-l1 , (2n 1 + + 1)π 2σ + l 1 + o(λ -4 ) = (2n 1 -+ 1)π 2σ -l 1 + o(λ -4 ).
and therefore,

(2n 1 + + 1) -(2n 1 -+ 1) σ + σ - = o(λ -4 ). (3.55) 
• Assume that (H Exp ) holds and take = 0. Then, by (3.55) and by (3.55),

(2n + + 1)ξ --(2n -+ 1)ξ + ξ - = o(1). It is known that |(2n 1 + + 1)ξ --(2n 1 -+ 1)ξ + | ≥ 1 since (2n
σ + σ - - 2n 1 + + 1 2n 1 -+ 1 = o(λ - σ + σ -).
However, the contradiction c σ+ σ-, Λ ≤ o(1) is immediate by (H Pol ) with the sequence Λ = ((2n . For this, recall the following result from [START_REF] Bugeaud | Effective irrationality measures for real and p-adic roots of rational numbers close to 1, with an application to parametric families of Thue-Mahler equations[END_REF].

Definition 4.2. Let ξ be an irrational real number. Then, the real number µ ≥ 1 is called to be the irrationality measure of ξ, if there exists a positive constant C(ξ, µ, ε) for every positive real number ε such that (4.2) ξ -p q > C(ξ, µ, ε) q µ+ε , ∀p, q ∈ Z with q ≥ 1.

The irrationality exponent µ(ξ) of ξ is defined as the infimum of the irrationality measures of ξ.

Notice that µ(ξ) is always ≥ 2, see [START_REF] Bugeaud | Approximation by algebraic numbers[END_REF]Theorem E.2]. A direct consequence of this definition is that if σ+ σ-∈ B is an irrational real number such that its irrationality exponent µ(ξ) is finite, then (H Pol ) holds with ( σ+ σ-) = µ( σ+ σ-) + ε for any ε > 0. Let us then give some examples of irrational real numbers with finite irrationality exponent. First by the Roth's theorem, for every algebraic number of degree ≥ 2, µ(ξ) = 2, see [START_REF] Bugeaud | Approximation by algebraic numbers[END_REF]. However, for many irrational real numbers ξ, the exact value of µ(ξ) is not explicitly known but some upper bound for their irrationality exponent is available, see Table 1. Note that ν(ξ) is an upper bound of µ(ξ) if µ(ξ) ≤ ν(ξ), therefore, we automatically have ξ -p q > C(ξ, µ, ε) q ν(ξ)+ε , ∀p, q ∈ Z with q ≥ 1, for all ε > 0. Consequently if ν(ξ) is finite, (H Pol ) holds with ( σ+ σ-) = ν( σ+ σ-) + ε, for any ε > 0. Now, in order to give other illustrations stated in the literature, an equivalent formulation of the irrationality measure, frequently used as the definition of the irrationality measure, may be needed, e.g. see [START_REF] Weisstein | Irrationality Measure[END_REF][START_REF] Zeilberger | The irrationality measure of π is at most 7.103205334137[END_REF]. Lemma 4.3. Fix an irrational real number ξ and a real number µ ≥ 1. Then, the following are equivalent (1) For every positive real number ε, there exists a positive constant C(ξ, µ, ε) such that (4.2) holds.

(2) For every positive real number ε, there exists a positive integer N (ξ, µ, ε) such that (4.3) ξ -p q > 1 q µ+ε , ∀p, q ∈ Z with q ≥ N (ξ, µ, ε).

Proof. "(2) ⇒ (1):" Fix ε > 0 and suppose that (1) does not hold. Then, for all n ∈ N * , there exists p n , q n ∈ Z with q n ≥ 1 such that

ξ - p n q n ≤ 1 nq µ+ε n , ∀n ∈ N * .
This trivially implies that

ξ - p n q n ≤ 1 n , ∀n ∈ N * ,
and consequently, pn qn converges to ξ as n goes to infinity. Therefore, q n (as well as p n ) approaches infinity as n goes to infinity. For large enough n , q n will be greater than N (ξ, µ, ε). As (2) holds, by (4.3), the following is deduced 1

q µ+ε n < ξ - p q ≤ 1 nq µ+ε n ,
∀n ∈ N * : q n ≥ N (ξ, µ, ε), which leads to a contradiction by letting n go to infinity. "(1) ⇒ (2):" For a fixed ε > 0, assume (1) with ε 2 . Then, there exists a positive constant C(ξ, µ, ε 2 ) such that

ξ - p q > C(ξ, µ, ε 2 ) q µ+ ε 2 ,
∀p, q ∈ Z with q ≥ 1, which is equivalent to (4.4) ξ -p q > C(ξ, µ, ε 2 )q ε 2 q µ+ε , ∀p, q ∈ Z with q ≥ 1.

Since C(ξ, µ?, ε 2 )q ε 2 approaches infinity as q goes to infinity, restrict ourselves to q such that C(ξ, µ, ε 2 )q By choosing N (ξ, ε) ≥ C(ξ, µ, ε 2 ) -2 ε , (4.4)implies (4.3) for q ≥ N (ξ, ε). In relation to Remark 3.4, the following equivalent statements can be formulated Lemma 4.4. Let us fix ξ an irrational real number and a real number ν ≥ 1. Then the following results are equivalent:

ε 2 ≥
(1) There exists a positive constant C(ξ, ν) such that ξ -p q > C(ξ, ν) q ν , ∀p, q ∈ Z with q ≥ 1.

(2) For all sequences Λ = (p n , q n ) n∈N ∈ (N × N * ) N with p n ∼ q n for sufficiently large n, there exist a positive constant c 1 (ξ, ν, Λ) and a positive integer N 1 (ξ, ν, Λ) such that ξ -p n q n > c 1 (ξ, ν, Λ) q ν n , ∀n ≥ N 1 (ξ, ν, Λ) .

(3) For all sequences Λ = (p n , q n ) n∈N ∈ (N × N * ) N for which pn qn approaches ξ as n goes to infinity, there exist a positive constant c 2 (ξ, ν, Λ) and a positive integer N 2 (ξ, ν, Λ) such that ξ -p n q n > c 2 (ξ, ν, Λ) q ν n , ∀n ≥ N 2 (ξ, ν, Λ) .

Proof. Obviously (1) ⇒ (2) ⇒ (3). Hence it suffices to show that (3) ⇒ (1). We prove this by a contradiction argument. Assume that (3) holds but not [START_REF] Adamczewski | Irrationality measures for some automatic real numbers[END_REF]. Then, for all n ∈ N * , there exists p n , q n ∈ Z with q n ≥ 1 such that

ξ - p n q n ≤ 1 nq µ+ε n , ∀n ∈ N * .
As in Lemma 4.3, this trivially implies that pn qn approaches ξ as n goes to infinity. Combining this with (3) results in c 2 (ξ, ν, Λ)

q ν n < ξ - p n q n ≤ 1 nq ν n ,
∀n ∈ N * : q n ≥ N 2 (ξ, ν, Λ), where Λ = ((p n , q n )) n∈N . This leads to a contradiction by letting n go to infinity. This result shows in particular that if (H Pol ) holds, ( σ+ σ-) is an irrationality mesure for σ+ σ-. Moreover, this result also shows that the condition (4.2) in the definition of an irrationality measure can be replaced by a condition on sequences (as in (2) or (3) above).

Finally, upper bounds of some irrationality exponents are presented in Table 1. To keep it short, only a few of them are provided. The interested readers can refer to, e.g. [START_REF] Weisstein | Irrationality Measure[END_REF], for various other upper bounds.

with k 1 ∈ L ∞ (0, l 1 ) and k 2 ∈ L ∞ (l 2 , L) such that k 1 (x) ≥ k 1,0 > 0 in (r 1 , r 2 ) ⊂ (0, l 1 ), and k 1 (x) = 0 in (0, l 1 )\(r 1 , r 2 ), k 2 (x) ≥ k 2,0 > 0 in (r 5 , r 6 ) ⊂ (l 2 , L), and k 2 (x) = 0 in (l 2 , L)\(r 5 , r 6 ).
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 2 Figure 2. Serially connected Elastic-Piezoelectric transmission line clamped at both ends.
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 1 iλU, U ) H P E = (A P E U, U ) H P E = -L l1 |y 1 | 2 dx. Thus, (3.9) d 1 y 1 = 0 in (l 1 , L), and consequently, y 1 = y = 0 in (a 1 , b 1 ) by (3.6), (LD -E) and (3.8). Considering (3.7) 3 , (3.9) and the unique continuation theorem, y = 0 in (l 1 , L). Moreover, since y ∈ H 2 (l 1 , L) ⊂ C 1 ([l 1 , L]), y(l 1 ) = y x (l 1 ) = 0. It follows from the continuity condition and Remark 3.1 that v(l 1 ) = v x (l 1 ) = p x (l 1 ) = 0. Using the fact that α = α 1 + γ 2 β, (3.7) 1 and (3.7) 2 , the system (3.6)-(3.7) reduced to (3.10)

4 . 1

 41 By the boundary conditions in(3.11) at x = 0 and κ 2 +κ 2 -= 0, it is deduced that c 2 = c 4 = 0. Moreover, by boundary conditions in (3.11) at x = l 1 , sin(κ + l 1 ) + c 3 sin(κ -l 1 ) = 0, c 1 κ + cos(κ + l 1 ) + c 3 κ -cos(κ -l 1 ) = 0, c 1 κ 3 + cos(κ + l 1 ) + c 3 κ 3 -cos(κ -l 1 ) = 0. Now, by (3.13) 2 and (3.13) 3 ,

θ 5 2 L l1 θ 5 (iλg 5 + d 1 g 5 +θ 5

 52l15555 multiply (3.23) by θ 5 y, integrate by parts over (l 1 , L), and use the definition of θ 5 to obtain (3.27) L l1 |λy| 2 dx -c |y x | 2 dx -c 2 L l1 θ 5 y x ydx = -λ - L l1 g 6 )θ 5 ydx . It is know that G H P E = o(1) implies that (λy) is uniformly bounded in L 2 (l 1 , L) by (3.21) 3 and y x is uniformly bounded in L 2 (l 1 , L). Therefore, by Cauchy-Schwarz inequality, (3.24), and the definition of θ 5 , U H P E = 1, |y| 2 dx = o(λ --2 ), and λ - L l1

( 3 . 4 )e 3 0 e 3 0 e 7 0 e 7

 343030707 [START_REF] Feng | Exponential stability results for the boundary-controlled fully-dynamic piezoelectric beams with various distributed and boundary delays[END_REF])-(3.22) satisfies the following asymptotic estimate(3.40) e 1 (l 1 )p(l 1 ) = -e 2 (l 1 )o(λ -( 4 +1) ) -e 3 (l 1 )o(λ -4 ) -e 4 (l 1 )o(λ -(s)G 1 (s) + e 4 (s)G 3 (s) ds -iλ 1- l1 (s)G 2 (s) + e 4 (s)G 4(s) ds, (3.41) e 5 (l 1 )p(l 1 ) = -e 6 (l 1 )o(λ -( 4 +1) ) -e 7 (l 1 )o(λ -4 ) -e 8 (l 1 )o(λ -4 ) -λ - l1 (s)G 1 (s) + e 8 (s)G 3 (s) ds -iλ 1- l1 (s)G 2 (s) + e 8 (s)G 4 (s) ds, with (3.42)

  which, thus, lead to (3.40) and(3.41).

Finally, ( 3 . 50 )

 350 follows from (3.44) and substituting (3.51), (3.52) and (3.53) into (3.40) and (3.41). Lemma 3.12. Assume (LD -E) . Let = 0 (if (H Exp ) holds) or = 4 σ+ σ--4 (if (H Pol ) holds). Then, the solution (v, z, p, q, y, y 1 ) of the system (3.21)-(3.22) satisfies the following estimate (3.54) |λp(l 1 )| = o(1).

  Now, multiply (E/P/E) 3 by p t , integrate by parts over (l 1 , l 2 ), and take the real part to get

			µ 2	d dt	l2 l1	|p t | 2 dx +	β 2	d dt	l2 l1	|p x | 2 dx -β	p x (l 2 , t)p t (l 2 , t) + β	p x (l 1 , t)p t (l 1 , t)
						l2				
			-γβ				v x p xt dx + γβ	v x (l 2 , t)p t (l 2 , t) -γβ	v x (l 1 , t)p t (l 1 , t) = 0.
						l1					
	By implementing (E/P/E) 10 and (E/P/E) 11 ,
	(2.4)					µ 2	d dt	l2 l1	|p t | 2 dx +	β 2	d dt	l2 l1	|p x | 2 dx -γβ	l2 l1	v x p xt dx = 0,
	and multiplying (E/P/E) 4 by y and integrating by parts over (l 2 , L) lead to
	(2.5)					1 2	d dt	L l2	|y t | 2 dx +	c 2 2	d dt	L l2	|y x | 2 dx + c 2	y x (l 2 , t)y t (l 2 , t) = 0.
	Thus, by adding (2.3) and (2.4) and noting (1.2),
		1	d	l2							
	(2.6)	2	dt	l1							

  := (a 2 + ε, b 2 -ε) with a positive real number ε small enough such that ε < b2-a2 4 .Proof. First, multiply (2.38) 2 by βθ 1 p, integrate over (l 1 , l 2 ) by parts, and use definition of θ 1 to get(2.43) 

		1 ) of the system (2.34)-(2.35) satisfies the following estimates
	l2	
	(2.42)	θ 1 |λp| 2 dx = o(1),
	l1	

Dε |λp| 2 dx = o(1), and Dε |q| 2 dx = o(1), where D ε

  ).Proof. Multiplying (2.38) 2 by -θ 1 v and integrating over (l 1 , l 2 ) by parts yield(2.49) 

	Inserting the estimates above into (2.45) together with Lemma 2.7 yields
	l2	
	(2.47)	θ 1 p x v x dx = o(1).
	l1	
	Thus, the combination of (2.44) and (2.47) gets the first estimate in (2.42), and together with which, and the
	definition of θ 1 , the second estimate in (2.42) is immediate. Finally, by the second estimate in (2.42), (2.34)

[START_REF] Akil | Stability of piezoelectric beam with magnetic effect under (Coleman or Pipkin)-Gurtin thermal law[END_REF] 

and the fact that F H = o(1), the third estimate in (2.42) is obtained.

Lemma 2.9. The solution (u, u 1 , v, z, p, q, y, y 1 ) of the system (2.34)-(2.35) satisfies the following estimate (2.48) l2 l1 θ 1 |v x | 2 dx = o(1), and consequently Dε |v x | 2 dx = o(1).

  . Now, adopting (2.40), (2.42), (2.48), (2.50), the definitions of θ 3 and θ 4 and Cauchy-Schwarz inequality result in

(2.61)

|I 1 | = o(1) and |I 2 | = o(1).

On the other hand, since α = α 1 + γ 2 β, it is easy to see that (2.62) l4 l1

  and F H = o(1) (cf. (2.33)), to obtain (2.69) |f 3 (ζ)| = o(1) and |f 5 (ζ)| = o(1), where ζ ∈ {l 1 , l 2 }.Finally, by (2.69), the definition of J 2 given in (2.53), and Young's inequality,

	(2.70)

  Proof of Theorem 3.5. Assume (H Exp ). Then, (3.28),(3.34) and(3.54) results in U H P E = o(1), which contradicts by (3.19). Consequently, the condition (N2) holds true. Proof of Theorem 3.6. Assume (H Pol ) and take = 4 ( σ+ σ-) -4. Then, (3.28), (3.34) and (3.54) result in U H P E = o(1), which contradicts by (3.19). Consequently, the condition (N2) holds true. 4. Illustration of the hypothesis (H Pol ) In this section, some examples are provided for the hypothesis (H Pol ) to hold true. For this purpose, we start with the notion of badly approximable real numbers. Now, by Definition 4.1, it safe to deduce that if σ+ σ-is a badly approximable irrational number, (H Pol ) holds with ( σ+ σ-) = 2, and consequently, Theorem 3.6 yields a polynomial energy decay in t -1/2 . The case σ+ σ-∈ B, though, requires the notion of the irrationality measure (sometimes called the Liouville-Roth constant or irrationality exponent)

					1 -+
	1)) n∈N . Consequently, (3.54) is obtained as (H Pol ) holds.	
	Definition 4.1. [10, Definition 1.3] A real number ξ is badly approximable if there is a positive constant c(ξ)
	such that for every rational number p q = ξ,				
	(4.1)	ξ -	p q	>	c(ξ) q 2 .

It is well known (see

[10, 

Theorem 1.1 and Corollary 1.2]) that rational and irrational quadratic numbers are badly approximable. However the set B of badly approximable numbers is larger since ξ ∈ B if and only if the sequence{x n } n∈N is bounded, denoting [x 0 , x 1 , • • • , x n , • • • ] its expansion as a continued fraction, see

[START_REF] Bugeaud | Approximation by algebraic numbers[END_REF] Theorem 1.9]

. Note also that the Lebesgue measure of B is equal to zero.

Table 1 .

 1 t n is the n -th term of the True-Morse sequence Upper bounds of some irrationality exponents
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Remark 4.5. As a final remark, notice that there exist irrational numbers ξ for which µ(ξ) = ∞. These numbers are called Liouville numbers. For example, L = ∞ k=1 b -k! is a Liouville number. Therefore if σ+ σ-is a

Liouville number, the decay rate of the energy of the system (P/E) is still an open problem.

Conclusions and open problems

In this paper, two different transmission problems are investigated: (i) a transmission problem of an Elastic-Piezoelectric-Elastic design with only one local damping acting on the longitudinal displacement of the center line of the piezoelectric layer and (ii) a transmission problem of a Piezoelectric-Elastic design with only one local damping acting on the elastic part. An exponential stability result is immediate for (i). However, for (ii), the nature of the stability (polynomial or exponential) entirely depends on the arithmetic nature of a quotient involving all the physical parameters of the system.

An interesting open problem is the stability of the following Piezoelectric-Elastic-Piezoelectric design By adopting analogous arguments as in Section 2, we conjecture that one may prove that the system (P/E/P) is exponentially stable. Furthermore, by assuming that b

, and b 2 (x) = 0 in (l 1 , l 2 )\(r 3 , r 4 ), analogous stability results as in Section 3 may also be obtained.

Another open problem, which deserves to be investigated, is the stability of the Elastic-Piezoelectric-Elastic design with two dampings terms acting only on the elastic part

l 2 , t) = y(l 2 , t), αv x (l 1 , t) -γβp x (l 1 , t) = c 1 u x (l 1 , t), αv x (l 2 , t) -γβp x (l 2 , t) = c 2 y x (l 2 , t), βp x (l 1 , t) = γβv x (l 1 , t), βp x (l 2 , t) = γβv x (l 2 , t), t ∈ (0, ∞), (u, v, p, y, u t , v t , p y , y t )(•, 0)) = (u 0 , v 0 , p 0 , y 0 , u 1 , v 1 , p 1 , y 1 )(•),