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1 Introduction

The purpose of the present article is to develop systematically the theory of
commutative B8-algebras, that is commutative Hopf algebras that are cofree
as conilpotent coalgebras. In concrete terms, up to the choice of a basis B
of the vector subspace of primitive elements, a commutative B8-algebra is a
commutative Hopf algebra H that has furthermore a basis indexed by words
(elements of the free monoid B� over B) in such a way that the expression
of the coproduct in that basis is the deconcatenation coproduct of words.
Various examples are provided by familiar objects in algebra, combinatorics
and topology: to quote a few, shu�e and quasi-shu�e Hopf algebras over a
commutative algebras; Hopf algebra structures constructed on �nite topolo-
gies, quasi-orders, orders; the Hopf algebra of quasi-symmetric functions; the
Hopf algebras dual to enveloping algebras of free Lie algebras...

The choice of such a basis is in general highly non canonical and there
is furthermore an in�nity of such bases. In this context, a change of B8-
structure on H can be understood as a change of basis. The most classical
example of such phenomena in algebraic combinatorics, the theory of free Lie
algebras and the structure theory of Hopf algebras is probably provided by
change of bases in the Hopf algebra of quasi-symmetric functions or, dually,
by change of bases in the Hopf algebra of descents in symmetric groups (see
Example 6.4). We will actually show in the present article that there is a very
close connection between the structure theory of commutative B8-algebras
and the one of descent algebras that extends the classical connection between
the structure theory of Hopf algebras and the one of descent algebras.
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The main purpose of the article will thus be to investigate changes of
B8 structures on a given Hopf algebra. In order to study B8 structures,
we �rst construct an adapted categorical framework (the one of �ltered-
graded coalgebras). This framework accounts for the fact that in spite of
commutative B8-algebras not carrying a graded Hopf algebra structure in
general (more precisely, the existence of a grading is not part or a direct
consequence of their de�nition), the product of a commutative B8-algebra
has always a nice behavior with respect to the �ltration induced by the cofree
coalgebra structure.

We investigate then the case of graded commutative B8-algebras H,
that is graded connected Hopf algebras equipped with the structure of a
cofree graded coalgebra. Many examples in the literature correspond to this
case, that has been investigated recently by C. Bellingeri, E. Ferrucci and N.
Tapia1 in the context of the (Butcher)-Connes-Kreimer Hopf algebra HCK of
non planar trees and its applications to the theory of branched rough paths.
As they pointed out, although their results focus on HCK , they would hold
more generally for arbitrary functors from the category of vector spaces to
graded commutative B8-algebras: in particular, such a functor is isomorphic
(in the category of commutative Hopf algebras, by a precise isomorphism)
to the shu�e Hopf algebra functor [2, Remark 3.5].

We recover their results on graded commutative B8-algebras and aug-
ment their approach in several respects. Firstly, we systematically use the
fact that there is, in the (locally �nite dimensional) graded case, a perfect
duality between a graded commutative Hopf algebras and the dual graded
cocommutative Hopf algebra. This duality allows to prove jointly various
structure theorems for graded commutative B8-algebras and their graded
duals � we emphasize that working on the dual side makes things more
standard and easier to grasp: recall Serre's famous wit: �there is a general
principle: every calculation relative to coalgebras is trivial and incomprehen-
sible�. We prove for example that these duals are always, in in�nitely many
ways that depend on the choice of a generating vector subspace, enveloping
algebras of free Lie algebras. Our arguments rely only on standard theorems
in the theory of Lie algebras such as the Poincaré-Birkho�-Witt theorem.

Secondly, as the (graded) dual of the enveloping algebra of a free Lie
algebra is a shu�e Hopf algebra, we deduce from the duality with enveloping
algebras of free Lie algebras that any family of Lie idempotents (Eulerian,
Dynkin, Klyachko... � there are in�nitely many of them) gives rise to a
Hopf algebra isomorphism between a graded commutative B8-algebra and
a shu�e Hopf algebra. The isomorphism introduced in [2, Remark 3.5]
corresponds to the particular case of the Eulerian family. Our results imply in

1We thank them warmly for pointing out to us the relevance of their article on branched
rough paths for the theory of B8-algebras. Our initial project was focusing on the struc-
ture of general B8-algebras; their article was a key motivation to extend the scope of the
article and systematically study the structure of graded B8-algebras.
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particular that the combinatorial theory of graded commutative B8-algebras
is much richer than what could be expected.

We turn then to the general (non graded) case. It includes in partic-
ular quasi-shu�e Hopf algebras over a commutative algebra A, studied in
detail in [?], that provide a right framework to investigate for example Itô
to Stratonovich transformations for semimartingales [4]. We investigate �rst
isomorphisms between a commutative B8-algebra H a shu�e Hopf algebra
using general Hopf algebra techniques that were �rst developed to investigate
the properties of Hopf algebra endomorphisms. We obtain a parametrisa-
tion of such isomorphisms by what we call tangent-to-identity in�nitesimal
endomorphisms of H. Up to some point, this extends the study that we
performed with Jean-Yves Thibon in [10] � in the language of the present
article, that article studied deformations of the shu�e Hopf algebra and the
quasi-shu�e Hopf algebra functors from commutative algebras to commuta-
tive B8-algebras. We use then an idea that was implicitly used in several of
our earlier works and was developed systematically in [3], namely the fact
that classical structure theorems and key properties of graded connected
commutative or cocommutative Hopf algebras still hold under the assump-
tion that the Hopf algebra is unipotent (that is, that its identity map is
locally unipotent for the convolution product [3, Def. 4.1.2]). This allows
to adapt to the non graded case the results obtained in the graded case.
This adaptation is however partial as the combinatorial structure theory of
unipotent Hopf algebras still has to be systematically developed.

The article is organized as follows. We recall �rst in Section 2 de�nitions
in relation to coalgebras, introduce immediately the category of �ltered-
graded coalgebras and prove in Section 3 some key properties of cofree coal-
gebras in this category. Section 4 introduces B8-algebras and related notions
whereas Section 5 introduces graded B8 structures. Section 6 surveys sev-
eral fundamental examples. Section 7 investigates the structure of graded
commutative B8-algebras using duality properties, the Poincaré-Birkho�-
Witt theorem and the theories of free Lie algebras and Lie idempotents.
Section 8 studies endomorphisms of commutative B8-algebras and extends
the results of Section 7 to the non graded case. In the last two sections, we
apply these results to the Hopf algebra of �nite topologies and proceed to
explicit computations, using extra structures associated to a complementary
product and coproduct.

2 Filtered-graded coalgebras

Recall �rst some de�nitions and elementary properties of coalgebras. De-
tails and proofs can be found in [3], especially [3, Sect. 2.13 Graded and
Conilpotent Coalgebras]. All vector spaces are de�ned over a ground �eld K
of characteristic 0.
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A graded vector space is a vector space decomposing as a direct sum
V �

À
nPN

Vn. It is reduced if V0 � 0. Given V,W two graded vector spaces,

a morphism of graded vector spaces from V to W is a morphism of vector
spaces ϕ : V Ñ W that respects the graduation (ϕpVnq � Wn for any
n P N). A graded vector space is locally �nite dimensional if all the Vn are
�nite-dimensional vector spaces. The graded dual of a graded vector space
is the graded vector space V � �

À
nPN

V �
n , where V

�
n stands for the dual of

Vn. It is locally �nite dimensional when V is such. The tensor product
of two graded vector spaces is de�ned by V bW �

À
nPN

pV bW qn, where

pV bW qn :�
À

p�q�n
Vp bWq. The ground �eld K identi�es with the graded

vector space, still written K, with only one non zero component, K0 � K. It
is the unit of the tensor product (V bK � V � V bK).

A �ltered vector space is a vector space V equipped with an increasing
�ltration by subspaces V0 � V1 � � � � � Vn � � � � , such that V �

�
nPN

Vn.

Given V,W two �ltered vector spaces, a morphism of �ltered vector spaces
from V to W is a morphism of vector spaces ϕ : V Ñ W that respects the
�ltration (ϕpVnq � Wn for any n P N). The tensor product of two �ltered
vector spaces is de�ned by requiring pV b W qn :�

°
i�j�n

Vi b Wj . Each

graded vector space V is canonically �ltered: writing F for the functor from
graded to �ltered vector spaces, FVn :�

À
p¤n

Vp. We will be mostly interested

in the present article in Hopf algebras that are �ltered as algebras (in the
sense that the product map is a map of �ltered vector spaces) and graded
as coalgebras.

A graded coalgebra is a coalgebra in the tensor category of graded vector
spaces. That is, graded coalgebras and other graded structures are de�ned
as usual except for the fact that structure morphisms, for example the co-
product ∆ of a graded coalgebra C, has to be a morphism of graded vector
spaces, so that

∆ : Cn Ñ
à

p�q�n

Cp b Cq.

The counit map from C to K, that we will write ε (or εC if we want to
emphasize what is the underlying coalgebra) is automatically a null map
except in degree 0. A graded coalgebra C is connected if C0 � K; for such a
coalgebra, ΓpCq � t1u, where ΓpCq stands for the set of group-like elements
in C, that is

ΓpCq :� tc P C, c �� 0 and ∆pcq � cb cu.

De�nition 2.1. The category FgCoalg of �ltered-graded coalgebras is the
category whose objects are graded coalgebras and the set of morphisms between
two graded coalgebras C and D the set of �ltered vector spaces morphisms of
coalgebras from C to D.
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That is, a morphism of �ltered-graded coalgebras from C to D is a mor-
phism ϕ of coalgebras such that ϕpCnq �

À
p¤n

Dp for any n P N.

Let now pC,∆, εq be a coaugmented coalgebra with coaugmentation η :
KÑ C (a coaugmentation is a map of coalgebras from the ground �eld to C,
where the ground �eld is equipped with the identity coproduct: K � KbK).
In other terms, we �x a group-like element 1 P C, that is to say a nonzero
element 1 such that ∆p1q � 1 b 1. The coaugmentation is a section of the
projection ε to the ground �eld and one has the decomposition C � C̄ `K,
where C̄ :� Kerpεq. Notice that a graded connected coalgebra is canonically
coaugmented: its coaugmentation is the isomorphism between the ground
�eld and the degree 0 component of the coalgebra, and 1 is the unique
group-like element of C. In general, for a coaugmented coalgebra one can
de�ne the reduced coproduct from C̄ to C̄ b C̄ by

∆pcq :� ∆pcq � cb 1� 1b c;

the element c is called primitive if ∆pcq � 0, the vector space of primitive
elements is denoted PrimpCq.

The iterated reduced coproduct from C̄ to C̄bn�2 is inductively de�ned
by

∆̄n�2 :� p∆̄b Idbn
C̄
q � ∆̄n�1, with ∆̄2 :� ∆̄.

Let Fn :� Ker p∆n�1q � C̄. Notice that ∆̄n�2 � p∆̄b Idbn
C̄
q � ∆̄n�1 implies

Fn � Fn�1.

Lemma 2.2. The coproduct ∆ and the coalgebra C are called conilpotent if
C̄ �

�
n¥1

Fn, that is if for every c P C̄ there exists an integer n ¥ 2 such that

∆npcq � 0. When the coalgebra C is graded and connected, the coproduct is
automatically conilpotent.

Proof. Indeed, when C is graded connected, C̄0 � 0. As ∆̄k : C̄n ÑÀ
i1�����ik�n,
i1,...,ik¥1

C̄i1 b . . . C̄ik , the iterated coproduct ∆k, k ¥ 2, vanishes on Cn

for 1 ¤ n ¤ k � 1.

3 Cofree �ltered-graded coalgebras

Let now V be a vector space over K. We denote by T pV q :�
8À

n�0
V bn the

tensor gebra 2of V , and use the word notation for tensors (that is, v1 . . . vn

2We use the terminology of [3] and call gebra a vector space that can be equipped with
several algebraic structures � this allows in particular to avoid calling �tensor algebra�
the vector space T pV q without equipping it with the algebra structure obtained from the
concatenation product of words.
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will stand for v1 b � � � b vn). We will use later a similar notation for the
tensor gebra over an alphabet X (the linear span of X�, the set of words �
or free monoid � over X). The tensor gebra is graded: the degree of a word
w is its length ℓpwq, that is, the number of its letters.

We equip the tensor gebra with the deconcatenation coproduct, that
makes it, together with the canonical projection ε to K � V b0, a graded
(counital, conilpotent, connected, coassociative) coalgebra: for any v1, . . . , vn P
V , with n ¥ 0,

∆pv1 . . . vnq �
ņ

i�0

v1 . . . vi b vi�1 . . . vn.

We write T�pV q :�
8À

n�1
V bn for T pV q. As mentioned in Section 2, it is

equipped with the (coassociative but not counital) reduced deconcatenation
coproduct: for any v1, . . . , vn P V , with n ¥ 1,

∆pv1 . . . vnq �
n�1̧

i�1

v1 . . . vi b vi�1 . . . vn.

The following Lemma justi�es the introduction of the category of �ltered-
graded coalgebras.

Lemma 3.1. Let C be graded connected coalgebra and ϕ be a morphism of
coalgebras from C to pT pV q,∆q. Then, ϕ is a morphism of �ltered graded

coalgebras. That is, ϕpCnq � FT pV qn �
nÀ

k�0

V bk.

Proof. As ϕ is a coalgebra morphism between connected coalgebras, pϕ b
ϕq �∆ � ∆ � ϕ, this implies that for any n P N,

ϕbn �∆n � ∆n � ϕ.

Therefore, ϕpKerp∆n�1qq � Kerp∆n�1q. It is an easy exercise to show that
in T pV q, Kerp∆n�1q � FT pV qn. Moreover, as we have already seen, it holds
that Cn � Kerp∆n�1q. We get �nally ϕpCnq � FT pV qn.

De�nition 3.2 (Cofree �ltered-graded coalgebras). Let V be a reduced graded
vector space. A cofree �ltered-graded coalgebra over V is a connected graded
coalgebra C together with a �ltered vector space map π from C̄ to V such that
for each connected graded coalgebra D, any �ltered vector space morphism ϕ
from D̄ to V lifts uniquely to a morphism Φ of coalgebras from D to C in
FgCoalg, such that π � Φ|D̄ � ϕ. A cofree �ltered-graded coalgebra is called
reduced if V � V1. The space V is called the cofreely cogenerating space of
C; the map π is called the structure map.
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As usual for cofree objects, any two cofree �ltered-graded coalgebras over
V are isomorphic (by a unique isomorphism, see Lemma 3.4 below). This
justi�es to call (slightly abusively) any cofree �ltered-graded coalgebra over
V , �the� cofree �ltered-graded coalgebra over V .

Remark 3.1. Cofree graded coalgebras are de�ned similarly: just replace
everywhere ��ltered-graded� and ��ltered� by �graded� in the De�nition.

Lemma 3.3. The tensor gebra T pV q over a graded vector space V , equipped
with the deconcatenation coproduct ∆, the canonical projection πV from
T�pV q to V and the graduation |v1 . . . vn| :� |v1| � . . .� |vn| for vi P V, i �
1 . . . n, is a cofree �ltered-graded coalgebra over V denoted T gpV q (the expo-
nent g is introduced to indicate that the graduation is not the tensor degree
one excepted in the reduced case, that is when V � V1). We call it the stan-
dard cofree �ltered-graded coalgebra over V . With our previous notation, the
morphism Φ from D to T gpV q is obtained as

ε�
¸
n¥1

ϕbn � ∆̄n.

In the formula, it is understood that if d P D decomposes as εpdq � pd�
εpdqq P K` D̄,

Φpdq � εpdq �
¸
n¥1

ϕbn � ∆̄npd� εpdqq.

Proof. Recall that pT pV q, V, πV q is a cofree conilpotent coalgebra, that the
formula for Φ holds in the cofree conilpotent case (see e.g. [3, Exercise 2.13.3,
Remark 2.13.1]) and that graded connected coalgebras are conilpotent. The
fact that Φ is a �ltered-graded morphism of coalgebras follows from the fact
that the coproduct is a graded map from T gpV q to T gpV qbT gpV q and that
ϕ is a �ltered map from D to V . This concludes the proof.

Leaving aside graduations, the simplest way to understand and prove the
Lemma and the formula for Φ is by dualizing the statement and using the
fact that the tensor gebra equipped with the concatenation product of words
is a free associative algebra. Given indeed a map ϕ� from the dual of V , V �,
to the projective limit of vector spaces � � � Ñ FD�

n�1 Ñ FD�
n Ñ � � � Ñ FD�

1 ,
where FD�

n � D�
1 `� � �`D

�
n and D� is a graded connected algebra, this map

uniquely extends to an algebra map from T pV �q to D̂ � K `
±

nPN�
D�

n, the

completion of the graded dual of D with respect to its canonical �ltration.
This algebra map ξ is given as usual on T�pV

�q by

ξpv�1 � � � v
�
nq :� ϕ�pv�1 q � � �ϕ

�pv�nq,

which is dual to the formula for Φ in the Lemma. The fact that D� is a
graded algebra insures that ξ is well-de�ned as the degree p component of
ϕ�pv1q � � �ϕ

�pvnq is obtained as the sum of a �nite number of terms, for any
p.
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Remark 3.2. Notice that since V � PrimpT gpV qq, the vector space of prim-
itive elements of T gpV q, it holds for any cofree �ltered-graded (resp. cofree
graded, cofree conilpotent) coalgebra C over V that PrimpCq � V . In par-
ticular one can always choose V to be PrimpCq. Fix now a graded basis
pbiqiPJ of PrimpCq. The choice of a structure map π can be interpreted as
the choice of a basis of C since it induces an isomorphism C � T gpPrimpCqq,
where T gpPrimpCqq has the basis bj1 . . . bjk , jl P J, l � 1, . . . , k, k P N�. We
will say that the choice of a cofree �ltered-graded (resp. cofree graded, cofree
conilpotent) coalgebra structure π : C Ñ PrimpV q determines a presenta-
tion of C and call the associated basis (resp. graded basis, resp. basis) of C
the π-basis.

Remark 3.3. The isomorphism C � T gpPrimpCqq is non canonical as it
depends heavily on the choice of π. This observation is made more precise
in the following Lemma and its proof.

Lemma 3.4. Let C be a connected graded coalgebra. Cofree �ltered graded
(resp. cofree graded) coalgebra structures on C, whenever they exist, are
parametrized by the surjections from C to PrimpCq that are maps of �ltered
(resp. graded) vector spaces and restrict to the identity map on PrimpCq.
All such structures are isomorphic: a cofree �ltered-graded (resp. graded)
coalgebra structure on a connected graded coalgebra C is thus unique up to
isomorphisms.

Proof. Fixing a cofree �ltered-graded coalgebra structure on C amounts to
�xing an isomorphism of coalgebras between C and the standard cofree
�ltered-graded coalgebra over V :� PrimpCq. We can therefore assume
without restriction that C is T gpV q, the standard cofree �ltered-graded coal-
gebra over V with structure map denoted πV (the canonical projection from
T gpV q to V ). Any other cofree �ltered graded coalgebra structure on C is
given by a �ltered surjection π from C to V that restricts to the identity
map on V . The map π is the structure map of the second cofree structure;
by De�nition 3.2 it induces a �ltered-graded coalgebra endomorphism π̃ of
T gpV q obtained as:

v1 . . . vn ÞÝÑ
¸
k n

¸
w1...wk�v1...vn

πpw1q . . . πpwkq. (1)

It can be inverted, and the inverse isomorphism µ̃ such that µ̃ � π̃ � IdT gpV q

is entirely characterized by the identity

πV � µ̃ � π̃ � πV ,

that is, µpvq � v for v P V and, for k ¥ 2 and v1, . . . , vn P V ),

µpv1 . . . vnq � �
¸
k n

¸
w1...wk�v1...vn

µpπpw1q . . . πpwkqq. (2)

The same arguments and formulas apply in the graded case.

8



Remark 3.4. Unicity up to isomorphism of free and cofree objects is a uni-
versal phenomena and actually part of the abstract de�nition of freeness and
cofreeness (usually as left and right adjunct functors). Unicity up to isomor-
phism also holds in particular in the conilpotent case; the formula for the
inverse isomorphism is the same as in the �ltered-graded and graded cases
as it depends only on the formula for Φ.

Remark 3.5. The category of �ltered-graded coalgebras is the natural frame-
work to study Hopf algebras such as quasi-shu�e Hopf algebras. See for
example the discussion of natural endomorphisms of quasi-shu�e Hopf alge-
bras in [22] for insights on the role of �ltered-graded maps in that context
(the surjections that appear in that article have indeed to be understood as
�ltered maps: they map a tensor of order n to a tensor of lower or equal
degree).

4 B8-algebras

The notion of B8-algebra was �rst introduced by Getzler and Jones in [13]
for cochain complexes. Their de�nition extends to other tensor categories,
we consider here B8-algebras in the category of vector spaces, see also [7] for
further insights and applications. We survey here the fundamental de�nitions
and properties, using systematically the properties of cofree coalgebras.

Recall, for completeness sake, that a bialgebra B is a unital algebra and
a counital coalgebra such that the product and the unit map are morphisms
of counital coalgebras. When the coalgebra structure is conilpotent, as it
is always the case in the present article, the notions of bialgebra and Hopf
algebra identify and we will use the two terminologies indi�erently. Denoting
π and ∆ the product and the coproduct of B, the convolution f � g of two
linear endomorphisms f, g of B is de�ned by f � g :� π � pf b gq �∆. The
convolution product de�nes a unital algebra structure on the vector space of
linear endomorphisms of B with unit the composition η � ε of the unit and
counit maps. See [3] for a systematic treatment.

De�nition 4.1. Let pH, �,∆q be a conilpotent Hopf algebra. A cofree struc-
ture on H is the data of a structure map π : H̄ Ñ PrimpHq making the
triple pH,∆, πq a cofree conilpotent coalgebra over PrimpHq. We will say
that pH, �,∆, πq (or simply pH,πq when the underlying Hopf algebra struc-
ture is obvious) is a cofree Hopf algebra.

A B8-algebra structure on a vector space V is equivalent to the de�nition
of a Hopf algebra structure on the cofree conilpotent coalgebra pT pV q,∆, πV q
(see Proposition 4.8 below). The product map from T pV qbT pV q to T pV q is
a map of conilpotent coalgebras and is entirely characterized by its projection
to the subspace V . This observation and the application of Lemma 3.3 lead
to the Lemma 4.2 below.
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Remark 4.1. The tensor product of two graded connected coalgebras is a
graded connected coalgebra and T pV q b T pV q is thus a connected graded
coalgebra. By Lemma 3.1, the product π, which is a map of coalgebras,
necessarily respects the �ltrations: πpTnpV qbTmpV qq �

À
k¤n�m TkpV q. In

particular, structure theorems obtained in the previous section for coalgebras
in FgCoalg apply to B8-algebras.

Lemma 4.2. Let � : T pV q b T pV q ÝÑ T pV q be a coalgebra map. It is
entirely characterized by the map x�,�y : T pV q b T pV q ÝÑ V de�ned by

xv1 . . . vk, vk�1 . . . vk�ly � πV pv1 . . . vk � vk�1 . . . vk�lq,

where πV : T pV q ÝÑ V is the canonical surjection.
Then, 1 � 1 � 1 and for any words w,w1 P T�pV q,

w � w1 �
8̧

k�1

¸
w�w1...wk,
w1�w11...w

1
k

xw1, w
1
1y . . . xwk, w

1
ky. (3)

Note that in the sum, the words wi or w
1
j can be empty (in what case wi and

w1j stand for 1 in the terms xwi, w
1
iy or xwj , w

1
jy).

Moreover,

w � 1 �
8̧

k�1

¸
w�w1...wk

xw1, 1y . . . xwk, 1y. (4)

1 � w1 �
8̧

k�1

¸
w1�w11...w

1
k

x1, w11y . . . x1, w
1
ky. (5)

Proof. As � is a coalgebra map, it maps 1b1, the unique group-like element
in T pV q b T pV q, to 1, the unique group-like element in T pV q. The Lemma
follows then from Lemma 3.3: � is entirely characterized by x�,�y :� πV �
�, and applying the formula expressing � in terms of x�,�y yields to Eqs
(3,4,5).

Lemma 4.3. With the same notation, the product � is unital, with unit 1
if, and only if,

x�, 1y � x1,�y � πV .

Proof. The assertion follows directly from the de�nitions of πV , x�,�y and
Eqs (4,5).

We assume from now on that the product � is unital, with unit 1.

Lemma 4.4. With the same notation,

1. the product � is associative if, and only if, for any w,w1, w2 P T�pV q,

xw,w1 � w2y � xw � w1, w2y.

10



2. It is commutative if, and only if, for any w,w1 P T�pV q,

xw,w1y � xw1, wy.

Proof. As the product is a map of coalgebra, so are the maps ��pIdb�q and
� � p�b Idq from T pV qb3 to T pV q. They are therefore entirely characterized
by the composition with πV and associativity follows from

πV � p� � pIdb �qq � πV � p� � p� b Idqq.

The second assertion is proved similarly, noticing that the twist map wbw1 Ñ
w1 b w is a morphism of coalgebras.

De�nition 4.5. A B8-structure on V is a map x�,�y : T pV qbT pV q ÝÑ V ,
such that:

� For any word v1 . . . vn P T pV q,

x1, v1 . . . vny � xv1 . . . vn, 1y �

#
v1 if n � 1,

0 otherwise.

� For any words w,w1, w2 P T�pV q,

xw,w1 � w2y � xw � w1, w2y,

where � is de�ned by

w � w1 �
8̧

k�1

¸
w�w1...wk,
w1�w11...w

1
k

xw1, w
1
1y . . . xwk, w

1
ky. (6)

We shall say that x�,�y is commutative if for any w,w1 P T�pV q, xw,w
1y �

xw1, wy. We shall say that x�,�y is trivial if for furthermore any w,w1 P
T�pV q, xw,w

1y � 0.

Remark 4.2. Equation (6) can be rewritten in this way: for any v1, . . . , vk�l P
V ,

v1 . . . vk � vk�1 . . . vk�l �
k�ļ

n�1

¸
σ:rk�ls↠rns,
σp1q¤...¤σpkq,

σpk�1q¤...¤σpk�lq

xvσ�1p1qy . . . xvσ�1pnqy,

with the following notation: if I � ti1, . . . , iqu � rns, with i1   . . .   ip ¤
k   ip�1   . . .   iq,

vI � vi1 . . . vip b vip�1 . . . viq .

In particular we get the Lemma:

11



Lemma 4.6. The B8-algebra structure is trivial if and only if the product
� is the shu�e product3, � � �, with

v1 . . . vk � vk�1 . . . vk�l �
¸

σ:rk�ls↠rk�ls,
σp1q ... σpkq,

σpk�1q ... σpk�lq

vσ�1p1q . . . vσ�1pnq.

See Example 6.2 for another classical de�nition of the shu�e product. In
that case, the Hopf algebra pT pV q,�,∆q is called the shu�e Hopf algebra
over V .

De�nition 4.7. A B8-algebra (resp. commutative) is a vector space V
equipped with a B8-structure (resp. commutative).

Proposition 4.8. Let P pV q be the set of products � on T pV q making pT pV q, �,∆q
a bialgebra and by B8pV q the set of B8-algebra structures on V . The fol-
lowing map is a bijection:

Θ :

"
P pV q ÝÑ B8pV q

� ÞÝÑ πV � �.

Denoting by P cpV q the set of commutative products on T pV q making pT pV q, �,∆q
a bialgebra and by Bc

8pV q of commutative B8-algebra structures on V , Θ
induces a bijection from P cpV q to Bc

8pV q.

Proof. As 1 is the unique group-like of T pV q, it is necessarily the unit for
the product �. By Lemmas 4.2, 4.3 and 4.4, Θ is well-de�ned. If � P P pV q,
then it is a coalgebra morphism from T pV qbT pV q to T pV q. By Lemma 3.3,
Θ is injective.

Conversely, let x�,�y in B8pV q. The product � associated to it by (3)
is a coalgebra map. It is associative by Lemma 4.4 and has 1 for a unit:
� P P pV q, and Θp�q � x�,�y. Thus, Θ is a bijection.

By the last item of Lemma 4.4, ΘpP cpV qq � Bc
8pV q.

De�nition 4.9. The bialgebra pT pV q, �,∆q associated to a B8-algebra struc-
ture x , y on V is called the B8-enveloping algebra of pV, x , yq. For sim-
plicity, we will abusively also say later on that pT pV q, �,∆q is a B8-algebra,
identifying implicitly the data of a B8-algebra structure on V with the data
of a B8-enveloping algebra structure on T pV q.

3Shu�e and quasi-shu�e products can be commutative (as usually the case in Lie
theory) or not (as usually in classical algebraic topology where shu�e products appear
in relation to cartesian products of simplices). In the present article they will be always
commutative, excepted in the example of quasi-shu�e Hopf algebras over an associative
algebra where the quasi-shu�e product is noncommutative when the algebra is noncom-
mutative.
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5 Graded B8-algebras

Let us consider now the notion of B8-algebra in the category of graded vector
spaces. We shall see later that many classical examples of B8-algebras have
such a structure. We assume therefore in this section that V is a graded
vector space. For brevity we do not repeat all de�nitions in the previous
section: they have to be adapted as follows

� replacing everywhere T pV q by its graded version T gpV q,

� requiring that all maps be maps of graded vector spaces,

� requiring in particular that the product � resp. the structure map x , y
be maps of graded coalgebras resp. of graded vector spaces (and not
of �ltered-graded coalgebras resp. �ltered vector spaces!).

For example, the de�nition of cofree Hopf algebras reads in the graded case:

De�nition 5.1. Let pH, �,∆q be a connected graded Hopf algebra. A cofree
graded structure on H is the data of a graded structure map π : H Ñ
PrimpHq making the coalgebra pH,∆q a cofree graded coalgebra over PrimpHq.
We will say that pH, �,∆, πq (or simply pH,πq when the underlying Hopf al-
gebra structure is obvious) is a cofree graded Hopf algebra.

Using the point of view of De�nition 4.9, let H � pT gpV q, �,∆q be the
B8 enveloping algebra of pV, x , yq in the category of graded vector spaces.
It is equipped with a graded connected Hopf algebra structure and we say
that T gpV q is then a graded B8-enveloping algebra. For simplicity, we will
abusively also say that pT gpV q, �,∆q is a graded B8-algebra.

De�nition 5.2. When the B8 structure is trivial, that is when xw,w1y � 0
for words both of length greater or equal 1, the product � is the shu�e product
�, H � pT gpV q,�,∆q is a graded Hopf algebra, and we say that it is a
standard graded B8-algebra.

Remark 5.1. A direct inspection of the formulas de�ning B8-enveloping alge-
bras shows that pT pV q, �,∆q is a graded Hopf algebra for the tensor degree on
T pV q if and only if the B8-algebra structure is trivial (that is,   w,w1 ¡� 0
for w,w1 P T�pV q and the product is the shu�e product). So, if V � V1,
there is a unique graded B8-algebra structure on V : the trivial one.

Let now H � pT gpV q, �,∆q be a locally �nite graded commutative B8-
enveloping algebra (where locally �nite means that the graded components
Hn are �nite dimensional). The graded dual cocommutative Hopf algebra
H� �

À
nPN

H�
n is a free associative algebra generated by pV � :�

À
n¥1

V �
n . That

is, up to a canonical isomorphism, H� � T ppV �q, the tensor algebra over pV �

equipped with the concatenation product. More generally, if pH, �,∆, πq is a
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locally �nite cofree graded commutative Hopf algebra, H� � T p {PrimpHq�q.
The following de�nition characterizes such Hopf algebras.

De�nition 5.3. A localy �nite graded connected cocommutative Hopf algebra
H freely generated as an associative algebra by a graded subspace W is called
a free Lie-type Hopf algebra. When W � PrimpHq (that is, when H is
primitively generated by W ), we say that H is a standard free-Lie type Hopf
algebra.

The reasons for this terminological choice will become clear later on: we
will show that such a Hopf algebra is always canonically isomorphic to the
enveloping algebra of a free Lie algebra.

Recall already that when H is a standard free-Lie type Hopf algebra, by
standard results in the theory of free Lie algebras it is automatically canon-
ically isomorphic to the enveloping algebra of the free Lie algebra generated
by W . In that case, the graded dual Hopf algebra is (up to a canonical iso-
morphism) the shu�e Hopf algebra over Ŵ �, so that standard free Lie-type
Hopf algebras and standard graded B8-algebras are in duality. See [29] for
details on the duality between enveloping algebras of free Lie algebras and
shu�e Hopf algebras.

6 Fundamental examples

Example 6.1 (Free Lie algebras). Let us start with one of the simplest pos-
sible non trivial example: the free graded associative algebra A � Qxx, yy
on two generators, x of degree 1 and y of degree 2 (so that, for example,
the word xyxy2 is of degree 8). It is the enveloping algebra of the free Lie
algebra over x and y (using the rewriting trick ra, bs � ab � ba to expand
iterated commutators in the free Lie algebra into sums of words). It is then
natural to equip A with a standard free-Lie type Hopf algebra structure by
requiring x and y to be primitive elements (as A is a free associative algebra,
this choice entirely determines the Hopf algebra structure on A).

Consider now the graded dual of A, denoted A� and write x� and y� for
the elements dual to x and y in the basis of words. In general, if y1 . . . yn
is a word in the letters x and y we will write y�1 . . . y

�
n for the corresponding

element in the dual in the basis of words over x and y. Writing V for
the linear span of x� and y� with the graduation |x�| � 1, |y�| � 2, A�

identi�es to T gpV q equipped with the deconcatenation product. That is,
A� identi�es with the cofree graded coalgebra T gpV q over V with structure
map πV mapping y�1 . . . y

�
n to 0 if n ¥ 2 and mapping y�1 Ñ y�1 , where

yi P tx, yu, i � 1 . . . n.

Dualizing the coproduct of A to obtain a product �, T gpV q becomes a
standard graded B8-algebra and identi�es as a Hopf algebra to the shu�e
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Hopf algebra over x� and y� (see Remark 4.2 and Example 6.2). In partic-
ular,

x� � x� � x� � x� � 2x�x�.

See [29] for details on these constructions and de�nitions. The corresponding
B8-algebra structure on V , obtained through the projection πV , is trivial.

Consider now the change of variables t :� x, z :� y�x2 (it is convenient
to notationally distinguish x and t). One can rewrite A � Qxt, zy but A
is not a standard free Lie-type Hopf algebra any more with respect to the
linear span of t and z, as z is not primitive: ∆pzq � 2t b t. Let us use the
same notation as above: if y1 . . . yn is a word in the letters t and z we will
write y�1 . . . y

�
n for the corresponding element in the dual basis to the basis

of words over t and z. For example, as

t � x, z � y � x2, zt � yx� x3,

t2 � x2, tz � xy � x3,

t3 � x3,

we obtain that

x� � t�, y� � z�, y�x� � z�t�,

x�x� � t�t� � z�, x�y� � t�z�,

x�x�x� � t�t�t� � t�z� � z�t�.

Take care that with this notation x� � t� and y� � z� but pt�qn �� px�qn

in general. The coalgebra A� identi�es now to T pW q, where W is the linear
span of z� and t�, equipped with the deconcatenation product (the cofree
coalgebra over W with structure map πW , mapping y�1 . . . y

�
n to 0 if n ¥ 2

and maps y�1 Ñ y�1 , where y1, . . . , yn belong now to tt, zu).
The two graded vector spaces V and W identify, but we distinguish

them notationally as the two cofree graded coalgebras T pV q and T pW q do
not. This is the case in particular because the two projections πV and πW
are di�erent: for example, πW px

�q � x�, πW py
�q � z�, πW px

�x�q � z�

whereas πV px
�q � x�, πV py

�q � y�,πV px
�x�q � 0. Conversely, πV pt

�q �
x�, πV pz

�q � y�, πV pt
�t�q � �y�. Both πV and πW are the null map on all

words of degree greater or equal 3.
We also get

t� � t� � 2t�t� � 2z�

as

  t� � t�|tt ¡�  t� b t�|∆pttq ¡�  t� b t�|ttb 1� 2tb t� 1b tt ¡� 2

and

  t� � t�|z ¡�  t� b t�|∆pzq ¡�  t� b t�|z b 1� 2tb t� 1b z ¡� 2.
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One obtains thus using πW another graded commutative B8-algebra struc-
ture x�,�y1 onW which however is not as a Hopf algebra the shu�e algebra
over t� and z�. We indeed obtain that xt�, t�y1 � 2z�, and x�,�y1 is 0 on
all other pairs of words in t� and z�. This illustrates the general idea that a
cofree graded commutative Hopf algebra structure on H is actually obtained
as a graded connected commutative Hopf algebra structure plus the choice of
a basis of words making it a cofree coalgebra over the corresponding letters
(up to the choice of a basis of PrimpHq). There are in�nitely many such
choices (the basis of PrimpHq being �xed), as our example implies.

The change of basis in A from words in x, y to words in t, z is obtained
simply by substituting t for x and z � tt for y (and conversely x for t and
y � xx for z). The change of basis in A� from words in x�, y� to words in
t�, z� is slightly more delicate but follows directly from Lemma 3.3: it is
given by

y�1 . . . y
�
n ÞÝÑ

¸
kPN�

πbk
W �∆kpy

�
1 . . . y

�
nq

(with the yi in tx, yu) and the inverse map by

y�1 . . . y
�
n ÞÝÑ

¸
kPN�

πbk
V �∆kpy

�
1 . . . y

�
nq

(with the yi in tt, zu). For example, using this rule,

x�y�x�x�y� � πb4
W px� b y� b x�x� b y�q � πb5

W px� b y� b x� b x� b y�q

� t�z�z�z� � t�z�t�t�z�.

Example 6.2 (Shu�e and quasi-shu�e Hopf algebra). Let � be an associative,
not necessarily unitary, product on V . We extend it to a B8-structure on V
by putting, for any words w,w1 P T pV q,

xw,w1y �

$''''''&''''''%

0 if w � w1 � 1,

w1 if w � 1 and ℓpw1q � 1,

w if ℓpwq � 1 and w1 � 1,

w � w1 if ℓpwq � ℓpwq1 � 1,

0 otherwise,

where ℓpwq stands for the length of the word w. The associated product
on T pV q is called the quasi-shu�e product ]. It equips T pV q with a Hopf
algebra structure. It is commutative, if, and only if, � is commutative. In
the particular case where � � 0, we obtain the shu�e product � (see also
Remark 4.2).
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The quasi-shu�e product is classically inductively (and equivalently) de-
�ned by the equations v ] 1 � 1] v � v and

v1 . . . vk ] vk�1 . . . vk�l :� v1pv2 . . . vk ] vk�1 . . . vk�lq

� vk�1pv1 . . . vk ] vk�2 . . . vk�lq

� pv1 � vk�1qpv2 . . . vk ] vk�2 . . . vk�lq,

which restricts to

v1 . . . vk � vk�1 . . . vk�l :� v1pv2 . . . vk � vk�1 . . . vk�lq

� vk�1pv1 . . . vk � vk�2 . . . vk�lq,

for the shu�e product. See also e.g. [10] for details on shu�e and quasi-
shu�e algebras and their relationships, to be generalized below in the present
article.

Commutative quasi-shu�e algebras are at the moment the most impor-
tant example of commutative B8-algebras. They can be used to encode
certain relations between multi-zeta values and generalizations of them, see
[18, 17] for a review on this topic. They play a prominent role in the study
of Rota-Baxter algebras [14, 15, 6]. They are used not only in combinatorics
and algebra as they have for example applications also in stochastics, where
they allow to better understand the equivalence between Itô and Stratonovich
integrals, resp. solutions of stochastic di�erential equations (Itô calculus be-
ing encoded by quasi-shu�e algebras and Stratonovich's by shu�e algebras)
[4, 5].

Example 6.3 (Graded shu�e and quasi-shu�e Hopf algebra). Assume now
that V �

À
n¥1

Vn is a graded vector space. Let then � be an associative,

commutative and graded product on V . The standard example is the case
where V is the semigroup ring of a positively graded commutative semigroup.

The degree of an element v in Vn is denoted |v| (|v| :� n). Given vi P
Vki , i � 1 . . . n, the qs-degree (quasi-shu�e degree) of v1 . . . vn P V

bn is, by
de�nition, |v1 . . . vn| :� k1� . . .� kn. This is the grading we have previously
introduced on T gpV q. Direct inspection shows that the qs-degree de�nes
a cofree graded commutative Hopf algebra structure on the pT pV q,],∆q,
where ] was de�ned in Example 6.2, making V a graded commutative B8-
algebra.

One can show that there is an isomorphism (of Hopf algebras) between
the shu�e algebra and the quasi-shu�e algebra of words over an arbitrary
graded commutative semigroup. This isomorphism is known as Ho�man's
isomorphism. It generalizes to the non graded case. See e.g. [16] for details
on graded quasi-shu�e algebras and their relationship with shu�e algebras,
to be generalized below in the present article. Graded quasi-shu�e and shuf-
�e algebras are used in [2] to investigate Itô to Stratonovich transformations
in the context of branched rough paths.
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Example 6.4 (The gebra of descents). Let us �rst introduce brie�y the con-
text of the following results. Together with Example 6.1 they will serve as a
benchmark for our later developments on graded commutative B8-algebras.

A classical and fundamental theorem by C. Malvenuto in the theory of
free Lie algebras, symmetric group representations and symmetric functions
asserts that the dual of the Hopf algebra of descents in symmetric groups,
whose de�nition is recalled below, is isomorphic to the Hopf algebra of quasi-
symmetric functions [20, 21]. There are several ways to understand this
isomorphism, but one of them is particularly important for our purposes as
it is the pattern we will use and generalize to investigate the structure of
graded commutative B8-algebras.

We postpone details to latter developments in the article, but sketch the
fundamental idea. The Hopf algebra of descents Desc, whose de�nition is
recalled below, is naturally graded, cocommutative. As an algebra it is a free
associative algebra and the exponential allows to move between a family of
primitive generators to a family of group-like generators. When dualizing,
the choice of a family of primitive generators amounts to considering the
dual as equipped with a shu�e Hopf algebra structure, in the sense that the
formulas for the product in the corresponding basis are the usual formulas for
shu�e products. Choosing group-like generators amounts instead amounts
to equip the dual with a speci�c graded commutative B8-structure: up to
isomorphism the one of the quasi-shu�e algebra over the semigroup algebra
over the positive integers. A change of basis in Desc and its graded dual ap-
pears therefore as a prototype example for Ho�man's isomorphisms between
shu�e and quasi-shu�e Hopf algebras, but there is more to be learned from
that example, as we show now.

Let us explain the technical content of these ideas more precisely and
recall the de�nition of the Hopf algebra of descents and some of its key
properties, relevant to the present article. The reader is referred to [3, Chap.
5], from which the following de�nitions and properties are taken, for more
details.

De�nition 6.1 (Descent sets of permutations). A permutation σ in the n-th
symmetric group Sn is said to have a descent in position i   n if and only if
σpiq ¡ σpi� 1q. The set of descents of a permutation is denoted descpσq:

descpσq :� ti   n, σpiq ¡ σpi� 1qu.

To each subset S � S1 \ tnu of rns containing n are associated two
elements in the group algebra QrSns:

De�S :�
¸
σPSn

descpσq�S1

σ , DeS :�
¸
σPSn

descpσq�S1

σ.

The DeS (resp. the De�S), S � S1 \ tnu � rns are linearly independent in
QrSns. They have the same linear span, written Desc.
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Let now X � tx1, . . . , xn, . . . u be a countable alphabet and T pXq the
tensor gebra over X equipped with a graded connected cocommutative Hopf
algebra structure by the concatenation product and the unshu�e coproduct
∆� (the coproduct dual to the shu�e product of words: ∆�py1 . . . ynq :�°
I
²

J�rns

yI b yJ where, if I � ti1, . . . , iku, yI :� yi1 . . . yik). Permutations

in Sn act on TnpXq on the right by permutation of the letters of words of
length n (σpy1 . . . ynq � yσp1q . . . yσpnq where yi P X, i ¤ n). The convolution
product of linear endomorphisms of T pXq induces then a graded algebra
structure on the direct sum of linear spans of the symmetric groups

À
nPN

QrSns

that restricts to a graded algebra structure on Desc (elements in Sn being of
degree n). This is the standard way to connect the combinatorics of descents
with the theory of free Lie algebras [29].

From the action of Desc on T pXq (by a process that holds actually more
generally for all graded connected cocommutative Hopf algebras), one can
derive the existence of a graded cocommutative Hopf algebra structure on
Desc and one gets the Theorem:

Theorem 6.2. The descent algebra Desc is a graded cocommutative Hopf al-
gebra, freely generated as a unital associative algebra by any of the following
families:

� The identity permutations 1n in the groups Sn, n ¥ 1, that form a

group-like family (that is to say, for any n P N, ∆p1nq �
n°

k�0

1kb1n�k),

� The Dynkin operators

Dynn �
n�1̧

i�0

p�1qiDe�t1,...,iu,

which are primitive elements,

� Solomon's Eulerian idempotents

soln :� e1n �
¸

S�S1\tnu�rns

p�1q|S
1|

n

�
n� 1

|S1|


�1

DeS ,

which are primitive elements.

The Theorem implies that the family of Dynkin operators and the family
of Eulerian idempotents de�ne a standard free-Lie type Hopf algebra struc-
ture on Desc (they are primitive elements and freely generate Desc as an
associative algebra). The graded dual Hopf algebra Desc� is a shu�e Hopf
algebra in the corresponding bases.
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This is a general phenomenon: any family of Lie idempotents (elements in
the descent algebra that project the tensor algebra onto the free Lie algebra)
would de�ne a shu�e Hopf algebra structure on Desc, and there are in�nitely
many of them. On Lie idempotents and their generalization to arbitrary
connected cocommutative Hopf algebras, see [26, 27, 28].

On the other hand, the family of the identity elements in symmetric
groups de�nes a non standard free-Lie type Hopf algebra structure on Desc.
Dualizing, one gets a graded commutative B8-algebra structure on the space
PrimpDesc�q whose associated Hopf algebra is not a shu�e Hopf algebra
over the cogenerating vector space Ŵ �, where W is the linear span of the
identity elements in symmetric groups. The graded dual of Desc is indeed a
quasi-shu�e Hopf algebra over Ŵ � � see [20, 21].

Choosing a family of generators of Desc that would not be primitive
nor group-like would lead to a graded commutative B8-algebra structure
on PrimpDesc�q whose associated Hopf algebra would not be a shu�e Hopf
algebra nor a quasi-shu�e Hopf algebra in the corresponding basis. This
also follows easily from the same references and can be checked directly �
we don't detail this point as the reason for such a claim should be clear from
forthcoming developments.

Example 6.5 (Natural deformations of shu�e Hopf algebras). In a joint arti-
cle with J.-Y. Thibon, we investigated and classi�ed more generally natural
deformations of the shu�e Hopf algebra structure ShpAq which can be de-
�ned on the space of tensors over a commutative algebra A (where natural
means functorial) [10]. These deformations are parametrized by formal power
series. To each such non trivial deformation corresponds a non graded com-
mutative B8-algebra structure on A. We refer the reader to our article for
de�nitions and details (we do not use the language of B8-algebras in that
article but it should be clear how to interpret our results in these terms).

Example 6.6 (Finite topologies). In another direction, together with C. Mal-
venuto, we investigated commutative B8 structures in the context of �nite
topologies (or, equivalently, preorders) and their links with shu�e Hopf al-
gebras, introducing and featuring in particular the notion of Schur-Weyl cat-
egories of bialgebras [9]. The fact that such structures appear very naturally
(but in a non straightforward way) in the context of �nite topologies and
ordered structures provides, together with the homotopical algebra origin of
these notions in [13], further evidence for their naturalness. More details will
be given in section 9.

7 The structure of graded commutative B8-algebras

Recall �rst the Poincaré-Birkho�-Witt (PBW) theorem (we refer again to
[3] for details on the materials that follow). Let L be a graded and reduced
Lie algebra (reduced meaning that it has no component in degree 0). Its
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enveloping algebraH is a graded connected cocommutative Hopf algebra and
there is a canonical morphism ι from the space SpLq of symmetric tensors
over L to H. This map is a coalgebra isomorphism and the decomposition
of SpLq according to tensor degrees induces a decomposition of the graded
components of the enveloping algebra: Hn �

À
k¤n

HnXS
kpLq, where we write

SkpLq for the space of symmetric tensors in Lbk.
The gebra of tensors T pXq over a set X is, when equipped with the con-

catenation product and the unshu�e coproduct ∆�, the enveloping algebra
of the free Lie algebra overX. One of the key properties of the Eulerian idem-
potents is that they project T pXq to the free Lie algebra over X according
to the decomposition of T pXq induced by the Poincaré-Birkho�-Witt theo-
rem (this is actually how Solomon de�ned them originally). This idea was
generalized to arbitrary graded connected cocommutative or commutative
Hopf algebras H in [25, Th. I,5,6 and Th. I,6,4], see also [23, 24, 3].

In the cocommutative case, this leads to the de�nition of generalized
Eulerian idempotents that project on the graded components of primitive
part of the Hopf algebra in agreement with the Poincaré-Birkho�-Witt de-
composition. We will still write e1n for the generalized Eulerian idempotent,
acting on Hn as a projector from Hn to Hn X PrimpHq. Notice that these
generalized idempotents cannot be constructed in general as elements of the
symmetric group algebras. In particular they are not directly governed by
the statistics of descents in symmetric groups � the very reason for the name
�Eulerian idempotents� used in the classical case. This is the reason why they
should be preferably called �canonical idempotents� � we use below the two
terminologies indi�erently.

Lemma 7.1. Given x P Hn, where H is a graded connected cocommutative
Hopf algebra, the PBW theorem induces a unique decomposition x � e1npxq�
y, where e1npxq is a primitive element in Hn and y P

À
k¡1

Hn X SkpLq. In

particular, y can be expanded as a sum of products of elements in
À
k n

Hk.

More generally, one can show [3, Th. 5.2.1] that any primitive element ψn

in the n-th graded component of the descent algebra (ψn P PrimnpDescq :�
PrimpDescq XDescn) de�nes a projector from Hn onto PrimpHq XHn pro-
vided the coe�cient of 1n P Sn in the expansion of ψn, viewed as an element
of the group algebra of Sn, is 1 in the basis of permutations. We call a
family pψnqnPN� of such projectors a Lie idempotent family. The Dynkin
idempotents Dynn{n and the Klyachko idempotents provide, together with
the Eulerian idempotents, classical examples of such families. There are in-
�nitely many as any convex combination of Lie idempotent families is a Lie
idempotent family � this follows from their characterization in terms of the
coe�cients of 1n P Sn in their expansion.

It is easy to show that Lemma 7.1 generalizes to these families pψnqnPN�
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in the following way: given x P Hn, x � ψnpxq�y, where ψnpxq is a primitive
element in Hn and y can be expanded as a sum of products of elements inÀ
k n

Hk.

Theorem 7.2 (Structure theorem for free-Lie type Hopf algebras). Let H be
a free-Lie type Hopf algebra with freely generating subspaceW . Then, for any
Lie idempotent family pψnqnPN� H is a standard free-Lie type Hopf algebra
over the freely generating subspace W 1 :�

À
nPN�

ψnpWnq. In particular, a free-

Lie type Hopf algebra is always naturally the enveloping algebra of a free Lie
algebra over a generating subspace W 1, and any Lie idempotent family gives
rise to such a space.

Proof. Indeed, W freely generates H as a free associative algebra. Let us
choose a graded basis pb1, . . . , bn, . . .q, ordered in such a way that |bi�1| ¥
|bi|. By Lemma 7.1, bi � ψnpbiq � r, where the residuum r belongs to the
free associative algebra generated by the bj , j   i � 1. By the standard
triangularity argument, ψnpbq is freely independent from the bj , j   i and
from the ψnpbjq, j ¤ i, and the ψnpbiq freely generate H. The Lemma
follows.

The theorem can be recast in categorical terms. Let V a graded vector
space together with an isomorphism ϕ : V ÑW . We write ϕn for the degree
n component of the isomorphism. The data pH,W q of a free-Lie type Hopf
algebra are equivalent to the data pH,V, ϕq of a graded cocommutative Hopf
algebra structure on H together with the linear injection (still written) ϕ
from V into H that induces an algebra isomorphism T pV q � H. We call
pH,V, ϕq a presentation of the free-Lie type Hopf algebra pH,W q.

Theorem 7.3 (Structure theorem 7.2, categorical formulation). Let pH,V, ϕq
be a presentation of a free-Lie type Hopf algebra H. Then, for any Lie idem-
potent family pψnqnPN�, pH,V,

À
nPN�

ψn � ϕnq is a presentation of a standard

free-Lie type Hopf algebra structure on H.

The �rst formulation of the Theorem is a change-of-basis argument gen-
eralizing the one we encountered it in the Example of the Hopf algebra of
descents. The second formulation is more abstract and says that a free-Lie
type Hopf algebra is always canonically isomorphic to a standard free-Lie
type Hopf algebra. This is the argument we encountered in the Example of
graded quasi-shu�e Hopf algebras with Ho�man's isomorphism.

By duality (hereafter in this section all duals are graded duals and all
graded vector spaces are locally �nite), we immediately get:

Theorem 7.4 (Structure theorem for cofree graded commutative Hopf al-
gebras). Let H� be a cofree graded commutative Hopf algebra with struc-
ture map ϕ� : H� Ñ PrimpH�q. Then, for any Lie idempotent family
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pψnqnPN�, the structure map π :�
°

nPN�
ϕ�n � ψ

�
n equips H� with another, iso-

morphic, cofree coalgebra structure over PrimpH�q. Furthermore, the struc-
ture map π induces a Hopf algebra isomorphism with a shu�e Hopf algebra
H� � pT gpPrimpH�qq,�,∆q.

The last sentence follows from Theorem 7.2 and the fact that the graded
dual Hopf algebra of pT gpPrimpH�qq,�,∆q is the enveloping algebra of the
free Lie algebra over the dual of PrimpH�q.

The theorem can be expressed in the language of B8-algebras.

Theorem 7.5 (Structure theorem for graded commutative B8-algebras).
Let V � be a graded commutative B8-algebra and pT gpV �q, �,∆q the asso-
ciated graded commutative Hopf algebra. Let pψnqnPN� be a Lie idempotent
family. Then, the structure map

°
nPN�

πV �ψ
�
n from T gpV �q to V � induces an

Hopf algebra isomorphism pT gpV �q, �,∆q � pT gpV �q,�,∆q.

When the Lie idempotent family is the Eulerian family, the Theorem was
obtained by Bellingeri, Ferrucci and Tapia in [2, Rmk 3.5].

8 The structure of commutative B8-algebras

Let us start this Section by restating the characterization of shu�e Hopf
algebras (Lemma 4.6).

Lemma 8.1. Let pH, �,∆, πq be a cofree commutative Hopf algebra. Then,
H is a shu�e algebra in the π basis if and only if π vanishes on H̄ � H̄, the
square of the augmentation ideal of H̄.

In particular, any surjection γ : H Ñ PrimpHq that acts as the identity
map on PrimpHq and vanishes on H̄ � H̄ de�nes a shu�e algebra structure
on H in the γ basis.

Recall (details can be found in [3, Sections 2.10 and 3.3]) that to a com-
mutative Hopf algebra H are classically associated a group and a Lie algebra:
the group is the set of algebra maps from H to the ground �eld K equipped
with the restriction of the convolution product on EndpHq, the algebra of
linear endomorphisms of H. The Lie algebra is the vector space of linear
forms on H̄ that vanish on H̄ � H̄ or, equivalently, of linear forms on H that
vanish on K�H̄ �H̄. These linear forms are usually called in�nitesimal char-
acters, their bracket is obtained as the bracket associated to the convolution
product. This construction generalizes from linear forms to linear endomor-
phisms of H. A linear endomorphism of H that vanishes on K � H̄ � H̄ is
called an in�nitesimal endomorphism of H.

De�nition 8.2. An in�nitesimal endomorphism ϕ of H is called tangent to
identity if and only if its restriction to PrimpHq is the identity map.
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We state the following Corollary of Lemma 8.1 as a Theorem in view of
its meaningfulness for the theory.

Theorem 8.3. Let pH, �,∆, πq be a cofree commutative Hopf algebra and ϕ
a tangent to identity endomorphism of H. By Lemma 8.1, H is a shu�e
Hopf algebra in the π � ϕ basis.

When restated in the language of B8-algebras, the Theorem reads:

Theorem 8.4. Let x�,�y be a commutative B8 structure on V with asso-
ciated Hopf algebra pT pV q, �,∆q. Let ϕ a tangent to identity endomorphism
of T pV q and let ω̃ be the coalgebra automorphism of pT pV q,∆q induced by
ω :� πV � ϕ:

ω̃ :

$''''&''''%
T pV q ÝÑ T pV q

1 ÞÝÑ 1,

w P T�pV q ÞÝÑ
8̧

k�1

¸
w�w1...wk,
w1,...,wk�H

ωpw1q . . . ωpwkq.

Then ω̃ is a Hopf algebra isomorphism from pT pV q, �,∆q to pT pV q,�,∆q.

The calculation of the inverse isomorphism follows from the computation
of the inverse of a cofree coalgebra isomorphism in Eq. 2.

Proposition 8.5. Let notation be as in Theorem 8.4. Let us de�ne induc-
tively ζ (by induction on the length of tensors) by

ζ :

$''''&''''%
T�pV q ÝÑ V
v P V ÞÝÑ v,

w P TnpV q, n ¥ 2 ÞÝÑ ζpwq � �
ņ

k�2

¸
w�w1...wk,
w1,...,wk�H

ϖ�pζpw1q . . . ζpwkqq.

Let us then de�ne

ζ̃ :

$''''&''''%
T pV q ÝÑ T pV q

1 ÞÝÑ 1,

w P T�pV q ÞÝÑ
8̧

k�1

¸
w�w1...wk,
w1,...,wk�H

ζpw1q . . . ζpwkq.

Then ζ̃ is the Hopf algebra isomorphism from to pT pV q,�,∆q to pT pV q, �,∆q
inverse to ω̃ as de�ned in Theorem 8.4.

In the graded case we saw that any Lie idempotent family de�nes a shu�e
Hopf algebra structure on a cofree graded commutative Hopf algebra. In the
non graded case, the key idea to construct a universal tangent to identity
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endomorphism will be to use the extension of the de�nition of the Eulerian
idempotents from the original case of the tensor Hopf algebra to the case
where the Hopf algebra H is commutative and unipotent (being unipotent is
a weaker hypothesis than being graded connected; it always holds when the
Hopf algebra is conilpotent as a coalgebra). We have already used in previous
works on quasi-shu�e algebras this fact that the constructions and proofs
of structure results on graded connected cocommutative or commutative
Hopf algebras in [25, 23, 24] can be extended to a broader setting as they
actually only require the Hopf algebras to be unipotent � this observation
was developed systematically in [3, Chap. 4], to which we refer for details
and proofs. See in particular [3, Thm 4.4.1].

When applied to commutative B8-algebras, these results imply the The-
orem:

Theorem 8.6. Let � P P cpV q. The canonical idempotent e� is de�ned by
e�p1q � 0 and for any non-empty word w of length n,

e�pwq �
ņ

k�1

¸
w�w1...wk,
w1,...,wk�H

p�1qk�1

k
w1 � . . . � wk.

Then e� is a projector, vanishing on T�pV q � T�pV q, and for any v P V ,
e�pvq � v: it is a tangent to identity in�nitesimal endomorphism of T pV q.
Moreover, the image of e� freely generates pT pV q, �q as a commutative alge-
bra.

Furthermore, as the product of a B8-algebra is a morphism of �ltered
graded coalgebras,

e�pTnpV qq P
nà

k�1

TkpV q.

When the same results are applied more generally to a cofree commu-
tative Hopf algebra H, the same conclusions hold mutatis mutandis. The
canonical (or generalized Eulerian) idempotent is then de�ned on H̄ by

e�phq �
8̧

k�1

p�1qk�1

k
mk � ∆̄kphq,

where we writemk for the iterated product (from H̄bk toH). It projects onto
a (canonically constructed) vector subspace QpHq of H that freely generates
H as a commutative algebra. The projection is orthogonal to the square of
H̄, the augmentation ideal of H and acts as the identity on PrimpHq. It is
a tangent to identity in�nitesimal endomorphism of H.

Proposition 8.7. Let � P P cpV q. We set ϖ� :� πV � e� and call ϖ the
canonical commutative B8 idempotent. It acts as the identity map on V
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and sends any non-empty word w to

ϖ�pwq �
8̧

k�1

¸
w�w1...wk,
w1,...,wk�H

p�1qk�1

k
xw1, w2 � . . . � wky.

Proof. The map ϖ� is indeed an idempotent since πV is an idempotent and
e� � πV � πV . The explicit formula follows from the formula for e� in
Theorem 8.6 and the observation that, since xw,w1y � πV pw � w

1q,

πV pw1 � w2 � . . . � wkq � πV pw1 � pw2 � . . . � wkqq � xw1, w2 � . . . � wky.

Example 8.1. Let v1, v2, v3 P V .

ϖ�pv1q � v1,

ϖ�pv1v2q � �
1

2
xv1, v2y,

ϖ�pv1v2v3q � �
1

2
pxv1v2, v3y � xv1, v2v3yq �

1

3
xv1, v2v3 � v3v2 � xv2, v3yy.

Proposition 8.8. When pH,πq is a cofree commutative Hopf algebra, de�ne
similarly the idempotent ϖ� :� π � e� and call it the canonical π-idempotent.
The Hopf algebra H is then a shu�e Hopf algebra in the ϖ basis.

Proof. The Proposition follows from the fact that e� is a tangent to identity
endomorphism and from Theorem 8.3.

In the language of B8-algebras, the Proposition reads:

Proposition 8.9. Let notation be as in Proposition 8.4 but set ϖ :� πV �e�.
Then, ϖ̃ is a Hopf algebra isomorphism from pT pV q, �,∆q to pT pV q,�,∆q.

Remark 8.1. In the quasi-shu�e case, the formulas simplify. Given two non
empty words w and w1, xw,w1y vanishes excepted when w and w1 are both of
length 1. Therefore, using also that the quasi-shu�e product of two words of
length p and q is a linear combination of words of length at least maxpp, qq,
we get:

ϖ�pv1 . . . vnq �
p�1qn�1

n
xv1, v2 ] . . .] vny.

�
p�1qn�1

n
xv1, v2 � . . . � vny

�
p�1qn�1

n
v1 � v2 � . . . � vn,

and we obtain that for any v1, . . . , vn P V , with n ¥ 1,

ϖ�pv1 . . . vnq �
p�1qn�1

n
v1 � . . . � vn.
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Applying Proposition 8.9, we recover the Ho�man �logarithmic� isomorphism
from pT pV q,],∆q to pT pV q,�,∆q [16].

The formulas for the inverse map (Proposition 8.5) also simplify and a
closed formula for ζ and ζ̃ :� ϖ̃�1 can be obtained. Indeed, using Remark
8.1, we get in that case the inductive formula

ζpwq � �
ņ

k�2

¸
w�w1...wk,
w1,...,wk�H

p�1qk�1

k
ζpw1q � . . . � ζpwkq,

which, using for example the identity of coe�cients resulting from the formal
power series expansion of the identity log � exppxq � x, is solved by

ζpwq �
1

n!
v1 � . . . � vn,

where w � v1 . . . vn P TnpV q. Applying Proposition 8.5, we recover Ho�-
man's �exponential� isomorphism from pT pV q,�,∆q to pT pV q,],∆q [16].

A similar analysis of the Ho�man isomorphism was performed in [2],
where however the commutative algebra V underlying the construction of
the quasi-shu�e Hopf algebra is the algebra of symmetric tensors over a
vector space so as to obtain a graded commutative B8 structure, as the
article is written in the context of graded B8-algebras. Using the unipotent
version of structure theorems for Hopf algebras allows us to remove this
restriction.

See also our [10, ?] where more advanced insights on the Ho�man iso-
morphism and more generally on deformations of shu�e Hopf algebras can
be found.

We conclude with a remark on the naturality of the constructions pre-
sented in the article. Morphisms of commutative B8-algebras are de�ned
in the obvious way: given pV, x�,�yV q and pW, x�,�yW q two commutative
B8-algebras, a linear map f from V to W is a commutative B8 morphism
if and only if, for any v1, . . . , vp�q in V ,

xF pv1 � � � vpq, F pvp�1 � � � vp�qqyW � fpxv1 b � � � b vp, vp�1 b � � � b vp�qyV q,

where F is de�ned by F pv1 � � � viq :� fpv1q b � � � b fpviq.
We put �V � Θ�1px�,�yV q and �W � Θ�1px�,�yW q and let the reader

check that if f is a commutative B8 morphism from V toW , F is a bialgebra
morphism from pT pV q, �V ,∆q to pT pW q, �W ,∆q.

Proposition 8.10. Let pV, x�,�yV q and pW, x�,�yW q be two commutative
B8-algebras. Let f : V ÝÑW be a morphism of B8-algebras. The following
diagram is commutative:

pT pV q, �V ,∆q
F //

H�V

��

pT pW q, �W ,∆q

H�W

��
pT pV q,�,∆q

F
// pT pW q,�,∆q
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In other terms, the commutative B8/shu�e isomorphism is functorial.

Proof. The Proposition directly follows from the de�nition of the maps H�,
ϖ and e�, from the de�nition of a commutative B8 morphism, and the fact
that F is a morphism of bialgebras (so that its action commutes in particular
with taking products or computing coproducts).

9 A B8 structure on �nite topologies

Let us detail now a particularly meaningful example: �nite topologies (see
also [9]).

Let E be a �nite set. A topology on E is a set T of subsets of E such
that:

� H , E P T .

� If A,B P T , then AYB P T and AXB P T .

By Alexandro�'s theorem [1], given a �nite set E, the set of topologies on
E is in one-to-one correspondence with quasi-orders on E, that is to say
transitive and re�exive relations on E: given such a relation ¤ on E, the
topology T¤ associated to ¤ is the set of subsets O � E such that

@x, y P E, x P O and x ¤ y ùñ y P O.

Conversely, if T is a topology on a �nite set E, it gives rise to a quasi-order
on E de�ned by

@x, y P E, x ¤T y ðñ any O P T containing x also contains y.

If ¤ is a quasi-order on E, we de�ne an equivalence relation on E by

x �¤ y ðñ x ¤ y and y ¤ x.

Thus, E{ �¤ inherits an order ¤, de�ned by

x¤y ðñ x ¤ y.

We will further on abbreviate �¤T to �T .

In the sequel, we shall represent isoclasses of �nite topologies by the
Hasse graphs of pE{ �T ,¤T q, with indices representing the cardinalities of
the classes of �¤T , when these cardinalities are not equal to 1. Here are
�nite topologies of cardinality ¤ 4:

1; ; , , 2 ; , , , ,
2

, 2 , 2 , 3 ,
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, , , , , , , , , , , , , , , ,

2,
2

,
2

,2 , 2 ,
2

,

2

, 2 ,
2

, 2 , 2 ,
3

, 3 , 3 , 2
2

, 2 2 , 4 .

By convention, the edges in these graphs are oriented upwards.

The Hopf algebra HT of quasi-orders, or of �nite topologies [8, 9] has for
basis the set of (isoclasses) of �nite topologies. Its product, that we will write
m further on, is given by the disjoint union: if T and T 1 are two topologies
on respective sets E and E1, then TT 1 is a topology on the set E \E1, with

TT 1 � tO \O1 | O P T, O1 P T u.

The Hasse graph of TT 1 is the disjoint union of the Hasse graphs of T and T 1.
This product is commutative, and its unit is the unique topology denoted 1
on H. The coproduct ∆ is de�ned on any �nite topology T on a set E by

∆pT q �
¸
OPT

T|EzO b T|O.

Example 9.1.

∆p q � b 1� 1b ,

∆p q � b 1� 1b � b ,

∆p q � b 1� 1b � b � b � b ,

∆p q � b 1� 1b � b � b � b ,

∆p q � b 1� 1b � b � b .

The Hopf algebra HT is equipped with an extra structure: if T and T 1 are
two topologies on respective �nite sets E and E1, then T Ó T 1 is a topology
on E \ E1 de�ned by

T Ó T 1 � T 1 Y tO \ E1 | O P T u.

The Hasse graph of T Ó T 1 is obtained by adding an edge from any maximal
vertex of the Hasse graph of T to any minimal vertex of the Hasse graph of
T 1. For example,

Ó � , Ó � , Ó � ,

Ó � , Ó � .
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The product Ó is linearly extended to HT , making it an associative al-
gebra, which unit is again 1. Moreover, by de�nition of T Ó T 1, for any
x, y P HT ,

∆px Ó yq � pxb 1q Ó ∆pyq �∆pxq Ó p1b yq � xb y.

Recall that an in�nitesimal bialgebra in the sense of [19] is an associative
unital algebra with product Ó and a coassociative counital coalgebra with
coproduct ∆ and coaugmentation the unit of Ó such that furthermore the
previous identity is satis�ed. The triple pHT , Ó,∆q is thus an in�nitesimal
bialgebra.

Let us survey some of the properties of these bialgebras with a view to-
wards applications to B8 structures. Complementary insights can be found
in [9]. The main example of such objects are the tensor gebras T pV q, with
the concatenation product that we write from now on mconc and the decon-
catenation coproduct ∆. In fact, in the connected case, these are the unique
examples:

Proposition 9.1. Let H � pH, Ó,∆q be an in�nitesimal bialgebra. The
following map is an injective map of in�nitesimal bialgebra:

Θ :

"
pT pPrimpHqq,mconc,∆q ÝÑ pH, Ó,∆q

v1 . . . vk ÞÝÑ v1 Ó . . . Ó vk.

It is an isomorphism if and only if, the coalgebra pH,∆q is conilpotent.

Proof. The map Θ is obviously an algebra map. An easy induction on k
proves that for any v1, . . . , vk P PrimpHq, in H,

∆pv1 Ó . . . Ó vkq �
ķ

i�0

v1 Ó . . . Ó vi b vi�1 Ó . . . Ó vk,

so Θ is a coalgebra morphism.

Let us assume that Θ is not injective. Let us consider w P KerpΘq, non

zero. There exists n ¥ 1 such that w P
nà

k�1

PrimpHqbk. Let us choose w such

that n is minimal. Then the restriction of Θ to
n�1à
k�1

is injective. Moreover,

0 � ∆ �Θpwq

� pΘbΘq �∆pwq

� Θpwq b 1� 1bΘpwq � pΘbΘq∆pwq

� pΘbΘq∆pwq.
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Observing that

∆pwq P

�
n�1à
k�1

PrimpHqbk

�b2

,

we obtain that ∆pwq � 0, so ∆pwq � wb1�1bw and �nally w P PrimpHq.
Therefore, Θpwq � w � 0, which is a contradiction. So Θ is injective.

If Θ is surjective, then the coalgebras pT pPrimpHqq,∆q and pH,∆q are
isomorphic, so H is conilpotent. Let us assume that H is conilpotent and
let us prove that Θ is surjective. Let x P Ker∆n, n ¥ 2, let us prove that
x P ImpΘq by induction on n.

If n � 2, then x P PrimpHq and x � Θpxq. Let us assume the result
at rank n and let x P Ker∆n�1. Then, as ∆ is coassociative, ∆npxq P
Kerp∆qbn � PrimpHqbn. Let us put

∆npxq �
ķ

i�1

vi,1 b . . .b vi,n.

Then, if w �
ķ

i�1

vi,1 . . . vi,n, ∆n �Θpwq � ∆npxq, so the induction hypothesis

applies to x�Θpwq. Therefore, x�Θpwq P ImpΘq and �nally x P ImpΘq.

Proposition 9.2. Let pH, Ó,∆q be a conilpotent in�nitesimal bialgebra. Then

H̄ � PrimpHq ` H̄ Ó H̄,

and the projection π on PrimpHq in this direct sum is given by

π �
8̧

k�1

p�1qk�1 Ópk�1q �∆
pk�1q

.

Proof. By Proposition 9.1, it is enough to prove it for H � pT pV q,mconc,∆q.
Let n ¥ 1 and w P V bn.

πpwq �
¸
k¥1

¸
w�w1...wk,
w1,...,wk�1

p�1qk�1w

�

���¸
k¥1

¸
w�w1...wk,
w1,...,wk�1

p�1qk�1

��
w
�

�� ¸
I�rn�1s

p�1q|I|

�
w
� δn,1w.
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Here, I represents the places where the word w is cut, where i P rn � 1s
re�ects a cut between the letter i and i�1 of w. Therefore, π is a projection
on V � PrimpT pV qq, which vanishes T pV q� Ó T pV q� �

à
n¥2

V bn.

Remark 9.1. By Takeuchi's formula [30], π � ε is in fact the opposite of the
antipode of pH, Ó,∆q, where by antipode is meant the convolution inverse
of the identity map for the convolution product on linear endomorphisms
induced by the coproduct ∆ and the productÓ. This also follows more ab-
stractly from the implicit de�nition of π acting on H � pT pV q,mconc,∆q by
the equation Id� ε � π � Id or, equivalently, p�π � εq � Id � ε.

Therefore, if pH,m,∆q is a commutative Hopf algebra, cofree as a coalge-
bra, with an extra product Ó such that pH, Ó,∆q is an in�nitesimal bialgebra,
then we can use this map π as projector on PrimpHq. This is the case for
HT . For example,

πp q � , πp q � 0, πp q � � 2 ,

πp q � 0, πp q � 0, πp q � 0,

πp q � � � � ,

πp q � � 3 � 3 � 6 .

This projection induces a commutative B8 structure on PrimpHT q, given
by

xx1 b . . .b xk, y1 b . . .b yly � πppx1 Ó . . . Ó xkqpy1 Ó . . . Ó ylqq,

where x1, . . . , xk, y1, . . . , yl P PrimpHT q. For example,

x , y � πp q � � 2 ,

x b , y � x , b y � πp q � � � � ,

x � 2 , y � x , � 2 y � πp � 2 q � � 2 � � � 4 .

10 Finite topologies: the double bialgebra struc-

ture

In this last section, we take advantage of the fact that the rich combina-
torics of �nite topologies allows to give an alternative calculation of the
canonical (or generalized Eulerian) idempotents to illustrate what concrete
computations can be performed to study changes of bases in commutative
B8-algebras.
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The Hopf algebra HT also has a second coproduct δ, de�ned with the
help of the following notions [11]. Let us consider a �nite topology T , on a
set E, associated to the quasi-order ¤T . Let � be an equivalence relation
on E.

1. T |� is the topology associated to the quasi-order ¤T |� de�ned on E
by

x ¤T |� y ðñ x ¤T y and x � y.

2. T { � is the topology associated to the quasi-order ¤T {� de�ned as the
transitive closure of the relation de�ned on E by

xRy ðñ x ¤T y or x � y.

3. We shall say that �P EcpT q if:

� The connected components of T |� are the equivalence classes of
�.

� The relation �T {� associated to the quasi-order ¤T {� is �.

The coproduct δ sends any �nite topology T to

δpT q �
¸

�PEcpT q

T { � bT |� .

For example,

δp q � b ,

δp q � b � 2 b ,

δp q � b � 2 2 b � 3 b ,

δp q � b � 2 b ��
2

b � 3 b ,

δp q � b � 2
2

b � 3 b .

The counit εδ of this coproduct sends any �nite topology T to 1 if T is
discrete (that is to say if ¤T��T ) and to 0 otherwise. Then pHT ,m,∆, δq
is a double bialgebra, that is to say:

1. pHT ,m, δq is a commutative bialgebra.

2. pHT ,m,∆q is a commutative bialgebra in the category of right pHT ,m, δq-
comodules with the coaction δ, or in a more detailed version:

� ∆ : HT ÝÑ HT bHT is a comodule morphism, that is to say

p∆b Idq � δ � m1,3,24 � pδ b δq �∆,

where m1,3,24ph1 b h2 b h3 b h4q :� h1 b h3 bmph3 b h4q.
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� The counit ε∆ : HT ÝÑ K is a comodule morphism, that is to
say

@x P HT , pε∆ b Idq � δpxq � ε∆pxq1.

For conilpotent double bialgebras, it is possible to obtain the generalized
Eulerian idempotent from a single in�nitesimal character λ:

Proposition 10.1. Let pH,m,∆, δq be a double bialgebra, such that pH,∆q
is conilpotent. We consider the map λ : H ÝÑ K, de�ned by λp1q � 0 and
for any x P H�,

λpxq �
8̧

k�1

p�1qk�1

k
εbk
δ �∆kpxq.

Then the generalized Eulerian idempotent of pH,m,∆q is given by

e � pλb Idq � δ.

Proof. See [12].

In the case of �nite topologies, it is possible to inductively compute this
in�nitesimal character:

Proposition 10.2. Let T be a �nite topology, associated to the quasi-order
¤T on the set E. We denote by minpT q the set of classes of �T which are
minimal for the order ¤T . We de�ne ΥpT q P ZrX,X�1s by the following:

ΥpT q �

$'&'%
1

X
if T � 1,¸

H�I�minpT q

XΥpT|EzIq otherwise.

Then, for any nonempty �nite topology T , ΥpT q P ZrXs and

λpXq �

» 0

�1
ΥpT qptqdt.

Proof. Let T be a nonempty �nite topology, associated to the quasi-order
¤T . Then

λpT q �
8̧

k�1

p�1qk�1

k

¸
f :E↠rks,

x¤T yùñfpxq¤fpyq

εδpT|f�1p1qq . . . εδpT|f�1pkqq

�
8̧

k�1

¸
f :E↠rks,

x T yùñfpxq fpyq,
x�T yùñfpxq�fpyq

p�1qk�1

k
.
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We then put, for any �nite topology T on a set E,

ΥpT q �
8̧

k�0

¸
f :E↠rks,

x T yùñfpxq fpyq,
x�T yùñfpxq�fpyq

Xk�1, (7)

Note that by convention, Υp1q �
1

X
. Then

λpT q �

» 0

�1
ΥpT qptqdt.

Let f : E ↠ rks be such that for any x, y P E such that x  T y, then
fpxq   fpyq and for any z, t P E such that z �T t, then fpzq � fptq. Then
f�1p1q is a nonempty subset of minpT q, and we obtain that

ΥpT q �
¸

H�I�minpT q

8̧

k�1

¸
f :EzIÝÑt2,...,ku,

x T yùñfpxq fpyq
x�T yùñfpxq�fpyq

Xk�2�1

�
¸

H�I�minpT q

¸
H�I�minpT q

XΥpP|EzIq,

which allows to compute ΥpT q by induction on the number of vertices.

Example 10.1.

Υp q � 1, Υp q � 2X � 1, Υp q � 6X2 � 6X � 1,

Υp q � X, Υp q � Υp q � 2X2 �X, Υp q � X2,

Υp q � 3X2 � 2X,

and consequently

λp q � 1, λp q � 0, λp q � 0,

λp q � �
1

2
, λp q � λp q �

1

6
, λp q � �

1

3
,

λp q � 0,
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which �nally gives, for e and for the canonical π-idempotent:

ep q � , π � ep q � ,

ep q � �
1

2
, π � ep q � �

1

2
,

ep q � � �
1

6
, π � ep q �

1

6
� �

1

2
�

1

2
,

ep q � � �
1

6
, π � ep q �

1

6
� �

1

2
�

1

2
,

ep q � � �
1

3
, π � ep q �

1

3
� � .

Here are the values of λ on connected posets of order 4 (it is zero on non
connected posets):

T , , , , , ,

λpT q 0 �
1

12
�
1

6
�
1

4

Here are a few examples of order 5:

λp q � �
1

30
, λp q �

1

12
, λp q �

3

20
.

Let us now give two families of examples.

Proposition 10.3. 1. For any n ¥ 1, the nth ladder is the �nite topology
associated to the poset prns,¤q:

l1 � , l2 � , l3 � , l4 � , l5 � . . .

If n ¥ 1, then Υplnq � Xn�1 and λplnq �
p�1qn�1

n
.

2. For any n ¥ 1, we write

Υp nq �
n�1̧

k�0

sn,kX
k.

Then sn,k is the number of surjective maps from rns to rk � 1s. In
particular, sn,n�1 � n! and sn,0 � 1.
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Proof. We use the de�nition of Υ given by (7). For ln, indexing the vertices
from the root to the leaf, the unique surjective map to be taken in account
in the sum de�ning Υplnq is Idrns. For n, all surjective maps have to be
taken into account.

Corollary 10.4. For any n ¥ 2, let us denote by cn the nth corolla, that is
to say the �nite topology on rns given by

tI | I � rn� 1su Y trnsu.

Graphically,

c2 � , c3 � , c4 � , c5 � . . .

Then, for any n ¥ 2,

λpcnq �
n�2̧

k�0

sn�1,k
p�1qk�1

k � 2
.

Proof. As cn has a unique minimal element,

Υpcnq � XΥp n�1q �
n�2̧

k�0

sn�1,kX
k�1.

The results then follows by integration between �1 and 0.

Moreover, due to the form of δplnq and δpcnq, we let the reader check
that

Corollary 10.5. For any n ¥ 2,

eplnq �
ņ

k�1

¸
n�i1�...�ik,
i1,...,ik¥1

p�1qk�1

k
li1 . . . lik

�
¸

1i1�...�nin�n

p�1qi1�...�in�1pi1 � . . .� in � 1q!

i1! . . . in!
li11 . . . l

in
n ,

epcnq �
n�1̧

i�0

�
n� 1

i



λpcn�iq

icn�i,

where by convention c1 � .
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