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niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

I enthusiastically congratulate the authors not only for providing a practical tool for replicable research, but also for what may prove to be the epicenter of a paradigm shift in the foundations of statistics. To complement their results on local-global coherence, this comment addresses another type of coherence.

The composite null hypothesis that θ ∈ Θ 0 is equivalent to the proposition that there is a θ 0 ∈ Θ 0 such that the simple null hypothesis that θ = θ 0 is true. In other words, θ ∈ Θ 0 is false if and only if θ = θ 0 is false for all θ 0 ∈ Θ 0 . Accordingly, we would expect a testing method to only reject the composite null hypothesis if it also rejects the simple null hypothesis that θ = θ 0 for every θ 0 ∈ Θ 0 . A method satisfying that property is considered "coherent" [START_REF] Fossaluza | Coherent hypothesis testing[END_REF] or, more specifically, "logically coherent" [START_REF] Hansen | Coherent tests for interval null hypotheses[END_REF].

Extending the property to e-values as measures of evidence against their null hypotheses, it is desirable for an e-value to discredit a composite null hypothesis no more than it discredits each of its constituent simple null hypotheses. To express that formally, start with an e-variable function, a random function Θ 0 → E Θ0 on subsets of Θ such that E Θ0 is an e-variable against the null hypothesis that θ ∈ Θ 0 , for every (non-empty) Θ 0 ⊂ Θ. For the observed sample y, the corresponding fixed function, Θ 0 → e Θ0 (y), is called an e-value function, resulting in e Θ0 (y) as the e-value against the null hypothesis that θ ∈ Θ 0 . An e-variable function or an e-value function is (logically) coherent if E Θ0 ≤ E Θ sub 0 almost surely or if e Θ0 (y) ≤ e Θ sub 0 (y), respectively, for all

Θ sub 0 , Θ 0 ⊂ Θ such that Θ sub 0 ⊂ Θ 0 .
Then any logically coherent e-value function Θ 0 → e Θ0 (y) satisfies e Θ0 (y) ≤ e {θ0} (y) for all θ 0 ∈ Θ ⊂ Θ, i.e., e Θ0 (y) ≤ inf θ0∈Θ0 e {θ0} (y) for each Θ 0 ⊂ Θ. Similarly, every logically coherent e-variable function Θ 0 → E Θ0 satisfies E Θ0 ≤ inf θ0∈Θ0 E {θ0} , almost surely, for any Θ 0 ⊂ Θ. It follows that the most powerful, logically coherent e-variable function is the e-possibility measure Vovk and Wang (2023, §5) and anticipated by Wasserman et al. (2020, §7) and Shafer (2021, §4.2); see [START_REF] Bickel | Bayesian model checking by betting: A game-theoretic alternative to Bayesian pvalues and classical Bayes factors[END_REF].

Θ 0 → E poss Θ0 = inf θ0∈Θ0 E {θ0} , defined by
For each Θ 0 ⊂ Θ, let E * Θ0 denote the θ 1 -GRO e-variable against the null hypothesis that θ ∈ Θ 0 .

The e-variable function Θ 0 → E * Θ0 , like the p-value [START_REF] Schervish | P values: What they are and what they are not[END_REF] and Bayes factor [START_REF] Lavine | Bayes factors: What they are and what they are not[END_REF], is logically coherent only in special cases. In other cases, "We may conclude 'neither A nor B ' but we may not conclude 'not-A" ' (Royall, 1997, §3.7). In those cases, however, E * Θ0 can have more power than E poss Θ0 (Ramdas et al., 2023, §3.3). In conclusion, e-variables call for a power-coherence tradeoff.