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Introduction

The purpose of the present article is to show a structure theorem for commutative B V -algebras, that is commutative Hopf algebras that are cofree as graded, connected coalgebras. Namely, we

show that any such Hopf algebra is canonically isomorphic to a shue Hopf algebra pTpV q, ¡,∆q, where V is a vector space, T pV q the associated graded vector space of tensors over V , ¡ the shue product and ∆ the deconcatenation coproduct. The canonical isomorphic can be described explicitly (Thm 4.3). Such a structure (or rigidity) theorem is relatively surprising as B V - algebras and other related up to homotopy algebraic notions were rst introduced in homotopy algebra as deformations of classical structures (recall that the shue Hopf algebra pTpV q, ¡,∆q is the fundamental object in the modern approach to free Lie algebras [START_REF] Ch | Free Lie algebras[END_REF]), and there was at our knowledge no reason why such deformations should be trivial that is, induced by an isomorphism. Notice that our results also generalize a classical theorem in Lie theory and the theory of combinatorial Hopf algebras: Homan's isomorphism, relating shue and quasi-shue algebras 1 .

Let us survey briey more precisely the context of these results. A classical and fundamental theorem by C. Malvenuto in the theory of free Lie algebras, symmetric group representations and symmetric functions asserts that the dual of the Hopf algebra of descents in symmetric groups, also known as the dual of the Hopf algebra of noncommutative symmetric functions, is isomorphic to the Hopf algebra of quasi-symmetric functions [START_REF] Malvenuto | Produits et coproduits des fonctions quasi-symétriques et de l'algèbre des descentes[END_REF][START_REF] Malvenuto | Duality between quasi-symmetrical functions and the solomon descent algebra[END_REF]. This isomorphism generalizes to an isomorphism (of Hopf algebras) between the shue algebra and the quasi-shue algebra of words over a graded commutative semi-group. This last isomorphism is known as Homan's isomorphism [START_REF] Homan | Quasi-shue products[END_REF].

1 Shue and quasi-shue products can be commutative (as usually in Lie theory) or not (as usually in algebraic topology). In the present article they will be always commutative and we write therefore systematically shue product and quasi-shue product for commutative shue product and commutative quasi-shue product.

Quasi-shue algebras can be used to encode certain relations between multi-zeta values and generalizations of them, see [START_REF] Homan | Quasi-shue products revisited[END_REF][START_REF] Michael | Quasi-shue algebras and applications[END_REF] for a review on this topic. They play a prominent role in the study of Rota-Baxter algebras [START_REF] Guo | An introduction to Rota-Baxter algebra[END_REF][START_REF] Guo | Baxter algebras and shue products[END_REF][START_REF] Ebrahimi | Mixable shues, quasi-shues and Hopf algebras[END_REF]. For completeness sake, recall also that the Homan isomorphism is used not only in combinatorics and algebra as it has for example applications also in stochastics, where it allows to better understand the equivalence between Itô and Stratonovich integrals, resp. solutions of stochastic dierential equations (Itô calculus being encoded by quasishue algebras and Stratonovich's by shue algebras) [START_REF] Ebrahimi-Fard | Flows and stochastic taylor series in Itô calculus[END_REF][START_REF] Ebrahimi-Fard | The exponential Lie series for continuous semimartingales[END_REF]. In a joint article with J.-Y. Thibon, we investigated and classied more generally natural deformations of the shue Hopf algebra structure ShpAq which can be dened on the space of tensors over a commutative algebra A (where natural means functorial) [START_REF] Foissy | Deformations of shues and quasi-shues[END_REF].

In another direction, together with C. Malvenuto, we investigated commutative B V structures in the context of nite topologies (or, equivalently, preorders) and their links with shue Hopf algebras, introducing and featuring in particular the notion of Schur-Weyl categories of bialgebras [START_REF] Foissy | Innitesimal and B-innity algebras, nite spaces, and quasi-symmetric functions[END_REF]. This notion of commutative B V -algebra is a far reaching generalization of shue and quasi- shue Hopf algebras of words over a commutative semi-group. The fact that such structures appear very naturally (but in a non straightforward way) in the context of nite topologies and ordered structures provides, together with the homotopical algebra origin of these notions in [START_REF] Getzler | Operads, homotopy algebra and iterated integrals for double loop spaces[END_REF],

further evidence for their naturalness.

The present article pushes the existing analyses one step forward by showing that an arbitrary commutative B V -algebra is always isomorphic as a Hopf algebra to a shue Hopf algebra of words. As the notion of commutative B V -algebra generalizes the two notions of shue Hopf al- gebra and quasi-shue Hopf algebra of words over a commutative semi-group, our results extend in particular the Malvenuto and Homan isomorphisms and also provide a new understanding of them.
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Cofree coalgebras

Recall rst some denitions and elementary properties of coalgebras. Details and proofs can be found in [START_REF] Cartier | Classical Hopf algebras and their applications[END_REF], especially [1, Sect. 2.13 Graded and Conilpotent Coalgebras]. All vector spaces are dened over a ground eld K of characteristic 0.

A graded vector space is a vector space decomposing as a direct sum V À nN V n . It is reduced if V 0 0. A graded vector space is locally nite dimensional if all the V n are nitedimensional vector spaces. The graded dual of a graded vector space is the graded vector space

V ¦ À nN V ¦ n , where V ¦
n stands for the dual of V n . It is locally nite dimensional when V is such. The tensor product of two graded vector spaces is dened by V W À nN pV W q n , where pV W q n : À p qn

V p W q . The ground eld K identies with the graded vector space, still written K, with only one non zero component, K 0 K. It is the unit of the tensor product (V K V V K).

A ltered vector space is a vector space V equipped with an increasing ltration by subspaces

V 0 V 1 ¤ ¤ ¤ V n ¤ ¤ ¤ , such that V nN V n .
The tensor product of two ltered vector spaces is dened by requiring pV W q n : °i jn V i W j . Each graded vector space V is canonically ltered: writing F for the functor from graded to ltered vector spaces, F V n : À p¤n V p . We will be mostly interested in the present article in Hopf algebras that are ltered as algebras (in the sense that the product map is a map of ltered vector spaces) and graded as coalgebras.

A graded coalgebra is a coalgebra in the tensor category of graded vector spaces. That is, graded coalgebras and other graded structures are dened as usual except for the fact that structure morphisms, for example the coproduct ∆ of a graded coalgebra C, has to be a morphism of graded vector spaces, so that

∆ : C n Ñ à p qn C p C q .
The counit map from C to K, that we will write ε (or ε C if we want to emphasize what is the underlying coalgebra) has to be null map except in degree 0. A graded coalgebra C is connected if C 0 K; for such a coalgebra, ΓpCq t1u, where ΓpCq stands for the set of group-like elements in C, that is ΓpCq : tc C, c 0 and ∆pcq c cu.

Denition 2.1. The category FgCoalg of ltered-graded coalgebras is the category whose objects are graded coalgebras and the set of morphisms between two graded coalgebras C and D the set of ltered vector spaces morphisms of coalgebras from C to D.

That is, a morphism of ltered-graded coalgebras from C to D is a morphism ϕ of coalgebras such that ϕpC n q À p¤n D p for any n N. Let now pC, ∆, εq be a coaugmented coalgebra with coaugmentation η : K Ñ C (a coaugmentation is a map of coalgebras from the ground eld to C, where the ground eld is equipped with the identity coproduct: K K K). The coaugmentation is a section of the projection ε to the ground eld and one has the decomposition C C K, where C : Kerpεq. Notice that a graded connected coalgebra is canonically coaugmented: its coaugmentation is the isomorphism between the ground eld and the degree 0 component of the coalgebra. In general, for a coaugmented coalgebra one can dene the reduced coproduct from C to C C by ∆pcq : ∆pcq ¡ c 1 ¡ 1 c.

The iterated reduced coproduct from C to Cn 2 is inductively dened by

∆n 2 : p ∆ Id n C q ¥ ∆n 1 , with ∆2 : ∆. Let F n : Ker p∆ n 1 q C. Notice that ∆n 2 p ∆ Id n C q ¥ ∆n 1 implies F n F n 1 . Lemma 2.2. The coproduct ∆ and the coalgebra C are called conilpotent if C n F n , that is
if for every c C there exists an integer n ¥ 2 such that ∆ n pcq 0. When the coalgebra C is graded and connected, the coproduct is automatically conilpotent.

Proof. Indeed, when C is graded connected, C0 0. As ∆k : Cn Ñ À

i 1 ¤¤¤ i k n Ci 1 . . . Ci k , the iterated coproduct ∆ k , k ¥ 2, vanishes on C n for 1 ¤ n ¤ k ¡ 1.
Let now V be a vector space over K. We denote by T pV q : V À n0

V n the tensor gebra of V , and use the word notation for tensors (that is, v 1 . . . v n will stand for v 1 ¤ ¤ ¤ v n ). The tensor gebra is graded: the degree of a word w is its length ℓpwq, that is, the number of its letters.

We use the terminology of [START_REF] Cartier | Classical Hopf algebras and their applications[END_REF] and call gebra a vector space that can be equipped with several algebraic structures this allows in particular to avoid calling tensor algebra the vector space T pV q without equipping it with the algebra structure obtained from the concatenation product of words.

We instead equip the tensor gebra with the deconcatenation coproduct, that makes it, together with the canonical projection ε to K V 0 , a graded (counital, conilpotent, connected, coassociative) coalgebra: for any v 1 , . . . , v n V , with n ¥ 0,

∆pv 1 . . . v n q n i0 v 1 . . . v i . . . v i 1 . . . v n .
We write T pV q : V À n1

V n for T pV q. It is equipped with the (coassociative but not counital) reduced deconcatenation coproduct: for any v 1 , . . . , v n V , with n ¥ 1,

∆pv 1 . . . v n q n¡1 i1 v 1 . . . v i . . . v i 1 . . . v n .
The following Lemma justies the introduction of the category of ltered-graded coalgebras.

Lemma 2.3. Let C be graded connected coalgebra and ϕ be a morphism of coalgebras from C to pTpV q, ∆q. Then, ϕ is a morphism of ltered graded coalgebras (that is,

ϕpC n q F T pV q n n À k0 V k ).
Proof. As ϕ is a coalgebra morphism between connected coalgebras, pϕ ϕq ¥ ∆ ∆ ¥ ϕ, which implies that for any n N, ϕ pn 1q ¥ ∆ n ∆ n ¥ ϕ. Therefore, ϕpKerp∆ n 1 qq Kerp∆ n 1 q, and it is an easy exercise to show that in T pV q, Kerp∆ n 1 q F T pV q n . Moreover, in C, by connectivity, C n Kerp∆ n 1 q, and nally ϕpC n q F T pV q n . Denition 2.4 (Cofree ltered-graded coalgebras). Let V be a vector space. A cofree lteredgraded coalgebra over V is a connected graded coalgebra C such that C 1 V and such that for each connected graded coalgebra D, any vector space morphism ϕ from D to V lifts uniquely to a morphism Φ of coalgebras from D to C in FgCoalg.

As usual for cofree objects, any two cofree ltered-graded coalgebras over V are isomorphic (by a unique isomorphism). This justies to call (slightly abusively) any cofree graded coalgebra over V , the cofree graded coalgebra over V . Lemma 2.5. The tensor gebra over V , equipped with the deconcatenation coproduct ∆ is a cofree ltered-graded coalgebra over V . With our previous notation, the morphism Φ from D to T pV q is obtained as

ε ņ¥1 ϕ n ¥ ∆n .
This follows from the fact that T pV q is a cofree conilpotent coalgebra (see e.g. [1, Exercise 2.13.3, Remark 2.13.1]) and that graded connected coalgebras are conilpotent. The simplest way to understand and prove the Lemma and the formula for Φ is by dualizing the statement and using the fact that the tensor gebra equipped with the concatenation product of words is a free associative algebra. Given indeed a map ϕ ¦ from the dual of V , V ¦ , to the projective

limit of vector spaces ¤ ¤ ¤ Ñ F D ¦ n 1 Ñ F D ¦ n Ñ ¤ ¤ ¤ Ñ F D ¦ 1 , where F D ¦ n D ¦ 1 ¤ ¤ ¤ D ¦ n and
D ¦ is a graded connected algebra, this map uniquely extends to an algebra map from

T pV ¦ q to D K ± nN ¦ D ¦
n , the completion of the graded dual of D with respect to its canonical ltration.

This algebra map ξ is given as usual on T pV ¦ q by ξpv ¦

1 ¤ ¤ ¤ v ¦ n q : ϕ ¦ pv ¦ 1 q ¤ ¤ ¤ ϕ ¦ pv ¦ n q,
which is dual to the formula for Φ in the Lemma. The fact that D ¦ is a graded algebra insures that ξ is well-dened (as the degree p component of ϕ ¦ pv 1 q ¤ ¤ ¤ ϕ ¦ pv n q is obtained as the sum of a nite number of terms, for any p).

3 B 

-algebras

The notion of B V -algebra was rst introduced by Getzler and Jones in [7] (for cochain com- plexes their denition extends to other tensor categories, we consider here B V -algebras in the category of vector spaces). We survey here the fundamental denitions and properties, using systematically the properties of cofree coalgebras.

A B V -algebra structure on a vector space V is equivalent to the denition of a Hopf algebra structure on the coalgebra pTpV q, ∆q (see Proposition 3.5 below). As T pV qTpV q is a connected graded coalgebra, by Lemma 2.3, the coproduct ∆, which is a map of coalgebras, necessarily respects the ltrations: ∆pT n pV q T m pV qq À k¤n m T k pV q. In particular, structure theorems obtained in the previous section for coalgebras in FgCoalg apply to B V -algebras. More specif- ically, the product map from T pV q T pV q to T pV q is entirely characterized by its projection to the subspace V . This observation and the application of Lemma 2.5 lead to the Lemma: Lemma 3.1. Let ¦ : T pV q T pV q ÝÑ T pV q be a coalgebra map. We dene x¡, ¡y : T pV q

T pV q ÝÑ V by xv 1 . . . v k , v k 1 . . . v k l y π V pv 1 . . . v k ¦ v k 1 . . . v k l q
, where π V : T pV q ÝÑ V is the canonical surjection.

Then, 1 ¦ 1 1 and for any words w, w I T pV q,

w ¦ w I V ķ1 ww 1 ...w k , w I w I 1 ...w I k xw 1 , w I 1 y . . . xw k , w I k y. ( 1 
)
Note that in the sum, the words w i or w I j can be empty (in what case w i and w I j stand for 1 in the terms xw i , w I i y or xw j , w I j y).

Moreover, (

w ¦ 1 V ķ1 ww 1 ...w k xw 1 , 1y . . . xw k , 1y. (2 
Proof. As ¦ is a coalgebra map, it maps 1 1, the unique group-like element in T pV q T pV q, to 1, the unique group-like element in T pV q. The Lemma follows then from Lemma 2.5: ¦ is entirely characterized by x¡, ¡y : π V ¥ ¦, and applying the formula expressing ¦ in terms of x¡, ¡y yields to Eqs (1,2,3). Lemma 3.2. With the same notation, the product ¦ is unital, with unit 1 if, and only if, x¡, 1y x1, ¡y π V .

Proof. The assertion follows from the denitions of π V , x¡, ¡y and Eqs (2,3).

We assume from now on that the product ¦ is unital, with unit 1.

Lemma 3.3. With the same notation, 1. the product ¦ is associative if, and only if, for any w, w I , w P T pV q, xw, w I ¦ w P y xw ¦ w I , w P y.

2. It is commutative if, and only if, for any w, w I T pV q, xw, w I y xw I , wy.

Proof. As the product is a map of coalgebra, so are the maps ¦ ¥ pId ¦q and ¦ ¥ p¦ Idq from T pV q 3 to T pV q. They are therefore entirely characterized by the composition with π V and associativity follows from

π V ¥ p¦ ¥ pId ¦qq π V ¥ p¦ ¥ p¦ Idqq.
The second assertion is proved similarly, noticing that the twist map w w I Ñ w I w is a morphism of coalgebras.

Denition 3.4. A B V -structure on V is a map x¡, ¡y : T pV q T pV q ÝÑ V , such that:

For any word v 1 . . . v n T pV q, x1, v 1 . . . v n y xv 1 . . . v n , 1y 5 
v 1 if n 1, 0 otherwise.
For any words w, w I , w P T pV q, xw, w I ¦ w P y xw ¦ w I , w P y, where ¦ is dened by

w ¦ w I V ķ1 ww 1 ...w k , w I w I 1 ...w I k xw 1 , w I 1 y . . . xw k , w I k y. ( 4 
)
We shall say that x¡, ¡y is commutative if for any w, w I T pV q, xw, w I y xw I , wy.

A B V -algebra (resp. commutative) is a vector space V equipped with a B V -structure (resp. commutative).

Proposition 3.5. Let P pV q be the set of products ¦ on T pV q making pTpV q, ¦, ∆q a bialgebra and by B V pV q the set of B V structures on V . The following map is a bijection:

Θ : 4 P pV q ÝÑ B V pV q ¦ Þ ÝÑ π V ¥ ¦.
Denoting by P c pV q the set of commutative products on T pV q making pTpV q, ¦, ∆q a bialgebra and by B c

V pV q of commutative B V structures on V , Θ induces a bijection from P c pV q to B c V pV q. Proof. As 1 is the unique group-like of T pV q, it is necessarily the unit for the product ¦. By Lemmas 3.1, 3.2 and 3.3, Θ is well-dened. If ¦ P pV q, then it is a coalgebra morphism from T pV q T pV q to T pV q. By Lemma 2.5, Θ is injective.

Conversely, let x¡, ¡y in B V pV q. The product ¦ associated to it by ( 1) is a coalgebra map. It is associative by Lemma 3.3 and has 1 for a unit: ¦ P pV q, and Θp¦q x¡, ¡y. Thus, Θ is a bijection.

By the last item of Lemma 3.3, ΘpP c pV qq B c V pV q. Example 3.1 (Shue and quasi-shue Hopf algebra). Let ¤ be an associative, not necessarily unitary, product on V . We extend it as a B V -structure on V by putting, for any words w, w I T pV q, xw, w I y 6 9 9 9 9 9 9 8 9 9 9 9 9 9 7 0 if w w I 1, w I if w 1 and ℓpw I q 1, w if ℓpwq 1 and w I 1, w ¤ w I if ℓpwq ℓpwq I 1, 0 otherwise, where ℓpwq stands for the length of the word w. The associated product on T pV q is called the quasi-shue product . It is commutative, if, and only if, ¤ is commutative. In the particular case where ¤ 0, we obtain the shue product ¡.

The quasi-shue product is classically inductively dened by the equations v 1

1 v v and v 1 . . . v k v k 1 . . . v k l : v 1 pv 2 . . . v k v k 1 . . . v k l q v k 1 pv 1 . . . v k v k 2 . . . v k l q pv 1 ¤ v k 1 qpv 2 . . . v k v k 2 . . . v k l q, which restricts to v 1 . . . v k ¡ v k 1 . . . v k l : v 1 pv 2 . . . v k ¡ v k 1 . . . v k l q v k 1 pv 1 . . . v k ¡ v k 2 . . . v k l q,
for the shue product. See e.g. [START_REF] Homan | Quasi-shue products[END_REF][START_REF] Foissy | Deformations of shues and quasi-shues[END_REF] for details on shue and quasi-shue algebras and their relationships, to be generalized below in the present article.

Remark 3.1. Equation ( 4) can be rewritten in this way:

for any v 1 , . . . , v k l V , v 1 . . . v k ¦ v k 1 . . . v k l k l
ņ1 σ:rk ls↠rns, σp1q¤...¤σpkq, σpk 1q¤...¤σpk lq xv σ ¡1 p1q y . . . xv σ ¡1 pnq y, with the following notation: if I ti 1 , . . . , i q u rns, with i 1 . .

. i p ¤ k i p 1 . . . i q , v I v i 1 . . . v ip v i p 1 . . . v iq . 4 
The structure of commutative B 8 -algebras

Recall rst that the eulerian idempotents are elements in the symmetric group algebras QpS n q given by: σ Sn

p¡1q dpσq n ¢ n ¡ 1 dpσq ¡1 σ,
where S n stands for the nth symmetric group and dpσq for the number of descents of a permutation (the number of i n such that σpiq ¡ σpi 1q). They are also called canonical projections (in the tensor algebra), Solomon idempotents, Barr idempotents. . . They are studied in detail in [START_REF] Ch | Free Lie algebras[END_REF].

One of the key properties of these idempotents is that they project the tensor (the free associative) algebra T pV q over a vector space V to the free Lie algebra over V according to the decomposition of T pV q induced by the Poincaré-Birkho-Witt theorem. This idea was generalized to arbitrary graded connected cocommutative or commutative Hopf algebras H in the second author PhD thesis [17, Th. I,5,6 and Th. I,6,4], see also [START_REF] Patras | La décomposition en poids des algèbres de Hopf[END_REF][START_REF]L'algèbre des descentes d'une bigèbre graduée[END_REF]. However, the constructions and proofs in these references only require the Hopf algebras to be unipotent (a weaker hypothesis than being graded connected, it is the one suited for the forthcoming study of commutative B V -algebras) this observation was developed systematically in [1, Chap. 4], to which we refer.

In the cocommutative case, these generalized canonical idempotents project on the primitive part of the Hopf algebra; in the commutative case, which is the one interesting for us here, they project onto a (canonically constructed) vector space QpV q that freely generates H as a commutative algebra, orthogonally to the square of H , the augmentation ideal of H. It is important for what follows to notice that these generalized idempotents cannot be constructed in general as elements of the symmetric group algebras. In particular they are not directly governed by the statistics of descents in symmetric groups the very reason for the name eulerian idempotents used in the classical case.

A Hopf algebra in P c pV q is not graded connected in general (since it is not graded as an algebra), but it is conilpotent as a coalgebra (by Lemma 2.2), which is enough to insure that it is unipotent as a commutative Hopf algebra, so that the structure theorems just mentioned apply (see in particular [1, Thm 4.4.1]). They imply in particular the following result, that we state as a Theorem in view of its importance for the structure of commutative B V algebras: Then e ¦ is a projector, vanishing on T pV q ¦ T pV q, and for any v V , e ¦ pvq v. Moreover, the image of e ¦ freely generates pTpV q, ¦q as a commutative algebra. Proposition 4.2. We set ϖ ¦ : π V ¥ e ¦ and call ϖ the canonical commutative B V idempotent.

It acts as the identity map on V and sends any non-empty word w to

ϖ ¦ pwq V ķ1 ww 1 ...w k , w 1 ,...,w k $r p¡1q k¡1 k xw 1 , w 2 ¦ . . . ¦ w k y.
Proof. The map ϖ ¦ is indeed an idempotent since π V is an idempotent and e ¦ ¥ π V π V .

The explicit formula follows from the formula for e ¦ in Thm 4.1 and the observation that, since xw, w I y π V pw ¦ w I q,

π V pw 1 ¦ w 2 ¦ . . . ¦ w k q π V pw 1 ¦ pw 2 ¦ . . . ¦ w k qq xw 1 , w 2 ¦ . . . ¦ w k y. Example 4.1. Let v 1 , v 2 , v 3 V . ϖ ¦ pv 1 q v 1 , ϖ ¦ pv 1 v 2 q ¡ 1 2 xv 1 , v 2 y, ϖ ¦ pv 1 v 2 v 3 q ¡ 1 2 pxv 1 v 2 , v 3 y xv 1 , v 2 v 3 yq 1 3 xv 1 , v 2 v 3 v 3 v 2 xv 2 , v 3 yy. Theorem 4.3. Let x¡, ¡y B c
V pV q. The associated product Θ ¡1 px¡, ¡yq on T pV q given by ( 4) is denoted by ¦.

Let us then dene H ¦ : 6 9 9 9 9 8 9 9 9 9 7

T pV q ÝÑ T pV q 1 Þ ÝÑ 1, w T pV q Þ ÝÑ V ķ1 ww 1 ...w k , w 1 ,...,w k $r ϖ ¦ pw 1 q . . . ϖ ¦ pw k q.
Then H ¦ is a bialgebra isomorphism from pTpV q, ¦, ∆q to pTpV q, ¡,∆q.

Proof. Let us notice rst that H ¦ is a coalgebra morphism: it is indeed the unique coalgebra morphism from pTpV q, ∆q to pTpV q, ∆q induced by the map ϖ ¦ from T pV q to V by Lemma 2.5.

Furthermore, as ϖ ¦ acts as the identity map on V , for any word w of length n ¥ 2, H ¦ pwq w l.o.t., where l.o.t. stands for lower order terms: a linear combination of words of length n.

By a standard triangularity argument, H ¦ is invertible and a coalgebra isomorphism.

It remains to prove that H ¦ is an algebra morphism, that is H 1 H 2 , where

H 1 : ¡ ¥ pH ¦ H ¦ q,
H 2 : H ¦ ¥ ¦. As both are coalgebra morphisms from T pV q 2 to T pV q, it is actually enough to show that

π V ¥ H 1 π V ¥ H 2 . Let w, w I T pV q. As 1 ¦ 1 1 ¡ 1 1, π V ¥ H 1 p1 1q π V ¥ H 2 p1 1q 0. H 1 p1 w I q 1 ¡ H ¦ pw I q H ¦ pw I q, whereas H 2 p1 w I q H ¦ p1 ¦ w I q H ¦ pw I q. Conse- quently, π V ¥ H 1 p1 w I q π V ¥ H 2 p1 w I q. Similarly, π V ¥ H 1 pw 1q π V ¥ H 2 pw 1q.
As H ¦ pT pV qq T pV q, H 1 pw w I q T pV q ¡ T pV q, so is a linear span of words of length at least 2: π V ¥ H 1 pw w I q 0. On the other side, it follows from the denition of H ¦ that π V ¥ H ¦ pwq ϖ V pwq and we get π V ¥ H 2 pw w I q π V ¥ H ¦ pw ¦ w I q ϖ V pw ¦ w I q π V ¥ e ¦ pw ¦ w I q 0, as e ¦ vanishes on T pV q ¦ T pV q. This concludes the proof that π V ¥ H 1 π V ¥ H 2 : the map H ¦ is an algebra and a bialgebra isomorphism.

Remark 4.1. In the quasi-shue case, this simplies. Indeed, given two non empty words w and w I , xw, w I y vanishes excepted when w and w I are both of length 1. Therefore, using also that the quasi-shue product of two words of length p and q is a linear combination of words of length at least maxpp, qq, we get:

ϖ ¦ pv 1 . . . v n q p¡1q n¡1 n xv 1 , v 2 . . . v n y. p¡1q n¡1 n xv 1 , v 2 ¤ . . . ¤ v n y p¡1q n¡1 n v 1 ¤ v 2 ¤ . . . ¤ v n ,
and we obtain that for any v 1 , . . . , v n V , with n ¥ 1,

ϖ ¦ pv 1 . . . v n q p¡1q n¡1 n v 1 ¤ . . . ¤ v n .
Applying Theorem 4.3, we recover the Homan logarithmic isomorphism from pTpV q, , ∆q to pTpV q, ¡,∆q [START_REF] Homan | Quasi-shue products[END_REF]. 

T pV q ÝÑ V v V Þ ÝÑ v, w T n pV q, n ¥ 2 Þ ÝÑ ζpwq ¡ n ķ2 ww 1 ...w k , w 1 ,...,w k $r ϖ ¦ pζpw 1 q . . . ζpw k qq.
Let us then dene E ¦ : T pV q ÝÑ T pV q

1 Þ ÝÑ 1, w T pV q Þ ÝÑ V ķ1 ww 1 ...w k , w 1 ,...,w k $r ζpw 1 q . . . ζpw k q.
Then E ¦ is the bialgebra isomorphism from to pTpV q, ¡,∆q to pTpV q, ¦, ∆q inverse to H ¦ as dened in Proposition 4.3.

Proof. Let us write L ¦ for the inverse isomorphism H ¡1 ¦ to H ¦ . As L ¦ is a endomorphism of the coalgebra pTpV q, ∆q, it is entirely characterized by the map ζ : π V ¥ L ¦ from T pV q to V and L ¦ pwq V ķ1 ww 1 ...w k , w 1 ,...,w k $r ζpw 1 q . . . ζpw k q.

Moreover, as H ¦ ¥L ¦ is the identity map for the coalgebra pTpV q, ∆q, L ¦ is also characterized by the identity π V ¥ H ¦ ¥ L ¦ π V , or, equivalently, (as necessarily L ¦ pvq v for v V ), by the identities ϖ ¦ ¥ L ¦ pwq 0 for w T n pV q, n ¥ 2. We get ϖ ¦ ¤ ¦ ¥ n ķ1 ww 1 ...w k , w 1 ,...,w k $r ζpw 1 q . . . ζpw k q 0, and, as ϖ is the identity map on V and ζpwq V , ζpwq ¡ϖ ¦ ¤ ¦ ¥ n ķ2 ww 1 ...w k , w 1 ,...,w k $r ζpw 1 q . . . ζpw k q .

The Proposition follows.

Remark 4.2. In the quasi-shue case, this simplies again and a closed formula for ζ and E ¦ can be obtained. Indeed, using Remark 4.1, we get in that case the inductive formula ζpwq ¡ n ķ2 ww 1 ...w k , w 1 ,...,w k $r p¡1q k¡1 k ζpw 1 q ¤ . . . ¤ ζpw k q, which, using for example the identity of coecients resulting from the formal power series expansion of the identity log ¥ exppxq x, is solved by

ζpwq 1 n! v 1 ¤ . . . ¤ v n ,
where w v 1 . . . v n T n pV q. Applying Proposition 4.4, we recover Homan's exponential isomorphism from pTpV q, ¡,∆q to pTpV q, , ∆q [START_REF] Homan | Quasi-shue products[END_REF].

We conclude with a remark on the naturality of the constructions presented in the article.

Morphisms of commutative B V -algebras are dened in the obvious way: given pV, x¡, ¡y V q and pW, x¡, ¡y W q two commutative B V -algebras, a linear map f from V to W is a commutative B V morphism if and only if, for any v 1 , . . . , v p q in V , xFpv 1 ¤ ¤ ¤ v p q, F pv p 1 ¤ ¤ ¤ v p q qy W f pxv 1 ¤ ¤ ¤ v p , v p 1 ¤ ¤ ¤ v p q y V q, where F is dened by F pv 1 ¤ ¤ ¤ v i q : f pv 1 q ¤ ¤ ¤ f pv i q.

We put ¦ V Θ ¡1 px¡, ¡y V q and ¦ W Θ ¡1 px¡, ¡y W q and let the reader check that if f is a commutative B V morphism from V to W , F is a bialgebra morphism from pTpV q, ¦ V , ∆q to pTpWq, ¦ W , ∆q. Proposition 4.5. Let pV, x¡, ¡y V q and pW, x¡, ¡y W q be two commutative B V -algebras. Let f : V ÝÑ W be a morphism of B V -algebras. The following diagram is commutative: pTpV q, ¦ V , ∆q F / / H¦ V pTpWq, ¦ W , ∆q H¦ W pTpV q, ¡,∆q F / / pTpWq, ¡,∆q

In other terms, the commutative B V /shue isomorphism is functorial.

Proof. The Proposition directly follows from the denition of the maps H ¦ , ϖ and e ¦ , from the denition of a commutative B V morphism, and the fact that F is a morphism of bialgebras (so that its action commutes in particular with taking products or computing coproducts).

1 y

 1 . . . x1, w I k y.

Theorem 4 . 1 .

 41 Let ¦ P c pV q. The canonical idempotent e ¦ is dened by e ¦ p1q 0 and for any non-empty word w, e ¦ pwq V ķ1 ww 1 ...w k , w 1 ,...,w k $r p¡1q k¡1 k w 1 ¦ . . . ¦ w k .

Proposition 4 . 4 .

 44 Let notation be as in Theorem 4.3. Let us dene inductively ζ (by induction on the length of tensors) by