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In this paper we study the stability of two different problems. The first one is a one-dimensional degenerate wave equation with degenerate damping, incorporating a drift term and a leading operator in nondivergence form. In the second problem we consider a system that couples degenerate and non-degenerate wave equations, connected through transmission, and subject to a single dissipation law at the boundary of the non-degenerate equation. In both scenarios, we derive exponential stability results. Contents 1. Introduction 1 2. Stabilization of degenerate wave equation with drift and locally internal degenerate damping 5 2.1. Preliminaries, Functional spaces and Well-Posedness 5 2.2. Exponential Stability 9 3. Stabilization of connected degenerate and non-degenerate wave equations with drift and a single boundary damping 17 3.1. Well-Posedness 17 3.2.

Introduction

Degenerate partial differential equations (PDEs) are a subclass of PDEs in which some of the coefficients or terms lose their independence or become dependant on the same variable. As a result, the PDE could lose its typical characteristics, including ellipticity or hyperbolicity, which can have a substantial impact on how solutions behave.

In the context of wave equations, one intriguing aspect of wave equations arises when certain coefficients or terms become dependent on the same variable, leading to the emergence of degenerate wave equations. In such scenarios, the usual well-behaved properties of wave equations, such as hyperbolicity and ellipticity, may no longer hold, resulting in unique and sometimes counterintuitive wave behaviors. In some physical systems, losing ellipticity can cause novel phenomena, such as the appearance of many solutions with the same energy (degenerate energy levels) or the non-uniqueness of solutions. In materials with anisotropic properties, the wave equation can become degenerate, meaning that certain directions of wave propagation exhibit different behaviors compared to others. For example, in certain crystals, the speed of wave propagation may vary depending on the direction of the wave, leading to degeneracy in the wave equation. Also, in fluid dynamics, in the study of shallow water waves, some specific flow conditions can cause the wave equation to become degenerate.

In many real-world contexts, including camouflage (the fabrication of devices that render their operators invisible to outside observation) [START_REF] Greenleaf | Cloaking devices, electromagnetic wormholes, and transformation optics[END_REF], Lévy noise [START_REF] Biswas | On the Cauchy problem of a degenerate parabolic-hyperbolic pde with Lévy noise[END_REF], meteorology [START_REF] Badii | Time periodic solutions for a diffusive energy balance model in climatology[END_REF], and biological population [START_REF] Nikan | Numerical simulation of a degenerate parabolic problem occurring in the spatial diffusion of biological population[END_REF], degenerate partial differential equations (PDEs) give rise to control and inverse problems. Intricate mathematical problems associated with degenerate PDEs have been brought to light by these many applications. For example, the field of semiconductor physics and device engineering provides a significant physical application where degenerate PDEs play a crucial role in understanding and optimizing the behavior of modern electronic devices. These circumstances often include operators that are not uniformly elliptic because their diffusion coefficients vary spatially. However, these operators become uniformly elliptic in small areas of the spatial domain that are at positive distance from the degenerate area. Degeneracy can occur on either the boundary or an internal submanifold.

Recently, there has been a growing interest in the study of degenerate wave equations. To the best of our knowledge, there has been no investigation conducted to date that addresses the case in which both the wave and the damping are simultaneously considered degenerate. Furthermore, the concept of internally localized degenerate damping has not been explored in the existing literature. Thus, in this paper, the main focus is twofold. Firstly, it aims to explore the stability of a degenerate wave equation that incorporates locally degenerate damping. Significantly, this study distinguishes itself as the first to simultaneously consider the degeneracy of both the wave and the damping in the equation. Also, in this paper we get a better generalized condition for the exponential stability than that in [START_REF] Fragnelli | Linear stabilization for a degenerate wave equation in non divergence form with drift[END_REF] in Hypothesis 4. Thus, the system for this case is as follows:

(1.1)

      
u tt -a(x)u xx -b(x)u x + h(x)u t = 0, (x, t) ∈ (0, 1) × R + * , u(0, t) = u(1, t) = 0, t ∈ R + * , u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x),

x ∈ (0, 1)

where a, b ∈ C 0 [0, 1], with a > 0 on (0, 1], a(0) = 0 and b a ∈ L 1 (0, 1). Hence, if a(x) = x K , K > 0, we can consider b(x) = x m for any m > K -1. The damping coefficient function h(•) : (0, 1) → R + ∪ {0}, belongs to L ∞ (0, 1) and satisfies: h(x) = 0 for x ∈ (0, x 1 ) ∪ (x 2 , 1) (assuming 0 < x 1 < x 2 < 1) and h(x) = h 1 (x) = |(x -x 1 ) α1 (x -x 2 ) α2 | for x ∈ [x 1 , x 2 ] with α 1 , α 2 ≥ 0 . The initial data u 0 and u 1 belong to suitable weighted spaces. The degeneracy of (1.1) at x = 0 is measured by the parameter K defined by (1.2)

K := sup x∈(0,1] x|a ′ (x)| a(x) .
We say that a is weakly degenerate at 0, (WD) for short, if (WD) a ∈ C 0 [0, 1] ∩ C 1 (0, 1] and K ∈ (0, 1)

and we say that a is strongly degenerate at 0, (SD) for short, if (SD) a ∈ C 1 [0, 1] and K ∈ [1, 2).

Here we assume K < 2 because it is essential in the calculation that will be conducted below.

Secondly, it aims to study the coupling of a degenerate and a non degenerate wave equations via transmission with only one dissipation law acting at the end of the non degenerate part. The system is given as follows

(1.3)                            u 1
tt -a(x)u 1 xx -b(x)u 1 x = 0, (x, t) ∈ (0, 1) × R + * , y 1 tt -y 1 xx = 0, (x, t) ∈ (1, L) × R + * , u 1 (0, t) = 0, u 1 (1, t) = y 1 (1, t), t ∈ R + * , (ηu 1

x )(1, t) = y 1

x (1, t), y 1 x (L, t) = -y 1 t (L, t), t ∈ R + * , u 1 (x, 0) = u 1 0 (x), u 1 t (x, 0) = u 1 1 (x),

x ∈ (0, 1),

y 1 (x, 0) = y 1 0 (x), y 1 t (x, 0) = y 1 1 (x), x ∈ (1, L),
where L > 1, a, b are defined as in system (1.1), and η is the well-known absolutely continuous weight function η(x) := exp introduced by Feller in a related context [START_REF] Feller | The parabolic differential equations and the associated semi-groups of transformations[END_REF] and used by several authors, see, for example, [START_REF] Cannarsa | Null controllability of degenerate parabolic operators with drift[END_REF] or [START_REF] Fragnelli | Interior degenerate/singular parabolic equations in nondivergence form: well-posedness and Carleman estimates[END_REF] and the references therein. Indeed, prior to delving into the systems discussed in this paper, a literature review on the investigation of degenerate systems would be valuable. It is well known that standard linear theory for transverse waves in a string of length L under tension T leads to the classical wave equation

ρ(x)u tt (x, t) = ∂T ∂x u x (x, t) + T (x, t)u xx (x, t),
where u(x, t) denotes the vertical displacement of the string from the x axis at position x ∈ (0, L) and time t > 0, ρ(x) is the mass density of the string at position x, while T (x, t) denotes the tension in the string at position x and time t. Divide by ρ(x), assume T is independent of t, and set a

(x) = T (x)ρ -1 (x), b(x) = T ′ (x)ρ -1 (x).
In this way, we obtain

u tt (x, t) = a(x)u xx (x, t) + b(x)u x (x, t).
Let's assume that the density is remarkably high at a particular point, for example, x = 0. In this case, the previous equation degenerates at x = 0, as we can treat a(0) = 0, and the remaining term becomes a drift term. Controllability problems concerning parabolic issues have become a prominent subject in contemporary research. Initially explored in the context of the heat equation, subsequent contributions have extended this investigation to encompass more generalized scenarios. A frequently adopted approach to establish controllability involves proving global Carleman estimates for the adjoint operator of the given problem. While such estimates have been extensively developed for uniformly parabolic operators without any degeneracies or singularities. In recent years, researchers have expanded their investigations of these estimates to encompass operators that are not uniformly parabolic. In fact, several problems arising in Physics and Biology (see [START_REF] Karachalios | On the dynamics of a degenerate parabolic equation: global bifurcation of stationary states and convergence[END_REF]), Biology (see [START_REF] Boutaayamou | A degenerate population system: Carleman estimates and controllability[END_REF][START_REF] Fragnelli | Null controllability for a degenerate population model in divergence form via Carleman estimates[END_REF]), as well as Mathematical Finance (see [START_REF] Hagan | Equivalent black volatilities[END_REF]), are governed by degenerate parabolic equations. The existing literature focused on controlling and stabilizing the nondegenerate wave equation using diverse damping methods is notably extensive. This fact can be observed in the substantial number of works cited, as exemplified by [START_REF] Chentouf | On the stabilization of a vibrating equation[END_REF][START_REF] Conrad | Decay of solutions of the wave equation in a star-shaped domain with nonlinear boundary feedback[END_REF][START_REF] Novel | Feedback stabilization of a hybrid pde-ode system: Application to an overhead crane[END_REF] and the references mentioned within. In [START_REF] Chentouf | On the stabilization of a vibrating equation[END_REF], the authors consider the following modelization of a flexible torque arm controlled by two feedbacks depending only on the boundary velocities:

           y tt (x, t) -(ay x ) x (x, t) + βy t (x, t) + γy(x, t) = 0, (x, t) ∈ (0, 1) × R + * , (ay x )(0, t) = ε 1 U 1 (t), t > 0, (ay x )(1, t) = ε 2 U 2 (t), t > 0,
where β ≥ 0, γ > 0, ε 1 , ε 2 ≥ 0, ε 1 +ε 2 ̸ = 0 and a ∈ W 1,∞ (0, 1), a(x) ≥ a 0 > 0 for all x ∈ [0, 1]. They prove the exponential decay of the solutions. On the contrary, when the coefficient a(x) degenerates very little is known in the literature, even though many problems that are relevant for applications are described by hyperbolic equations degenerating at the boundary of the space domain (see [START_REF] Gueye | Exact boundary controllability of 1-d parabolic and hyperbolic degenerate equations[END_REF]). Lately, the subject of controllability and stability in degenerate hyperbolic equations has gained significant attention, with various advancements made in recent years (see [START_REF] Alabau-Boussouira | Control and stabilization of degenerate wave equations[END_REF], [START_REF] Gueye | Exact boundary controllability of 1-d parabolic and hyperbolic degenerate equations[END_REF], [START_REF] Zhang | Null controllability of some degenerate wave equations[END_REF], and the references mentioned within). In [START_REF] Alabau-Boussouira | Carleman estimates for degenerate parabolic operators with applications to null controllability[END_REF], the authors prove a Carleman estimate for the one dimensional degenerate heat equation and the null controllability on [0, 1] of the semilinear degenerate parabolic equation is also studied. On the other hand, in [START_REF] Fragnelli | Carleman estimates for singular parabolic equations with interior degeneracy and non-smooth coefficients[END_REF], the authors establish Carleman estimates for singular/degenerate parabolic Dirichlet problems with degeneracy and singularity occurring in the interior of the spatial domain.

More recently, Alabau et al. consider a degenerate wave equation of the form u tt -(a(x)u x ) x = 0 in (0, 1) × (0, +∞), where a is positive on (0, 1] and vanishes at zero. Initially presented in an arxiv preprint in May 2015 and later published in [START_REF] Alabau-Boussouira | Control and stabilization of degenerate wave equations[END_REF], their work establishes observability inequalities for weakly and strongly degenerate equations, proving negative results when the diffusion coefficient degenerates too violently (i.e., when the constant K in (1.2) is greater than 2). They also study the blow up of observability time when K converges to 2 from below and prove the exact controllability of the corresponding degenerate control problem. Using the optimal-weight convexity method of [START_REF] Alabau-Boussouira | Convexity and Weighted Integral Inequalities for Energy Decay Rates of Nonlinear Dissipative Hyperbolic Systems[END_REF] and [START_REF] Alabau-Boussouira | A unified approach via convexity for optimal energy decay rates of finite and infinite dimensional vibrating damped systems with applications to semi-discretized vibrating damped systems[END_REF], together with the results for linear damping, in [START_REF] Alabau-Boussouira | Control and stabilization of degenerate wave equations[END_REF] the authors also study the boundary stabilization of the degenerate linearly damped wave equation, showing that a suitable boundary feedback stabilizes the system exponentially. In the same work they also consider the stability analysis for the degenerate nonlinearly boundary damped wave equation for an arbitrarily growing nonlinear feedback close to the origin, showing that degeneracy does not affect optimal energy decay rates over time. Then, in [START_REF] Zhang | Null controllability of some degenerate wave equations[END_REF], Zhang and Gao focus on the case a(x) = x α investigating null controllability for degenerate wave equations using different spectral methods. In [START_REF] Benaissa | Energy decay for a degenerate wave equation under fractional derivative controls[END_REF], a one-dimensional degenerate wave equation with a boundary control condition of fractional derivative type is considered. The authors show that the problem is not uniformly stable by a spectrum method obtaining a polynomial stability. Recently, in [START_REF] Fragnelli | Linear stabilization for a degenerate wave equation in non divergence form with drift[END_REF], the authors consider a degenerate wave equation in one dimension, with drift and in presence of a leading degenerate operator which is in non divergence form. In particular, they prove uniform exponential decay under some conditions for the solutions of the following system (1.4)

             y tt -a(x)y xx -b(x)y x = 0, (x, t) ∈ (0, 1) × (0, T ),
y t (t, 1) + ηy x (t, 1) + βy(t, 1) = 0, t ∈ (0, T ), y(t, 0) = 0, t ∈ (0, T ), y(0, x) = y 0 (x), y t (0, x) = y 1 (x), x ∈ (0, 1), where homogeneous Dirichlet boundary condition is taken where the degeneracy occurs and a boundary damping is considered at the other endpoint. A boundary controllability problem for a system similar to (1.4) is considered in [START_REF] Boutaayamou | Boundary controllability for a degenerate wave equation in nondivergence form with drift[END_REF]. In particular, the authors study the controllability of the system by providing some conditions for the boundary controllability of the solution of the associated Cauchy problem at a sufficiently large time. On the other hand, in [START_REF] Moumni | Exact controllability for a degenerate and singular wave equation with moving boundary[END_REF] the authors consider the exact boundary controllability for a degenerate and singular wave equation in a bounded interval with a moving endpoint. Later, in [START_REF] Allal | Boundary controllability for a degenerate and singular wave equation[END_REF], the boundary controllability of a one-dimensional degenerate and singular wave equation with degeneracy and singularity occurring at the boundary of the spatial domain is considered. In particular, exact boundary controllability is proved in the range of both subcritical and critical potentials and for sufficiently large time, through a boundary controller acting away from the degenerate/singular point. Some years ago, in [START_REF] Liu | Stability of a string with local Kelvin-Voigt damping and nonsmooth coefficient at interface[END_REF], the authors study the stability of an elastic string system with local Kelvin-Voigt damping given in the following system (1.5)

       u tt (x, t) -[u x (x, t) + b(x)u xt (x, t)] x = 0, t ≥ 0, -1 < x < 1, u(t, -1) = u(t, 1) = 0, t ≥ 0, u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), x ∈ (-1, 1). The function b(x) ∈ L ∞ (-1, 1) is assumed to be (1.6) b(x) = 0, for x ∈ [-1, 0), a(x), for x ∈ [0, 1],
where the function a(x) is nonnegative. Under the assumption that the damping coefficient has a singularity at the interface of the damped and undamped regions and behaves like x β near the interface, they prove that the semigroup corresponding to the system is polynomially (of order 1 1-β when β ∈ (0, 1)) or exponentially (when β ≥ 1) stable and the decay rate depends on the parameter β ∈ (0, 1]. It is known that the optimal decay rate of the solution is t -2 in the limit case β = 0 and exponential for β ≥ 1. In the case when the damping coefficient b(x) is continuous, but its derivative has a singularity at the interface x = 0, the best known decay rate is t -3-β 2(1-β) (see [START_REF] Han | Sharper and finer energy decay rate for an elastic string with localized Kelvin-Voigt damping[END_REF]) , which fails to match the optimal one at β = 0. The authors in [START_REF] Han | Sharp stability of a string with local degenerate Kelvin-Voigt damping[END_REF], obtain a sharper polynomial decay rate t -2-β 1-β ; more significantly, the decay rate is consistent with the optimal polynomial decay rate at β = 0 and uniform boundedness of the resolvent operator on the imaginary axis at β = 1 (consequently, the exponential decay rate at β = 1 as t → ∞). But, they don't reach the optimal decay rate in this case. For the case of coupling systems, we mention [START_REF] Wehbe | Stability Results of an Elastic/Viscoelastic Transmission Problem of Locally Coupled Waves with Non Smooth Coefficients[END_REF] where the authors prove a polynomial energy decay rate for a locally coupled wave equations with only one internal viscoelastic damping of Kelvin-Voigt type. On the other hand, in [START_REF] Akil | Energy decay of some boundary coupled systems involving wave Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping[END_REF], the authors study the wave-Euler Bernoulli beam equations coupled through transmission with localized fractional Kelvin-Voigt damping acting on one of the two equation. In this case the authors prove polynomial energy decay rate in the different placement of the damping.

The main novelty of this paper lies in:

• The simultaneous consideration of degeneracy in both the wave and damping aspects within the first system. Additionally, the concept of internally localized degenerate damping remains unexplored in existing literature. Furthermore, we have achieved exponential stability regardless the of degeneracy, whether it's weak or strong, representing an independent and significant result. This stability is attained under assumptions that depend on the length of the damped region according to the choice of the functions a and b. Moving on to the second system discussed in this paper, it involves a coupling of the degenerate wave equation with a non-degenerate wave equation through transmission, where only one damping effect is applied at the endpoint of the non-degenerate part.

• The degenerate wave equation has a damping term only in the first system (1.1) and not in (1.3). Actually, in (1.3) the damping occurs at the endpoint of the non-degenerate part, and the two equations are connected via transmission. Notably, achieving exponential stability doesn't necessitate damping of the degenerate equation itself. Thus, ensuring damping at the non-degenerate equation's boundary is sufficient to establish exponential stability.

• We enhance Hypothesis 4 in [START_REF] Fragnelli | Linear stabilization for a degenerate wave equation in non divergence form with drift[END_REF], which leads to a more generalized condition for exponential stability compared to the one considered in that paper.

The paper is structured as follows. Section 1 addresses a system of a degenerate wave equation with internally local degenerate damping. We reframe the system (1.1) into an evolution system and establish the well-posedness of this system using a semigroup approach. Furthermore, we demonstrate the exponential stability of the system using multiplier methods. Moving to Section 2, we investigate a degenerate wave equation coupled with a non-degenerate one via transmission. The non-degenerate wave equation is subjected to a single dissipation law, which acts only on its end. For this particular system (1.3), the authors also prove exponential stability.

Stabilization of degenerate wave equation with drift and locally internal degenerate damping

In this section, we focus on the well-posedness and the exponential stability of (1.1).

2.1. Preliminaries, Functional spaces and Well-Posedness. This subsection is devoted to establish a very modest assumption and to define the functional spaces that will be used throughout the entire paper. Moreover, the well-posedness of (1.1) is studied. We begin with the following hypotheses. Hypothesis 2.2. Hypothesis 2.1 holds. In addition, a is such that a(0) = 0, a > 0 on (0, 1] and there exists α > 0 such that the function

(2.1) x → x α a(x) is non-decreasing in a right neighborhood of x = 0. Remark 2.3.
(1) If a is (WD) or (SD), then (2.1) holds for all α ≥ K and for all x ∈ (0, 1).

(2) We notice that, at this stage, a may not degenerate at x = 0. However, if it is (WD) then

1 a ∈ L 1 (0, 1)
and the assumption b a ∈ L 1 (0, 1) is always satisfied. If a is (SD) then 1 a / ∈ L 1 (0, 1), hence, if we want b a ∈ L 1 (0, 1) then b has to degenerate at 0. In this case b can be (WD) or (SD).

In order to study the well-posedness of (1.1), let us recall the well-known absolutely continuous weight function

η(x) := exp x 1 2 b(s) a(s) ds , x ∈ [0, 1].
introduced by Feller in a related context [START_REF] Feller | The parabolic differential equations and the associated semi-groups of transformations[END_REF] and used later by several authors, see, for example, [START_REF] Cannarsa | Null controllability of degenerate parabolic operators with drift[END_REF], [START_REF] Fragnelli | Interior degenerate/singular parabolic equations in nondivergence form: well-posedness and Carleman estimates[END_REF] and the references therein. Under Hypothesis 2.1, it is clear that the function η : [0, 1] → R introduced before is well defined and we immediately find that η ∈ C 0 [0, 1] ∩ C 1 (0, 1] is a strictly positive function, which is bounded above and below by a positive constant. Notice also that η can be extended to a function of class C 1 [0, 1] when b degenerates at 0 not slower than a, for instance if a(x) = x K and b(x) = x m with K ≤ m. Now we set the function σ as

(2.2) σ(x) := a(x) η(x) ,
which is a continuous function in [0, 1], independent of the possible degeneracy of a. Moreover, observe that if u is a sufficiently smooth function, e.g. u ∈ W 2,1 loc (0, 1), then we can write

Bu := au xx + bu x as Bu = σ(ηu x ) x .
By using the definition of σ, the system (1.1) can be rewritten as

(2.3)        u tt -σ(ηu x ) x + h(x)u t = 0, (x, t) ∈ (0, 1) × R + * , u(t, 0) = u(t, 1) =, 0 t ∈ R + * , u(0, x) = u 0 (x), y(0, x) = y 0 (x), x ∈ (0, 1).
We introduce the following Hilbert spaces

L 2 1 σ (0, 1) := y ∈ L 2 (0, 1); ∥y∥ 1 σ ≤ ∞ , ⟨y, z⟩ 1 σ := 1 0 1 σ yzdx, for every y, z ∈ L 2 1 σ (0, 1), H 1 1 σ (0, 1) := L 2 1 σ (0, 1) ∩ H 1 (0, 1), ⟨y, z⟩ 1 := ⟨y, z⟩ 1 σ + 1 0 ηy x zx dx, for every y, z ∈ H 1 1 σ (0, 1),
and

H 2 1 σ (0, 1) := y ∈ H 1 1 σ (0, 1); By ∈ L 2 1 σ (0, 1)
⟨y, z⟩ 2 := ⟨y, z⟩ 1 + ⟨By, Bz⟩ 1 σ . The previous inner products induce related respective norms

∥u∥ 2 1 σ = 1 0 1 σ |u| 2 dx, ∥u∥ 2 1 = ∥u∥ 2 1 σ + 1 0 η|u x | 2 dx and ∥u∥ 2 2 = ∥u∥ 2 1 + 1 0 σ|(ηu x ) x | 2 dx.
Also, we consider the following spaces

H 1 1 σ ,0 (0, 1) = L 2 1 σ (0, 1) ∩ H 1 0 (0, 1) and H 2 1 σ ,0 (0, 1) := u ∈ H 1 1 σ ,0 (0, 1); By ∈ L 2 1 σ (0, 1)
endowed with the previous inner products and related norms and we denote by

∥ • ∥ = ∥ • ∥ L 2 (0,1) .
Proposition 2.4. (Hardy-Poincaré Inequality) Assume Hypothesis 2.2. Then there exists C HP > 0 such that (HP)

1 0 u 2 1 σ dx ≤ C HP 1 0 u 2 x dx ∀ v ∈ H 1 1 σ ,0 (0, 1).
where

C HP = 4 a(1) + max x∈[β,1] 1 a C P max x∈[0,1]
η(x) , C P the constant of the classical Poincaré inequality on (0, 1) and β ∈ (0, 1).

Proof. The one dimensional Hardy inequality with one-sided boundary condition is represented by

|u(1)| p + p -1 p 1 0 |u(x)| p x p dx ≤ p p -1 p-1 1 0 |u x | 2 dx,
for every u ∈ C ∞ c ((0, 1]) and 1 < p < ∞. When u(1) = 0, this is a well-known Hardy inequality. Now, taking p = 2 in the above inequality, we get (2.4)

1 0 |u(x)| 2 x 2 dx ≤ 4 1 0 |u x | 2 dx. Now, take u ∈ H 1 1 σ
(0, 1) and using the definition of σ, we get (2.5)

1 0 |u| 2 σ dx = 1 0 η |u| 2 a dx ≤ max x∈[0,1] η(x) 1 0 |u| 2 a dx.
Thus it is sufficient to estimate

1 0 |u| 2 a dx.
To this aim, thanks to Hypothesis 2.2 and (2.4), we get

1 0 1 a |u| 2 dx = β 0 1 a |u| 2 dx + 1 β 1 a |u| 2 dx ≤ 1 a(1) 1 0 1 x K |u| 2 dx + 1 β 1 a |u| 2 dx ≤ 1 a(1) 1 0 1 x 2 |u| 2 dx + 1 β 1 a |u| 2 dx ≤ 4 a(1) 1 0 |u x | 2 dx + max x∈[β,1] 1 a(x) 1 0 |u| 2 dx ≤ 4 a(1) + max x∈[β,1] 1 a C P 1 0 |u x | 2 dx.
Combining the above inequality with (2.5), we get the desired result (HP). □ Using Hypothesis 2.2, we have

1 0 η|u x | 2 dx ≤ ∥u∥ 2 1 ≤ C HP max x∈[0,1] 1 η + 1 1 0 η|u x | 2 dx,
Thus, ∥u∥ 2 

η 1 0 |u x | 2 dx ≤ ∥u∥ 2 1 ≤ C HP + max x∈[0,1] η 1 0 |u x | 2 dx
where C HP is the Hardy-Poincaré constant introduced in Proposition 2.4. Now, defining the domain of the operator B as

D(B) = H 2 1
σ ,0 (0, 1) and using a semigroup approach, we will establish the well-posedness result for (1.1). Let (u, u t ) be a regular solution of the system (2.3). The energy of the system is given by

(2.6) E(t) = 1 2 1 0 1 σ |u t | 2 + η|u x | 2 dx
and we obtain that

d dt E(t) = - 1 0 1 σ h(x)|u t | 2 dx ≤ 0.
Thus, the system (2.3) is dissipative in the sense that its energy is a non increasing function with respect to the time variable t. We define the energy Hilbert space H by

H = H 1 1 σ ,0 (0, 1) × L 2 1 σ (0, 1)
equipped with the following inner product

U, U H = 1 0 ηu x ūx + 1 σ v v dx, for all U = (u, v) ⊤ ∈ H and Ũ = (ũ, ṽ) ⊤ ∈ H
and endowed with the the norm

∥U ∥ 2 H = 1 0 η|u x | 2 + 1 σ |v| 2 dx . Finally, defining the unbounded linear operator A by A(u, v) ⊤ = (v, σ(ηu x ) x -h(x)v) ⊤ for all U = (u, v) ∈ D(A), where D(A) := H 2 1 σ ,0 (0, 1) × H 1 1
σ ,0 (0, 1), we can rewrite (2.3) as the following evolution equation

(2.7) U t = AU, U (0) = U 0
where U 0 = (u 0 , u 1 ) ⊤ . In order to estimate some terms in the following results, the below lemmas are important.

Lemma 2.5. (See Lemma 2.2 in [22]) (1) Assume Hypothesis 2.1. If u ∈ H 2 1 σ (0, 1) and if v ∈ H 1 1 σ ,0 (0, 1), then lim x→0 v(x)u x (x) = 0. (2) Assume Hypothesis 2.2. If u ∈ D(A), then xu x (ηu x ) x ∈ L 1 (0, 1). (3) Assume Hypothesis 2.2. If u ∈ D(A) and K ≤ 1, then lim x→0 x|u x | 2 = 0. (4) Assume Hypothesis 2.2. If u ∈ D(A), K > 1 and xb a ∈ L ∞ (0, 1), then lim x→0 x|u x | 2 = 0. (5) Assume Hypothesis 2.2. If u ∈ H 1 1 σ (0, 1), then lim x→0 x a |u(x)| 2 = 0.
Proposition 2.6. The unbounded linear operator A is m-dissipative in the energy space H.

Proof. For all U = (u, v) ⊤ ∈ D(A), we have

(2.8) ℜ (AU, U ) H = - 1 0 h(x) σ(x) |λu| 2 dx ≤ 0, which implies that A is dissipative. Now, let F = (f 1 , f 2 ) ⊤ ∈ H, we prove the existence of U = (u, v) ⊤ ∈ D(A)
unique solution of the equation (2.9) -AU = F.

Equivalently, we have the following system

-v = f 1 and -σ(ηu x ) x + h(x)v = f 2 .
Combining the above two equations, we get

-σ(ηu x ) x = f 2 + h(x)f 1 . (2.10) Let φ ∈ H 1 1 σ ,0 (0, 1). Multiplying (2.10) by 1 σ
φ and integrate over (0, 1), we obtain

(2.11) Λ(u, φ) = L(φ), ∀ φ ∈ H 1 1 σ ,0 (0, 1), where Λ(u, φ) = 1 0 ηu x φx dx and L(φ) = 1 0 1 σ f 2 φdx + 1 0 1 σ h(x)f 1 φdx.
We have that Λ is a sesquilinear, continuous and coercive form on H 1 1 σ ,0 (0, 1), and L is a continuous form on H 1 1 σ ,0 (0, 1). Then, using Lax-Milgram Theorem, we deduce that there exists u ∈ H 1 1 σ ,0 (0, 1) unique solution of the variational problem (2.11). Now, taking v := -f 1 , we have v ∈ H 1 1 σ ,0 (0, 1). It remains to prove that U ∈ D(A) and solves (2.9). To this aim observe that equation (2.11) holds for every z ∈ C ∞ c (0, 1), thus we have

-(ηu x ) x = 1 σ (f 2 + h(x)f 1 ) a.e. in (0, 1). This implies that -σ(ηu x ) x = f 2 + h(x)f 1 ∈ L 2 1 σ (0, 1), i.e. Bu ∈ L 2 1 σ
(0, 1). Thus, U ∈ D(A). Therefore, (u, v) ∈ D(A) is the unique solution of (2.9). Then, A is an isomorphism and since ρ(A) is open set of C (see Theorem 6.7 (Chapter III) in [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF]), we easily get R(λI -A) = H for a sufficiently small λ > 0. This, together with the dissipativeness of A, imply that D(A) is dense in H and A is m-dissipative in H (see Theorem 4.5, 4.6 in [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]). The proof is thus complete. □ According to Lumer-Phillips Theorem (see [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]), Proposition 2.6 implies that the operator A generates a C 0 -semigroup of contractions (T (t)) t≥0 = (e tA ) t≥0 in H which gives the well-posedness of (2.7). Then, we have the following result Theorem 1. For any U 0 ∈ H, problem (2.7) admits a unique weak solution satisfying

U (t) ∈ C 0 (R + ; H).
Moreover, if U 0 ∈ D(A), (2.7) admits a unique strong solution U satisfying

U (t) ∈ C 1 (R + , H) ∩ C 0 (R + , D(A)).

Exponential Stability.

In this subsection we prove the exponential stability of the system (1.1) when a is (WD) or (SD). Here we define the interval I jϵ such that j ∈ {0, 1, 2}, given by I jϵ := (x 1 + jϵ, x 2 -jϵ) where

ϵ is such that ϵ < x 2 -x 1 4 .
In particular, we denote by I 0 = I 0ϵ = (x 1 , x 2 ) and I ϵ = I 1ϵ . Clearly, I 2ϵ ⊂ I ϵ ⊂ I 0 . Moreover, for convenience, we denote by (2.12)

       M 0,1 := x b a L ∞ (0,x1+2ϵ) M 0,2 := x a ′ -b a L ∞ (0,x1+2ϵ)
and

       M 1,1 := (x -1) b a L ∞ (x2-2ϵ,1) M 1,2 := (x -1) a ′ -b a L ∞ (x2-2ϵ,1)
.

Hypothesis 2.7. Assume Hypothesis 2.1, a (WD) or (SD) and the functions a and b such that

M 0,1 + M 1,1 < 1 -K 2 and M 0,2 + M 1,2 < 1 + K 2 .
Remark 2.8. We remark that the choice of the functions a and b gives reliance on the length of the damped interval; i.e. the choice of x 1 and x 2 depends on the choice of the functions a and b.

Example 2.9 (1) Example for the (WD) case: a(x) = √ x and b(x) = 1. In order for the functions a and b to satisfy Hypothesis 2.7, we need

√ x 1 + 2ϵ + 1 -(x 2 -2ϵ) √ x 2 -2ϵ < 3 4 and (x -1) 1 2x - 1 √ x L ∞ (x2-2ϵ,1) < 3 4 .
So, it is sufficient to take x 2 -2ϵ > 41-3 √ 73 32 ≈ 0.4802 and 0 < x 1 < x 1 + 2ϵ < x 2 -2ϵ < x 2 < 1 in order to satisfy the above inequalities. (As a specific choice for x 1 and x 2 , we take x 1 + 2ϵ = 0.15 and x 2 -2ϵ = 0.8, see the below Figure 1a that corresponds to this specific choice).

(2) Example for the (SD) case: a(x) = x √ x and b(x) = 1 8 x. In order for the functions a and b to satisfy Hypothesis 2.7, we need

√ x 1 + 2ϵ + 1 -(x 2 -2ϵ) √ x 2 -2ϵ < 2 and (x -1) 3 2x - 1 8 √ x L ∞ (x2-2ϵ,1) < 1 4 .
So, it is sufficient to take x 2 -2ϵ > 0.8471 and 0 < x 1 < x 1 + 2ϵ < x 2 -2ϵ < x 2 < 1 in order to satisfy the above inequalities. (As a specific choice here , we take x 1 + 2ϵ = 0.3 and x 2 -2ϵ = 0.9, see the below Figure 1b that corresponds to this specific choice). where M01, M11, M02, and M12 represent the functions inside the norms given in (2.12).

Theorem 2.10. Assume Hypothesis 2.7. Then, the C 0 -semigroup of contractions (T (t)) t≥0 is exponentially stable, i.e. there exist constants M ≥ 1 and τ > 0 independent of U 0 such that

∥T (t) 0 ∥ H ≤ M e -τ t ∥U 0 ∥ H , t ≥ 0.
According to Huang [START_REF] Huang | Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces[END_REF] and Pruss [START_REF] Prüss | On the spectrum of C 0 -semigroups[END_REF], we have to check if the following conditions hold:

(H1) iR ⊆ ρ (A) and (H2) sup λ∈R ∥ (iλI -A) -1 ∥ L(H) = O(1).
The following proposition is a technical finding that will be used to prove Theorem 2.10. 

= (u, v)) ∈ R * × D(A), with λ ̸ = 0, such that (2.13) (iλI -A) U = F := (f 1 , f 2 ) ∈ H, i .e. 
(2.14)

iλu -v = f 1 and iλv -σ(ηu x ) x + h(x)v = f 2 .
Then, we have the following inequality

(2.15) ∥U ∥ H ≤ κ 1 + 1 λ 2 ∥F ∥ H ,
where κ is a suitable positive constant independent of λ.

Observe that, by substituting v = iλu -f 1 into the second equation in (2.14), we get (2.16)

λ 2 u + σ(ηu x ) x -h(x)iλu = -f 2 + iλf 1 + h(x)f 1 .
Using equation (2.14) and the Hardy-Ponicaré inequality given in Proposition 2.4, we get (2.17)

∥λu∥ 1 σ ≤ ∥v∥ 1 σ + C HP ∥f 1 x ∥ ≤ max{1, c 0 } ∥v∥ 1 σ + ∥ √ ηf 1 x ∥ ≤ c 1 [∥U ∥ H + ∥F ∥ H ]
where

c 1 = max (1, c 0 ) with c 0 = C HP max x∈[0,1] η -1 (x).
Moreover, consider the following cut-off functions: given a function

θ in C ∞ ([0, 1]) such that (2.18) 0 ≤ θ ≤ 1, θ = 1 on I 2ϵ
, and θ = 0 on (0, 1)\I ϵ , define the functions

φ 1 and φ 2 in C ∞ ([0, 1]) so that 0 ≤ φ 1 , φ 2 ≤ 1, (2.19) φ 1 (x) := 1 on [0, x 1 + 2ϵ] 0 on [x 2 -2ϵ, 1] and φ 2 (x) = 0 on [0, x 1 + 2ϵ] 1 on [x 2 -2ϵ, 1]. Finally, define φ(x) = xφ 1 (x) + (x -1)φ 2 (x), x ∈ [0, 1]
. Now, we introduce the following lemma that will be used in the proof of Proposition 2.11.

Lemma 2.12.

(1) Assume Hypothesis 2. (3) Assume Hypothesis 2.2.

If u ∈ H 1 1 σ (0, 1), then lim x→0 φ(x) σ(x) |u(x)| 2 = 0. (4) Assume Hypothesis 2.2. If u, f 1 ∈ H 1 1 σ (0, 1), then lim x→0 ℜ 2iλf 1 φ σ ū = 0.
Proof. For the proof of the first three items in the Lemma we rely on the definition of φ defined below and the proof of Lemma 2.2 in [START_REF] Fragnelli | Linear stabilization for a degenerate wave equation in non divergence form with drift[END_REF].

For the last item (4), using the definition of φ, we have that lim

x→0 ℜ 2iλf 1 φ σ ū = lim x→0 ℜ 2iλf 1 xφ 1 σ ū .
So, by using Young's inequality we get

(2.20) ℜ 2iλf 1 φ σ ū ≤ x|λu| 2 σ |φ 1 | + x|f 1 | 2 σ |φ 1 |.
Then, by using items (5) of Lemma 2.5, we obtain lim x→0 ℜ 2iλf 1 φ σ ū = 0 and thus the proof is complete. □ Proof of Proposition 2.11. We divide the proof of Proposition 2.11 into several steps.

Step 1. The aim of this step is to show that the solution U = (u, v) ∈ D(A) of equation (2.13) satisfies the following two estimates (2.21)

Iϵ 1 σ |λu| 2 dx ≤ κ 1 ∥U ∥ H ∥F ∥ H + ∥F ∥ 2 H and I2ϵ η|u x | 2 dx ≤ κ 2 ∥U ∥ H ∥F ∥ H + ∥F ∥ 2 H ,
where κ 1 and κ 2 are constants to be determined. Firstly, taking the inner product of F with U in H, using (2.8) and Cauchy-Schwarz inequality, we get (2.22)

1 0 h(x) σ(x) |v| 2 dx = ℜ (⟨-AU, U ⟩ H ) = ℜ (⟨F, U ⟩ H ) ≤ ∥U ∥ H ∥F ∥ H .
Using the first equation in (2.14), and using the above equation, Young and (HP) inequalities, we have

1 0 h(x) σ(x) |λu| 2 dx ≤ 2 1 0 h(x) σ(x) |v| 2 dx + 2 1 0 h(x) σ(x) |f 1 | 2 dx ≤ 2∥U ∥ H ∥F ∥ H + 2 max [x1,x2] h 1 (x) 1 0 1 σ |f 1 | 2 dx (2.23) ≤ 2∥U ∥ H ∥F ∥ H + 2 max [x1,x2] h 1 (x)c 2 0 1 0 η|f 1 | 2 dx ≤ c 0 ∥U ∥ H ∥F ∥ H + ∥F ∥ 2 H ,
where c 0 = 2 max{1, max

[x1,x2]
h 1 (x)c 2 0 }. Using the fact that h 1 (x) ̸ = 0 in I ϵ and h 1 ∈ L ∞ (I ϵ ), we have min

x∈Iϵ h 1 (x) ≤ h 1 (x) ≤ max x∈Iϵ h 1 (x). Thus, Iϵ h 1 (x) σ |λu| 2 dx ≤ c 0 [∥U ∥ H ∥F ∥ H + ∥F ∥ 2 H ] =⇒ Iϵ 1 σ |λu| 2 dx ≤ κ 1 ∥U ∥ H ∥F ∥ H + ∥F ∥ 2 H with κ 1 = c 0 min x∈Iϵ h 1 (x)
and thus the first estimation in (2.21) is proved.

Secondly, multiplying (2.16) by 1 σ θū, integrating over (0, 1), and taking the real part we get, (2.24)

1 0 1 σ θ|λu| 2 dx + 1 2 1 0 (ηθ ′ ) ′ |u| 2 dx - 1 0 ηθ|u x | 2 dx = -ℜ 1 0 θ σ f 2 + iλf 1 + h(x)f 1 ūdx .
In order to estimate the terms in the previous equality we use the first inequality in (2.21), the definition of the function θ and the fact that supp θ = I ϵ , the Cauchy-Schwarz inequality and (2.17) obtaining

(2.25)

1 0 1 σ θ|λu| 2 dx ≤ Iϵ 1 σ |λu| 2 dx ≤ κ 1 ∥U ∥ H ∥F ∥ H + ∥F ∥ 2 H , (2.26) 1 2 1 0 (ηθ ′ ) ′ |u| 2 dx ≤ 1 2 ∥(ηθ ′ ) ′ σ∥ L ∞ (Iϵ) Iϵ 1 σ |u| 2 dx ≤ c 2 λ 2 ∥U ∥ H ∥F ∥ H + ∥F ∥ 2 H , (2.27 
)

1 0 iλθ σ f 1 ūdx ≤ 1 0 1 √ σ |f 1 | 1 √ σ |λu|dx ≤ c 3 ∥U ∥ H ∥F ∥ H + ∥F ∥ 2 H , where c 2 = 1 2 ∥(ηθ ′ ) ′ σ∥ L ∞ (Iϵ) κ 1
, and c 3 = c 0 c 1 . Now, by (HP), we get (2.28)

1 0 θ σ f 2 ūdx ≤ 1 0 1 σ |f 2 | 2 dx 1/2 1 0 1 σ |u| 2 dx 1/2 ≤ c 0 ∥U ∥ H ∥F ∥ H + ∥F ∥ 2 H ,

and

(2.29)

1 0 h(x) σ θf 1 ū ≤ max x∈[x1,x2] h(x) 1 0 1 √ σ |f 1 | 1 √ σ |u|dx ≤ c 4 ∥U ∥ H ∥F ∥ H + ∥F ∥ 2 H ,
where

c 4 = c 2 0 max x∈[x1,x2]
h(x). Thus, using equations (2.25)-(2.29) in (2.24), we get (2.30)

I2ϵ ηθ|u x | 2 dx ≤ κ 2 ∥U ∥ H ∥F ∥ H + ∥F ∥ 2 H where κ 2 = κ ′ 2 + c 2 λ 2 with κ ′ 2 = κ 1 + c 0 + c 3 + c 4 .
Hence, thanks to the definition of θ we get the second estimate in (2.21).

Step 2. The aim of this step is to show that the solution U = (u, v) ∈ D(A) of (2.13) satisfies the following equation (2.31)

1 0 φ ′ σ |λu| 2 dx + 1 0 ηφ ′ |u x | 2 dx = 1 0 φ σ a ′ -b a |λu| 2 dx + 1 0 φ b a η|u x | 2 dx -lim x→0 ηφ|u x | 2 -λ 2 lim x→0 φ(x) σ(x) |u(x)| 2 -2ℜ 1 0 h(x) σ iλuφū x dx + 2ℜ 1 0 f 2 + h(x)f 1 φ σ u x dx -2ℜ i 1 0 f 1 φ σ x λūdx -2 lim x→0 ℜ iλf 1 (x) φ(x) σ(x) ū(x) .
First, multiplying (2.16) by -2 φ σ ūx , integrating over (0, 1) and taking the real part, we get (2.32)

1 0 φ σ ′ |λu| 2 dx + lim x→0 φ(x) σ(x) |λu(x)| 2 -2ℜ 1 0 (ηu x ) x φū x dx + 2ℜ 1 0 h(x) σ iλuφū x dx = 2ℜ 1 0 f 2 + h(x)f 1 φ σ u x dx -2ℜ i 1 0 f 1 φ σ x λūdx -2 lim x→0 ℜ iλf 1 (x) φ(x) σ(x) ū(x) .
For the first term in the above equation, we have that φ σ

′ = φ ′ σ - φ σ a ′ -b a and η ′ = b a η, then 1 0 φ σ ′ |λu| 2 dx = 1 0 φ ′ σ |λu| 2 dx - 1 0 φ σ a ′ -b a |λu| 2 dx and -2ℜ 1 0 (ηu x ) x φū x dx = 2ℜ 1 0 ηu x (φū x ) x dx + 2 lim x→0 η(x)φ(x)|u x (x)| 2 = 2 1 0 ηφ ′ |u x | 2 dx - 1 0 (ηφ) ′ |u x | 2 dx + lim x→0 η(x)φ(x)|u x | 2 = 1 0 ηφ ′ |u x | 2 dx - 1 0 φ b a η|u x | 2 dx + lim x→0 η(x)φ(x)|u x (x)| 2 .
Substituting the above two equations into (2.32), we get (2.31).

Step 3. The aim of this step is to estimate the terms on the right hand side of (2.31).

• We start by the term 2ℜ 

√ p + q ≤ √ p +
√ q for all p, q ≥ 0, we get

(2.33) 2 ℜ 1 0 h(x) σ iλuφū x dx ≤ 2 max I0 h(x)∥φ∥ ∞ I0 |λ| h(x) √ σ |u| √ η √ a |u x |dx ≤ 2 max x∈I0 h(x) ∥φ∥ ∞ max x∈I0 1 √ a c 0 ∥U ∥ H ∥F ∥ H + ∥F ∥ 2 H 1/2 ∥U ∥ H ≤ 2 max x∈I0 h(x) ∥φ∥ ∞ max x∈I0 1 √ a c 0 ∥U ∥ 3/2 H ∥F ∥ 1/2 H + ∥F ∥ H ∥U ∥ H ≤ c 5 ∥U ∥ 3/2 H ∥F ∥ 1/2 H + c 5 ∥U ∥ H ∥F ∥ H + ∥F ∥ 2 H ,
where

c 5 = 2 max x∈I0 h(x) ∥φ∥ ∞ max x∈I0 1 √ a c 0 .
• For the term 2ℜ 

2ℜ 1 0 h(x)f 1 φ σ u x dx ≤ 2 max x∈I0 h(x)∥φ∥ ∞ I0 |f 1 | √ σ √ η √ a |u x |dx ≤ 2 max x∈I0 h(x)∥φ∥ ∞ max x∈I0 1 √ a 1 0 |f 1 | 2 σ dx 1/2 I0 η|u x | 2 dx 1/2 ≤ c 6 ∥U ∥ H ∥F ∥ H + ∥F ∥ 2 H where c 6 = 2c 0 max x∈I0 h(x)∥φ∥ ∞ max x∈I0 1 √ a .
• Now, consider the term 2ℜ

1 0 f 2 φ σ u x dx . By definition of φ, we have (2.35) 2ℜ 1 0 f 2 φ σ u x dx = 2ℜ 1 0 xφ 1 σ f 2 u x dx + 2ℜ 1 0 (x -1)φ 2 σ f 2 u x dx .
First of all, consider the first term in (2.35). Obviously, we can rewrite it as (2.36) 2ℜ

1 0 xφ 1 σ f 2 ūx dx = 2ℜ x1+2ϵ 0 x σ f 2 u x dx + 2ℜ I2ϵ xφ 1 σ f 2 ūx dx .
Using the Cauchy-Schwarz inequality, the fact that a doesn't vanish on the interval I 2ϵ , the monotonicity of the function x √ a in all the interval (0, 1] if a is (WD) or (SD) and the fact that K < 2, we obtain where c 11 = c 9 + c 10 .

(2.37) 2ℜ x1+2ϵ 0 x σ f 2 u x dx ≤ 2(x 1 + 2ϵ) a(x 1 + 2ϵ) x1+2ϵ 0 1 √ σ |f 2 | √ η|u x |dx ≤ c 7 ∥U ∥ H ∥F ∥ H + ∥F ∥ 2 H and (2.38) 2ℜ I2ϵ xφ 1 σ f 2 u x dx ≤ 2(x 2 -2ϵ) max x∈I2ϵ 1 √ a I2ϵ 1 √ σ |f 2 | √ η|u x |dx ≤ c 8 ∥U ∥ H ∥F ∥ H + ∥F ∥
• Finally, consider the last term 2ℜ i

1 0 f 1 φ σ x λūdx . Hence, we have (2.42) 2ℜ i 1 0 f 1 φ σ x λūdx = 2ℜ i 1 0 φf 1 x σ λūdx + 2ℜ i 1 0 φ σ ′ f 1 λūdx .
Using the definition of φ, the first term on the right hand side of (2.42), becomes

(2.43) 2ℜ i 1 0 φf 1 x σ λūdx = 2ℜ i x2-2ϵ 0 x σ φ 1 f 1 x λūdx + 2ℜ i 1 x1+2ϵ (x -1) σ φ 2 f 1 x λūdx .
Now, we need to estimate the terms in (2.43). Thus, using again the monotonicity of x √ a and (2.17), we obtain

(2.44) 2ℜ i x2-2ϵ 0 x σ φ 1 f 1 x λūdx ≤ 2 x2-2ϵ 0 x √ a |φ 1 | √ η|f 1 x | 1 √ σ |λu|dx ≤ c 12 ∥U ∥ H ∥F ∥ H + ∥F ∥ 2 H and (2.45) 2ℜ i 1 x1+2ϵ (x -1) σ φ 2 f 1 x λūdx ≤ 2 1 x1+2ϵ |x -1| √ a √ η|f 1 x | 1 √ σ |λū|dx ≤ c 13 ∥U ∥ H ∥F ∥ H + ∥F ∥ 2 H ,
where 

c 12 = 2 (x 2 -2ϵ) a(x 2 -2ϵ) c
φ σ ′ f 1 λūdx = 2ℜ i 1 0 φ ′ σ f 1 λūdx + 2ℜ i 1 0 φ σ a ′ -b a f 1 λūdx .
Using (2.17), the first term in the right hand side of (2.47) can be estimated as

(2.48) 2ℜ i 1 0 φ ′ σ f 1 λūdx ≤ 2∥φ ′ ∥ ∞ 1 0 1 √ σ |f 1 | 1 √ σ |λū|dx ≤ c 15 ∥U ∥ H ∥F ∥ H + ∥F ∥ 2 H ,
where

c 15 = 2∥φ ′ ∥ ∞ c 0 c 1 .
On the other hand, using the definition of φ and Hypothesis 2.7, the second term in the right hand side in (2.47) can be estimated in the following way:

(2.49)

2ℜ i 1 0 φ σ a ′ -b a f 1 λūdx ≤ 2 (M 0,2 + M 1,2 + M 2ϵ ) ∥f 1 ∥ 1 σ ∥λu∥ 1 σ ≤ 2c 0 1 + K 2 + M 2ϵ ∥ √ ηf 1 x ∥∥λu∥ 1 σ ≤ c 16 ∥U ∥ H ∥F ∥ H + ∥F ∥ 2 H ,
where

c 16 = 2c 0 c 1 1 + K 2 + M 2ϵ , where M 2ϵ := x a ′ -b a L ∞ (I2ϵ) + (x -1) a ′ -b a L ∞ (I2ϵ)
.

Then 

f 1 φ σ x λūdx ≤ c 18 ∥U ∥ H ∥F ∥ H + ∥F ∥ 2

H

where c 18 = c 14 + c 17 .

Step 4. The aim of this step is to show the following two estimates (2.52)

1 0 1 σ |λu| 2 ≤ κ 3 ∥U ∥ 3/2 H ∥F ∥ 1/2 H + (1 + 1 λ 2 ) ∥U ∥ H ∥F ∥ H + ∥F ∥ 2 H and
(2.53)

1 0 η|u x | 2 dx ≤ κ 4 ∥U ∥ 3/2 H ∥F ∥ 1/2 H + (1 + 1 λ 2 ) ∥U ∥ H ∥F ∥ H + ∥F ∥ 2 H , where κ 3 = 1 1+ K 2 -(M0,2+M1,2) c 23 and κ 4 = 1 1-K 2 -(M0,1+M1,1) c 23 ,
for a suitable positive constant c 23 that will be determined below. In order to prove the above estimates we start considering the first two terms on the left hand side of (2.31), and using the fact that φ ′ = φ 1 + φ 2 + φ where φ = xφ ′ 1 + (x -1)φ ′ 2 with supp φ = I 2ϵ , we obtain (2.54)

1 0 φ ′ σ |λu| 2 dx + 1 0 ηφ ′ |u x | 2 dx = x1+2ϵ 0 1 σ |λu| 2 dx + 1 x2-2ϵ 1 σ |λu| 2 dx + 1 x2-2ϵ η|u x | 2 dx + x1+2ϵ 0 η|u x | 2 + I2ϵ φ 1 + φ 2 σ |λu| 2 dx + I2ϵ (φ 1 + φ 2 )η|u x | 2 dx + 1 0 φ σ |λu| 2 dx + 1 0 φη|u x | 2 dx.
Estimating the last four terms in the above equation, using (2.21) and the fact that supp φ = I 2ϵ , we get (2.55)

1 0 φ σ |λu| 2 dx ≤ ∥ φ∥ L ∞ (I2ϵ) I2ϵ 1 σ |λu| 2 dx ≤ c 19 ∥U ∥ H ∥F ∥ H + ∥F ∥ 2 H ,
(2.56)

1 0 φη|u x | 2 dx ≤ c 20 ∥U ∥ H ∥F ∥ H + ∥F ∥ 2 H ,

and

(2.57)

I2ϵ φ 1 + φ 2 σ |λu| 2 dx + I2ϵ (φ 1 + φ 2 )η|u x | 2 dx ≤ (2κ 1 + 2(κ ′ 2 + c 2 λ 2 )) ∥U ∥ H ∥F ∥ H + ∥F ∥ 2 H ,
where 

c 19 = ∥ φ∥ L ∞ (I2ϵ) κ 1 and c 20 = ∥ φ∥ L ∞ (I2ϵ) κ ′ 2 + c 2 λ 2 .
x1+2ϵ 0 1 σ |λu| 2 dx + 1 x2-2ϵ 1 σ |λu| 2 dx + 1 x2-2ϵ η|u x | 2 dx + x1+2ϵ 0 η|u x | 2 dx ≤ (M 0,2 + M 1,2 ) 1 0 1 σ |λu| 2 dx + (M 0,1 + M 1,1 ) 1 0 η|u x | 2 dx + c 5 ∥U ∥ 3/2 H ∥F ∥ 1/2 H +c 21 ∥U ∥ H ∥F ∥ H + ∥F ∥ 2 H + c 22 λ 2 ∥U ∥ H ∥F ∥ H + ∥F ∥ 2 H ,
Then, adding the above equation with the two equations in (2.21), we get (2.59)

1 0 1 σ |λu| 2 dx + 1 0 η|u x | 2 dx ≤ (M 0,2 + M 1,2 ) 1 0 1 σ |λu| 2 dx +(M 0,1 + M 1,1 ) 1 0 η|u x | 2 dx + c 5 ∥U ∥ 3/2 H ∥F ∥ 1/2 H +c 21 ∥U ∥ H ∥F ∥ H + ∥F ∥ 2 H + c 22 λ 2 ∥U ∥ H ∥F ∥ H + ∥F ∥ 2 H ,
where

c 21 = c 5 +c 6 +c 11 +c 18 +c 19 +∥ φ∥ L ∞ (I2ϵ) κ ′ 2 +M 1,2ϵ κ 1 +M 0,2ϵ κ ′ 2 +2κ 1 +2κ ′ 2 , c 22 = ∥ φ∥ L ∞ c 2 +2c 2 +M 0,2ϵ c 2 such that M 1,2ϵ := x a ′ -b a L ∞ (I2ϵ) + (x -1) a ′ -b a L ∞ (I2ϵ) and M 0,2ϵ := x b a L ∞ (I2ϵ) + (x -1) b a L ∞ (I2ϵ) .
Now, multiply (2.16) by K 2σ u, integrate over (0, 1), and take the real part, we get (2.60)

K 2 1 0 1 σ |λu| 2 dx - K 2 1 0 η|u x | 2 dx = - K 2 ℜ 1 0 1 σ f 2 udx - K 2 ℜ i 1 0 1 σ f 1 λudx - K 2 ℜ 1 0 1 σ h(x)f 1 udx .
For the estimation of the last terms in the above equation, by using Cauchy-Schwarz, (HP) and (2.17), we obtain

(2.61) K 2 ℜ 1 0 1 σ f 2 udx ≤ K 2 c 0 ∥U ∥ H ∥F ∥ H + ∥F ∥ 2 H , (2.62) K 2 ℜ i 1 0 1 σ f 1 λudx ≤ K 2 c 0 c 1 ∥U ∥ H ∥F ∥ H + ∥F ∥ 2 H , (2.63) K 2 ℜ 1 0 1 σ h(x)f 1 udx ≤ K 2 max x∈[x1,x2] h(x)c 2 0 ∥U ∥ H ∥F ∥ H + ∥F ∥ 2 H .
So, using (2.61)-(2.63) in (2.60), we get

(2.64) K 2 1 0 1 σ |λu| 2 dx - K 2 1 0 η|u x | 2 dx ≤ c 20 ∥U ∥ H ∥F ∥ H + ∥F ∥ 2 H ,
where

c 20 = K 2 (c 0 c 1 + c 0 + max x∈[x1,x2] h(x)c 2 0
). Finally, adding (2.59) and (2.64), we obtain (2.65)

(1 + K 2 -(M 0,2 + M 1,2 )) 1 0 1 σ |λu| 2 dx + (1 - K 2 -(M 0,1 + M 1,1 )) 1 0 η|u x | 2 dx ≤ +c 5 ∥U ∥ 3/2 H ∥F ∥ 1/2 H + (c 21 + κ 1 + κ ′ 2 + c 20 ) ∥U ∥ H ∥F ∥ H + ∥F ∥ 2 H + c 22 + c 2 λ 2 ∥U ∥ H ∥F ∥ H + ∥F ∥ 2 H ≤ c 23 ∥U ∥ 3/2 H ∥F ∥ 1/2 H + (1 + 1 λ 2 ) ∥U ∥ H ∥F ∥ H + ∥F ∥ 2 H , where c 23 = max{c 5 , c 21 + κ 1 + κ ′ 2 + c 20 , c 22 + c 2 }.
Finally, by Hypothesis 2.7, we get the desired estimates (2.52) and (2.53).

Step 5.The goal of this step is to prove (2.15). Using the first equation in (2.14), (HP) and the Young inequality, we get

1 0 1 σ |v| 2 dx ≤ 2 1 0 1 σ |λu| 2 dx + 2c 2 0 1 0 η|f 1 x | 2 dx ≤ 2 max 1, c 2 0 1 0 1 σ |λu| 2 dx + 1 0 η|f 1 x | 2 dx .
Now, from the above estimate, (2.52) and the fact that

1 0 η|f 1 x | 2 dx ≤ ∥F ∥ 2 H ≤ (1 + λ -2 )∥F ∥ 2 H , we obtain 1 0 1 σ |v| 2 dx ≤ 2 max 1, c 2 0 (κ 3 + 1) ∥U ∥ 3/2 H ∥F ∥ 1/2 H + 1 + 1 λ 2 ∥U ∥ H ∥F ∥ H + ∥F ∥ 2 H ;
thus, thanks to this inequality and again by (2.52), we get

∥U ∥ 2 H ≤ c 24 ∥U ∥ 3/2 H ∥F ∥ 1/2 H + 1 + 1 λ 2 ∥U ∥ H ∥F ∥ H + ∥F ∥ 2 H , with c 24 = 2 max 1, c 2 0 (κ 3 + 1) + κ 4 . Since c 24 ∥U ∥ 3/2 H ∥F ∥ 1/2 H ≤ 1 2 ∥U ∥ 2 H + c 2 24 2
∥U ∥ H ∥F ∥ H , by the previous inequality we have

(2.66) 1 2 ∥U ∥ 2 H ≤ c 25 1 + 1 λ 2 ∥U ∥ H ∥F ∥ H + ∥F ∥ 2 H ,
where

c 25 = c 2 24 2 + c 24 . Now, since c 2 25 1 + 1 λ 2 2 + c 25 1 + 1 λ 2 ≤ c 25 + 1 2 + c 25 λ 2 2 and c 25 1 + 1 λ 2 ∥U ∥ H ∥F ∥ H ≤ 1 4 ∥U ∥ 2 H + c 2 25 1 + 1 λ 2 2 ∥F ∥ 2 H ,
by (2.66) we have

∥U ∥ 2 H ≤ 4 c 25 + 1 2 + c 25 λ 2 2 ∥F ∥ 2 H ≤ 4 c 25 + 1 2 2 1 + 1 λ 2 2 ∥F ∥ 2 H .
Thus, ∥U ∥ H ≤ κ 1 + 1 λ 2 ∥F ∥ H , with κ = 2c 25 + 1 and the proof of Proposition 2.11 is completed. □ Proof of Theorem 2.10. First, we will prove (H1). Remark that it has been proved in Proposition 2.4 that 0 ∈ ρ(A). Now, suppose (H1) is not true, then there exists λ ∞ ∈ R * such that iλ ∞ / ∈ ρ(A). According to Remark A.1 in [START_REF] Akil | Stability results of a singular local interaction elastic/viscoelastic coupled wave equations with time delay[END_REF], page 25 in [START_REF] Liu | Semigroups associated with dissipative systems[END_REF], and Remark A.3 in [START_REF] Akil | Stability of piezoelectric beam with magnetic effect under (coleman or pipkin)-gurtin thermal law[END_REF], then there exists

{(λ n , U n = (u n , v n ))} n≥1 ⊂ R * × D (A) with λ n → λ ∞ as n → ∞, |λ n | ≤ |λ ∞ | and∥U n ∥ H = 1 such that (iλ n I -A) U n = F n → 0 in H as n → 0. By taking F = F n , U = U n and λ = λ n in Proposition 2.11 such that ∥F n ∥ H → 0 as n → ∞, we get ∥U n ∥ H → 0, which contradicts that ∥U n ∥ H = 1.
Thus, condition (H1) is true. Next, we will prove (H2) by a contradiction argument. Suppose there exists

{(λ n , U n = (u n , v n ))} n≥1 ⊂ R * × D (A) with |λ n | > 1 without affecting the result, such that |λ n | → ∞, ∥U n ∥ H = 1 and there exists a sequence F n = (f 1 n , f 2 n ) ∈ H such that (iλ n I -A) U n = F n → 0 in H as n → 0.
From Proposition 2.11, as |λ n | → ∞, we get∥U n ∥ H = o(1), which contradicts ∥U n ∥ H = 1. Thus, condition (H2) holds true. The result follows from Huang-Prüss Theorem (see [START_REF] Huang | Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces[END_REF] and [START_REF] Prüss | On the spectrum of C 0 -semigroups[END_REF]) and the proof is completed. □

Stabilization of connected degenerate and non-degenerate wave equations with drift and a single boundary damping

This section is devoted to study the well-posedness and the exponential stability of (1.3).

3.1. Well-Posedness. In this subsection, we will study the well-posendness of (1.3). To this aim, using the definition of σ given in (2.2), we rewrite the system (1.3) as follows:

(3.1)

                           u 1 tt -σ(ηu 1 x ) x = 0, (x, t) ∈ (0, 1) × R + * , y 1 tt -y 1 xx = 0, (x, t) ∈ (1, L) × R + * , u 1 (0, t) = 0, u 1 (1, t) = y 1 (1, t), t ∈ R + * , (ηu 1 x )(1, t) = y 1 x (1, t), y 1 x (L, t) = -y 1 t (L, t), t ∈ R + * , u 1 (x, 0) = u 1 0 (x), u 1 t (x, 0) = u 1 1 (x),
x ∈ (0, 1),

y 1 (x, 0) = y 1 0 (x), y 1 t (x, 0) = y 1 1 (x), x ∈ (1, L).
By using the same arguments as in Section 2, we introduce the following Hilbert spaces

H 1 1 σ ,ℓ (0, 1) := u 1 ∈ H 1 1 σ (0, 1); u 1 (0) = 0 and H 2 1 σ ,ℓ (0, 1) := u 1 ∈ H 1 1 σ ,ℓ (0, 1); Bu 1 ∈ L 2 1 σ (0, 1)
equipped with the following norm

∥u 1 ∥ 2 1 σ ,ℓ = ∥u 1 ∥ 2 1 σ ,1 = ∥u∥ 2 1 σ + 1 0 η|u x | 2 dx and ∥u 1 ∥ 2 1 σ ,2 = ∥u∥ 2 1 σ ,ℓ + 1 0 σ|(ηu x ) x | 2 dx.
Thanks to (HP), we obtain that ∥u∥ 2 1 σ ,ℓ is equivalent to

1 0 η|u x | 2 dx. Let (u 1 , u 1 t , y 1 , y 1 
t ) be a regular solution of the system (3.1). The energy of the system is given by

(3.2) E 1 (t) = 1 2 1 0 1 σ |u 1 t | 2 + η|u 1 x | 2 dx + 1 2 L 1 |y 1 t | 2 + |y 1 x | 2 dx
and we obtain that

d dt E 1 (t) = -|z 1 (L)| 2 ≤ 0.
Thus, the system (3.1) is dissipative in the sense that its energy is a non increasing function with respect to the time variable t. We define the energy Hilbert space H 1 by

H 1 = U = (u, 1 v, 1 y, 1 z 1 ) ∈ H 1 1 σ ,ℓ (0, 1) × L 2 1 σ (0, 1) × H 1 (1, L) × L 2 (1, L); u 1 (1) = y 1 (1)
equipped with the following inner product

U, U H1 = 1 0 ηu 1 x u 1 x + 1 σ v 1 v 1 dx + L 1 y 1 x y 1 x + z 1 z 1 dx,
and endowed with the the norm

(3.3) ∥U∥ 2 H1 = 1 0 η|u 1 x | 2 + 1 σ |v 1 | 2 dx + L 1 |y 1 x | 2 + |z 1 | 2 dx for all U = (u 1 , v 1 , y 1 , z 1 ) ⊤ and U = ( u 1 , v 1 , y 1 , z 1 ) ⊤ ∈ H 1 . Noting that the standard norm on H 1 is (3.4) ∥U∥ 2 S = ∥v 1 ∥ 2 1 σ + ∥u 1 ∥ 2 1 σ ,ℓ + ∥z 1 ∥ 2 L 2 (1,L) + ∥y 1 ∥ L 2 (1,L) + ∥y 1 x ∥ 2 L 2 (1,L) .
Lemma 3.1. The two norms ∥ • ∥ H1 and ∥ • ∥ S are equivalent in H 1 , i.e. there exist two positive constants C 1 , C 2 , independent of U, such that

(3.5) C 1 ∥U∥ 2 S ≤ ∥U∥ 2 H1 ≤ C 2 ∥U∥ 2 S for all U = (u 1 , v 1 , y 1 , z 1 ) ∈ H 1 .
Proof. The inequality on the right hand side is evident with C 2 = 1. Thanks to the boundary and the transmission conditions (u 1 (0) = 0 and u 1 (1) = y 1 (1)), we have u 1 (1) = 1 0 u 1 x dx and

y 1 (x) = u 1 (1) + x 1 y 1 s (s)ds.
Moreover, by the Young and the Cauchy-Schwarz inequalities we have

|u 1 (1)| 2 ≤ max x∈[0,1] 1 η 1 0 η|u 1 x | 2 dx and |y 1 (x)| 2 ≤ 2|u 1 (1)| 2 + 2(L -1)∥y 1 x ∥ 2 L 2 (1,L) ; thus (3.6) L 1 |y 1 (x)| 2 dx ≤ R 1 0 η|u 1 x | 2 dx + L 1 |y 1 x | 2 dx ,
where R := 2(L -1) max max x∈[0,1] 1 η , L -1 . Hence, by (3.6),

∥U∥ 2 S ≤ (1 + R) ∥v 1 ∥ 2 1 σ + ∥u 1 ∥ 2 1 σ ,ℓ + ∥z 1 ∥ 2 L 2 (1,L) + ∥y 1 x ∥ L 2 (1,L)
and the left hand side of inequality of (3.5) is true with

C 1 = 1 1 + R . □
Finally, we define the unbounded linear operator A 1 by

AU = A 1 (u 1 , v 1 , y 1 , z 1 ) ⊤ = v 1 , σ(ηu 1 x ) x , z 1 , y 1 xx ⊤ .
for all U = (u 1 , v, 1 y 1 , z 1 ) ⊤ ∈ D(A 1 ), where

D(A 1 ) = U = (u 1 , v 1 , y 1 , z 1 ) ∈ H 1 ; (v 1 , z 1 ) ∈ H 1 1 σ ,ℓ (0, 1) × H 1 (1, L), u 1 ∈ H 2 1 σ ,ℓ (0, 1), y 1 ∈ H 2 (L, 1), (ηu 1 x ) x (1) = y 1 x (1), y 1 x (L) = -z 1 (L)
, Hence, we can rewrite (3.1) as the following Cauchy problem (3.7)

U t = A 1 U, U(0) = U 0 where U 0 = u 1 0 , u 1 1 , y 1 0 , y 1 1 ⊤ .
We have that ℜ(A 1 U, U) H1 = -|z 1 (L)| 2 , which implies that A 1 is dissipative. Now, let G = (g 1 , g 2 , g 3 , g 4 ) ∈ H 1 ; by Lax-Milgram Theorem, one can prove the existence of U ∈ D(A 1 ) such that

-A 1 U = G.
Therefore, the unbounded linear operator A 1 is m-dissipative in H 1 , thus 0 ∈ ρ(A 1 ) and, by Lumer-Phillips Theorem (see, e.g., [START_REF] Liu | Semigroups associated with dissipative systems[END_REF] and [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]), A 1 generates a C 0 -semigroup of contractions (T 1 (t)) t≥0 = (e tA1 ) t≥0 in H 1 .

Hence, the solution of the Cauchy problem (3.7) admits the following representation

U(t) = e tA1 U 0 t ≥ 0,
which leads to the well-posedness of (3.7). The following result is immediate.

Theorem 2. For any U 0 ∈ H 1 , problem (3.7) admits a unique weak solution satisfying

U(t) ∈ C 0 (R + ; H 1 ).
Moreover, if U 0 ∈ D(A 1 ), (3.7) admits a unique strong solution U satisfying

U(t) ∈ C 1 (R + , H 1 ) ∩ C 0 (R + , D(A 1 )).
3.2. Exponential Stability. This subsection focuses on examining the exponential stability of system (3.1). We begin introducing a main hypothesis that will serve as the basis for studying the system's exponential stability. Denote by (3.8)

N 1 := x a ′ -b a L ∞ (0,1)
and N 2 := x b a L ∞ (0,1) .

Hypothesis 3.2. Assume Hypothesis 2.1, a (WD) or (SD) and the functions a and b such that

N 1 < 1 + K 2 and N 2 < 1 -K 2 . Example 3.3 (1) Example for the (WD) case: a(x) = √
x and b(x) = 1 2 . In this case K = 1 2 and it is easy to see that and N 2 = 1 8 . So, Hypothesis 3.2 is satisfied. Theorem 3.4. Assume Hypothesis 3.2. Then, the C 0 -semigroup of contractions (T 1 (t)) t≥0 is exponentially stable, i.e. there exist constants M ≥ 1 and τ > 0, independent of U 0 , such that e tA1 U 0 H1 ≤ M e -τ t ∥U 0 ∥ H1 , t ≥ 0.

N 1 = N 2 = 1 2 . So,
According to Huang [START_REF] Huang | Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces[END_REF] and Pruss [START_REF] Prüss | On the spectrum of C 0 -semigroups[END_REF], we have to check if the following conditions hold:

(R1) iR ⊆ ρ (A 1 )
and

(R2) sup λ∈R ∥ (iλI -A 1 ) -1 ∥ L(H1) = O(1).
The following proposition is a technical finding that will be used to prove Theorem 3.4.

Proposition 3.5. Assume Hypothesis 3.2 and let (λ, U := (u, v, y, z)) ∈ R * × D(A 1 ), with λ ̸ = 0, such that (3.9) (iλI -A 1 ) U = G := (g 1 , g 2 , g 3 , g 4 ) ∈ H 1 ,

i.e.

iλu 1 -v 1 = g 1 , (3.10) iλv 1 -σ(ηu 1 x ) x = g 2 , (3.11) iλy 1 -z 1 = g 3 , (3.12) iλz 1 -y 1 xx = g 4 , . (3.13) 
Then the following inequality holds:

(3.14) ∥U∥ H1 ≤ m 1 + 1 λ 2 ∥G∥ H1 ,
where m is a suitable positive constant independent of λ.

Before proving the above proposition, observe that, by the dissipation of the energy, we have . Moreover, thanks to the transmission condition g 3 (1) = g 1 (1), one has (3.17)

|g 3 (1)| = |g 1 (1)| = 1 0 g 1 x dx ≤ max x∈[0,1] 1 η ∥ √ ηg 1 x ∥ ≤ m 1 ∥G∥ H1
where m 1 := max 

|g 3 (L)| 2 ≤ 2(L -1)∥g 3 x ∥ 2 + 2m 2 1 ∥G∥ 2 H1 ≤ 2(L -1 + m 2 1 )∥G∥ 2 H1 ≤ m 2 ∥U∥ H1 ∥G∥ H1 + ∥G∥ 2

H1

where m 2 = 2(L -1 + m 2 1 ). Now, since iλy 1 -z 1 = g 3 , we get (3.20)

|λy 1 (L)| 2 ≤ 2|z 1 (L)| 2 + 2|g 3 (L)| 2 ≤ 2∥U∥ H1 ∥G∥ H1 + 2m 2 ∥G∥ 2 H1 ≤ m 3 ∥U∥ H1 ∥G∥ H1 + ∥G∥ 2

H1

where m 3 = 2 max{1, m 2 } and, using (3.10), the Young inequality and (HP), we deduce

(3.21) ∥λu 1 ∥ 1 σ ≤ ∥v∥ 1 σ + C HP ∥g 1 x ∥ ≤ m 0 ∥v 1 ∥ 1 σ + ∥ √ ηg 1 x ∥ ≤ m 0 [∥U∥ H1 + ∥G∥ H1 ]
where

m 0 = max (1, m 0 ) with m 0 = C HP max x∈[0,1] 1 η .
Using the equivalence between the norms given in Lemma 3.1 and the fact that G ∈ H 1 , we obtain

(3.22) ∥g 3 ∥ L 2 (1,L) ≤ ∥g 3 ∥ H 1 (1,L) ≤ ∥G∥ S ≤ √ 1 + R∥G∥ H1
where R is defined in (3.6); thus by (3.22) and the equality iλy 1 = z 1 + g 3 , we obtain (3.23)

∥λy 1 ∥ L 2 (1,L) ≤ ∥z 1 ∥ L 2 (1,L) + ∥g 3 ∥ L 2 (1,L) ≤ m 1 [∥U∥ H1 + ∥G∥ H1 ],
where m 1 = √ 1 + R. Substituting v 1 = iλu 1 -g 1 and z 1 = iλy 1 -g 3 in (3.11) and (3.13) respectively we get, (3.24) λ 2 u 1 + σ(ηu 1 x ) x = -(g 2 + iλg 1 ) and λ 2 y 1 + y 1 xx = -(g 4 + iλg 3 ). Now, we are able to prove Proposition 3.5. Proof of Proposition 3.5.We divide the proof into several steps.

Step 1. The aim of this step is to show that the solution U = (u 1 , v 1 , y 1 , z 1 ) ∈ D(A 1 ) of (3.9) satisfies the following estimates x and integrate by parts over (1, L). Then, taking the real part, we have

(3.27) L 1 g ′ (α,β) (x) |λy 1 | 2 + |y 1 x | 2 dx -g (α,β) (L) |λy 1 (L)| 2 + |y 1 x (L)| +g (α,β) (1) |λy 1 (1)| 2 + |y 1 x (1) 2 | = 2ℜ L 1 g 4 g (α,β) (x)y 1 x dx -2ℜ iλ L 1 g 3 x g (α,β) (x)y 1 dx -2ℜ iλ L 1 g 3 g ′ (α,β) (x)y 1 dx + 2ℜ iλg 3 (L)g (α,β) (L)y 1 (L) -2ℜ iλg 3 (1)g (α,β) (1)y 1 (1)
.

Taking β = 0 and α = 1 in (3.27), we get 

(3.28) L 1 |λy 1 | 2 + |y 1 x | 2 dx = (L -1)|λy 1 (L)| 2 + (L -1)|y 1 x (L)| 2 + 2ℜ L 1 g 4 g (1,0) (x)y 1 x dx -2ℜ iλ L 1 g 3 x g (1,0) (x)y 1 dx -2ℜ iλ L 1 g 3 y 1 dx + 2ℜ iλg 3 (L)g (1,0) (L)y 1 (L) .
) 2ℜ iλ L 1 g 3 x g (1,0) (x)y 1 dx ≤ 2(L -1)∥G∥ H1 ∥λy 1 ∥ ≤ 2 m 1 (L -1) ∥U∥ H1 ∥G∥ H1 + ∥G∥ 2 H1 , (3.30 
) 2ℜ iλ L 1 g 3 y 1 dx ≤ 2∥g 3 ∥∥λy 1 ∥ ≤ 2 √ 1 + R m 1 ∥U∥ H1 ∥G∥ H1 + ∥G∥ 2 H1 , (3.32) 2ℜ iλg 3 (L)g (1,0) (L)y 1 (L) ≤ (L -1) 2 |λy 1 (L)| 2 + |g 3 (L)| 2 ≤ m 4 ∥U∥ H1 ∥G∥ H1 + ∥G∥ 2 H1 , (3.31 
where m 4 = (L -1) 2 m 3 + m 2 . Thus, from the above estimations, (3.16) and (3.20) we get the following one

L 1 |λy 1 | 2 + |y 1 x | 2 dx ≤ m 5 ∥U∥ H1 ∥G∥ H1 + ∥G∥ 2 H1 , where m 5 = (L -1) [Lm 3 + 3 + 2 m 1 ] + 2 √ 1 + R m 1 + m 2 .
From the above inequality, (3.12) and the fact that

L 1 |g 3 | 2 dx ≤ ∥G∥ 2 S ≤ (1 + R)∥G∥ 2 H1 we obtain L 1 |z 1 | 2 dx ≤ 2 L 1 |λy 1 | 2 dx + 2 L 1 |g 3 | 2 dx ≤ 2(m 5 + R + 1) ∥U∥ H1 ∥G∥ H1 + ∥G∥ 2 H1 .
Step 2. The aim of this step is to show that the solution U = (u 1 , v 1 , y 1 , z 1 ) ∈ D(A 1 ) of (3.9) satisfies the following estimates

(3.33) |λu 1 (1)| 2 ≤ m 7 ∥U∥ H1 ∥G∥ H1 + ∥G∥ 2 H1 and |(ηu 1 x )(1)| 2 ≤ m 8 ∥U∥ H1 ∥G∥ H1 + ∥G∥ 2 H1 ,
where m 7 and m 8 will be determined below. Taking α = 0 and β = 1 in (3.27), we get

(3.34) (L -1)|λy 1 (1)| 2 + (L -1)|y x (1)| 2 = L 1 |λy 1 | 2 + |y 1 x | 2 dx -2ℜ L 1 g 4 g (0,1) (x)y 1 x dx +2ℜ iλ L 1 g 3 x g (0,1) (x)y 1 dx + 2ℜ iλ L 1 g 3 y 1 dx + 2ℜ iλg 3 (1)g (0,1) (1 
)y 1 (1) .

To estimate the last term in the right hand side of the above equation, we use the Young inequality and (3.18), obtaining . Now, using the transmission conditions y 1 (1) = u 1 (1) and y 1

2ℜ iλg 3 (1)g (0,1) (1)y 1 (1) ≤ (L -1) 1 2 |λy 1 (1)| 2 + 2|g 3 (1)| 2 ≤ 1 2 (L -1)|λy 1 (1)| 2 + 2(L -1)m 2 1 ∥G∥ 2 H1 ≤ 1 2 (L -1)|λy 1 (1)| 2 + 2(L -1)m
x (1) = (ηu 1 x )(1), we obtain (3.33).

Step 3. The aim of this step is to show that the solution U = (u 1 , v 1 , y 1 , z 1 ) ∈ D(A 1 ) of (3.9) satisfies the following estimates (3.37)

1 0 1 σ |λu 1 | 2 dx ≤ m 17 1 + 1 λ 2 ∥U∥ H1 ∥G∥ H1 + ∥G∥ 2 H1 and (3.38) 1 0 η|u 1 x | 2 dx ≤ m 18 1 + 1 λ 2 ∥U∥ H1 ∥G∥ H1 + ∥G∥ 2 H1 ,
where m 17 and m 18 are positive constants to be determined below.

Multiplying the first equation in (3.24) by K 2σ u 1 , integrating over (0, 1) and taking the real part, we get (3.39)

K 2 1 0 1 σ |λu 1 | 2 dx - K 2 1 0 η|u 1 x | 2 dx + K 2 ℜ η(1)u 1 x (1)u 1 (1) - K 2 lim x→0 ηu 1 x u 1 = -ℜ K 2 1 0 1 σ g 2 u 1 dx -ℜ i K 2 1 0 1 σ g 1 λu 1 dx
Now, multiplying the first equation in (3.24) by -2 x σ u 1

x , integrating over (0, 1) and taking the real part, we get (3.40)

1 0 x σ ′ |λu 1 | 2 dx + 1 0 η|u 1 x | 2 dx - 1 0 x b a η|u 1 x | 2 dx -η(1)|u 1 x (1)| 2 - 1 σ(1) |λu 1 (1)| 2 +λ 2 lim x→0 x σ |u 1 | 2 = 2ℜ 1 0 g 2 x σ u 1 x dx + 2ℜ iλ 1 0 g 1 x σ u 1 x dx .
Using Lemma 2.5 and the fact that

x σ ′ = 1 σ 1 -x a ′ -b a , the above equation becomes (3.41) 1 0 1 σ |λu 1 | 2 + η|u 1 x | 2 dx = 1 0 x σ a ′ -b a |λu 1 | 2 dx + 1 0 x b a η|u 1 x | 2 dx + η(1)|u 1 x (1)| 2 + 1 σ(1) |λu 1 (1)| 2 + 2ℜ 1 0 g 2 x σ u 1 x dx + 2ℜ iλ 1 0 g 1 x σ u 1 x dx
Adding (3.39) and (3.41), we get .

(3.42) 1 + K 2 1 0 1 σ |λu 1 | 2 + 1 - K 2 1 0 η|u 1 x | 2 dx =
• Now, for the term 2ℜ iλ Thus, ∥U∥ H1 ≤ m 1 + 1 λ 2 ∥G∥ H1 , with m = 1 √ 3 (2m 19 + 1) and the proof of Proposition 3.5 is completed. □ Proof of Theorem 3.4. The proof of the conditions (R1) and (R2), is similar to the proof of (H1) and (H2) respectively in Theorem 2.10.And finally, we get the conclusion applying the Huang-Prüss (see [START_REF] Huang | Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces[END_REF][START_REF] Prüss | On the spectrum of C 0 -semigroups[END_REF]) Theorem. □ Remark 3. Thanks to the previous result we can improve the result given in [START_REF] Fragnelli | Linear stabilization for a degenerate wave equation in non divergence form with drift[END_REF]. Indeed if Hypothesis 4 in [START_REF] Fragnelli | Linear stabilization for a degenerate wave equation in non divergence form with drift[END_REF] is satisfied then the two assumptions taken on N 1 and N 2 in Hypothesis 3.2 satisfies N 1 < 1 + K 2 and N 2 < 1 -K 2 .

Conclusion

In this paper we study two systems. The first one is a degenerate wave equation in non divergence form with a drift term and localized internal degenerate damping. We prove the well-posedness of this system and the exponential stability, without any restriction on the degeneracy of the damping coefficient (i.e α 1 , α 2 ≥ 0). The second system we consider consists of coupled degenerate and non-degenerate wave equations connected through transmission conditions with a drift term and a single boundary damping at the endpoint of the non-degenerate wave equation. Also for this system we prove well-posedness and exponential stability.

Hypothesis 2 . 1 .

 21 Functions a and b are continuous in [0, 1] and such that b a ∈ L 1 (0, 1).

1 σ ,0 and 1 0 1 σ , 1 1 0

 11111 η|u x | 2 dx are equivalent. Moreover, the norms ∥u∥ 2 and the usual norm in H 1 0 i.e. |u x | 2 dx are equivalent for all u ∈ H 1 0 (0, 1). Indeed, min [0,1]

8 Figure 1 .

 81 Figure 1. Examples for (WD) and (SD) cases

2 .

 2 If u ∈ D(A) and K ≤ 1, then lim x→0 ηφ|u x | 2 = 0. (2) Assume Hypothesis 2.2. If u ∈ D(A), K > 1 and xb a ∈ L ∞ (0, 1), then lim x→0 ηφ|u x | 2 = 0.

  Hypothesis 3.2 is satisfied. (2) Example for the (SD) case: a(x) = x √ x and b(x) = x 8 . In this case K = 3 2 and it is easy to see that N 1 = 3 2

(3. 15 )

 15 |z 1 (L)| 2 = |ℜ ⟨AU, U⟩ H | = |ℜ ⟨iλI -AU, U⟩ H1 | = | ⟨G, U⟩ H1 | ≤ ∥U∥ H1 ∥G∥ H1 , and, using the equality y 1 x (L) = -z 1 (L), (3.16) |y 1 x (L)| 2 ≤ ∥U∥ H1 ∥G∥ H1 ≤ ∥U∥ H1 ∥G∥ H1 + ∥G∥ 2 H1

|g 3 1 g 3 x

 313 [START_REF] Akil | Stability of piezoelectric beam with magnetic effect under (coleman or pipkin)-gurtin thermal law[END_REF]| ≤ m 1 ∥G∥ H1 and using the fact that g 3 (L) = L dx + g 3 (1), we can deduce(3.19) 

1 |λy 1 | 2 1 |z 1 |

 11211 + |y 1 x | 2 dx ≤ m 5 ∥U∥ H1 ∥G∥ H1 + ∥G∥ 2 2 dx ≤ 2(m 5 + R + 1) ∥U∥ H1 ∥G∥ H1 + ∥G∥ 2 H1 ,where m 5 will be determined below. Let α, β ∈ R and define the function g (α,β) (x) := (α + β)x -(α + βL).As a first step, multiply the second equation in (3.24) by -2g (α,β) (x)y 1

Now, we will 1 g 4 g

 14 estimate the terms on the right hand side of the above equation. To this aim, by (3.19), (3.20), (3.22) and (3.23), we have (3.29) 2ℜ L (1,0) (x)y 1 x dx ≤ 2(L -1)∥U∥ H1 ∥G∥ H1 ,

1 1 0 g 2 x σ u 1 x 1 x

 1111 λu 1 dx . Now, we need to estimate the terms on the left hand side of the above equation.• As a first step, consider the term 2ℜ dx : using the Cauchy-Schwarz inequality and the mono-|dx ≤ m 9 ∥U∥ H1 ∥G∥ H1 + ∥G∥ 2 H1 ,where m 9 = 2 √ a(1)

ℜ iλg 1 x σ u 1 .x u 1 dx ≤ 2 a( 1 )-b a g 1 u 1 1 u 1 dx ≤ 2∥λu 1 ∥ 1 σ ∥ 1 √ σ g 1 ∥σ |g 1 g 1 u

 12111111 Estimating the first term on the right hand side of (3.44)∥λu1 ∥ 1 σ ∥G∥ H1 ≤ m 10 ∥U∥ H1 ∥G∥ H1 + ∥G∥ 2 H1 , with m 10 = 2 √ a(1) m 0 . Now for the second term on the right hand side in (3.44), using (3.21)dx . Using (3.21) and the Hardy-Poincaré inequality, the last two terms in the above equation can be estimated in the ≤ 2m 0 (∥U∥ H1 + ∥G∥ H1 ) m 0 ∥ √ ηg 1 x ∥ ≤ m 11 ∥U∥ H1 ∥G∥ H1 + ∥G∥ 2 |dx ≤ m 12 ∥U∥ H1 ∥G∥ H1 + ∥G∥ 2 H1 , where m 11 = 2m 0 m 0 and m 12 = 2m 0 N 1 m 0 . Then, thanks to the above two inequalities and (3.46)1 dx ≤ m 13 ∥U∥ H1 ∥G∥ H1 + ∥G∥ 2 H1 , where m 13 = m 11 + m 12 . Now, consider the term 2ℜ iλg 1 (1) 1 σ(1) u 1 (1) . Using the conditions g 1 (1) = g 3 (1), u 1 (1) = y 1 (1) and the inequalities (3.18) and (3.33), we get (3.48) 2ℜ iλg 1 (1) 1 σ(1) u 1 (1) ≤ 1 σ(1) |g 1 (1)|

  2 1 ∥U∥ H1 ∥G∥ H1 + ∥G∥ 2 H1 .

	Now, using the above inequality, observing that estimates (3.29),(3.30), and (3.31) are true also for g (0,1) (x)
	and using (3.25) in (3.34), we obtain
	(3.35) where m 6 = m 5 + 2	√	1 2 1 + R m 1 + 2(L -1)(1 + m 1 + m 2 (L -1)|λy 1 (1)| 2 + (L -1)|y 1 x (1)| 2 ≤ m 6 ∥U∥ H1 ∥G∥ H1 + ∥G∥ 2 H1 , 1 ). Therefore,
	(3.36)	|λy 1 (1)| 2 ≤ m 7 ∥U∥ H1 ∥G∥ H1 + ∥G∥ 2 H1	and |y 1 x (1)| 2 ≤ m 8 ∥U∥ H1 ∥G∥ H1 + ∥G∥ 2 H1 ,
	with m 7 =	2 L -1	m 6 and m 8 =	1 L -1	m 6

  2 + |λu 1 (1)| 2 ≤ m 14 ∥U∥ H1 ∥G∥ H1 + ∥G∥ 2 H1 , where m 14 = 1 σ(1) (m 7 + m 2 1 ). By (3.44), (3.45), (3.47), (3.48) and Lemma 2.5, we get dx ≤ m 15 ∥U∥ H1 ∥G∥ H1 + ∥G∥ 2 H1 where m 15 = m 10 + m 13 + m 14 . )η|u 1 x | 2 dx ≤ m 16 1 + 1 λ 2 ∥U∥ H1 ∥G∥ H1 + ∥G∥ 2 H1 , where m 16 = max m 9 + m 15 + , m 7 . Thus, we can conclude that (3.37) and (3.38) are satisfied with m 17= m 16 (1 + K 2 -N 1 ) -1 and m 18 = m 16 (1 -K 2 -N 2 ) -1 .Step 4. The aim of this step is to prove(3.14). From (3.10), and by using the Young's inequality, (HP) and (3.37), we obtain ∥U∥ H1 ∥G∥ H1 + ∥G∥ 2 H1 . ∥U∥ H1 ∥G∥ H1 + ∥G∥ 2 H1 ,where m 19 = 3m 5 + 2(R + 1) + m 18 + 2 max{m 17 , m 2 0 }.

	(3.49) x By using Cauchy-Schwarz and Young's inequality and (3.33), we get 2ℜ iλ 1 0 g 1 x σ u 1
	(3.50)							ℜ	K 2	0	1	1 σ	g 2 u 1 dx ≤	K 2	m 0 ∥U∥ H1 ∥G∥ H1 + ∥G∥ 2 H1 ,
	(3.51)					ℜ i	K 2	0	1	1 σ	g 1 λu 1 dx ≤	K 2	m 0 m 0 ∥U∥ H1 ∥G∥ H1 + ∥G∥ 2 H1
	and															
	(3.52)					K 2	ℜ η(1)u 1 x (1)u 1 (1) ≤ m 7 1 +	1 λ 2 ∥U∥ H1 ∥G∥ H1 + ∥G∥ 2 H1
	where m 7 = max		m 8 K 2 8	,	m 7 2	. Hence, using (3.33), (3.43), (3.49), (3.50), (3.51) and (3.52) in (3.41), we
	obtain															
	(3.53) m 0 m 0 (3.54) 1 0 (1 + K 2 -N 1 ) 1 σ |λu 1 | 2 dx + 1 0 (1 -K 2 -N 2 1 σ(1) m 7 + 1 η(1) m 8 + K 2 m 0 + K 2 1 0 1 σ |v 1 | 2 dx ≤ 2 1 0 1 σ |λu 1 | 2 dx + 2C HP max x∈[0,1] 1 η ≤ 2 max{m 17 , m 2 1 0 } 1 + λ 2 Moreover, by (3.25), (3.26), (3.38), and (3.54), we obtain	0	1	η|g 1 x | 2 dx
	(3.55) λ 2 We have m 19 1 + ∥U∥ 2 1 H1 ≤ m 19 1 + 1 λ 2 ∥U∥ H1 ∥G∥ H1 ≤ 1 4 ∥U∥ 2 H1 +m 2 19 1 +	1 λ 2	2	∥G∥ 2 H1 . Since m 2 19 1 +	1 λ 2	2	+m 19 1 +	1 λ 2 ≤
	m 19 +	1 2	+	m 19 λ 2	2	, then (3.55) becomes
				∥U∥ 2 H1 ≤	4 3	m 19 +	1 2	+	m 19 λ 2	2	∥G∥ 2 H1 ≤	4 3	m 19 +	1 2	2	1 +	1 λ 2	2	∥G∥ 2 H1 .
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