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Given the lack of frameworks that would allow to capture true competence requirements and not only the presence of certain mathematical practices in written assessment tasks, this paper proposes a new framework for this purpose. The framework combines the aspect of mathematical practices with the idea of acting with insight to closer characterize mathematical competence. A way of operationalising the theoretical ideas is presented. Concrete examples of the application of the operationalisation are provided and challenges with the application are discussed.

Introduction

Today's mathematics curricula in many countries contain different process-oriented constructs besides traditional subject matter descriptions. This development can be traced back to the early 2000s when several groups of experts, independently of each other, made a plea for moving beyond teaching content knowledge and procedural skills. Instead, they emphasised the enactment of mathematics as the main goal of mathematics education [START_REF] Niss | Survey team on: Conceptualisation of the role of competencies, knowing and knowledge in mathematics education research[END_REF]. In the European context, this reform idea was introduced by a Danish group of experts led by Mogens Niss through a notion they labelled mathematical competence (see [START_REF] Niss | Mathematical competencies and the learning of mathematics: The Danish KOM project[END_REF]. At present, mathematical competence is defined as "someone's insightful readiness to act appropriately in response to all kinds of mathematical challenges pertaining to given situations" (Niss & Højgaard, 2019, p. 12). The definition suggests that the enactment of mathematics should occur with a certain quality-with insight-for it to constitute an instance of competence. Thus, there is a fundamental difference between Niss' notion of mathematical competence and the more psychological-or even psychometric-construct of competence. The latter refers to a latent underpinning of any performance [START_REF] Blömeke | Beyond dichotomies: Competence viewed as a continuum[END_REF], whereas mathematical competence in terms of Niss can be seen as the latent underpinning of only such performance that is founded on mathematical understanding.

To further specify the main components of mathematical competence, [START_REF] Niss | Mathematical competencies revisited[END_REF] present eight mathematical competencies that outline different types of practices that are characteristic when doing mathematics, regardless of the content domain. Some examples of competencies are mathematical reasoning, modelling, representing and communicating. Each competency encompasses various practices, each of which serves a specific function. Some practices within the reasoning competency, for instance, are justifying mathematical claims, interpreting chains of reasoning or making conjectures. It should be noted that under certain circumstances, mathematical practices can also be employed mechanically, without insight. This occurs frequently in school mathematics (see e.g., [START_REF] Lithner | A research framework for creative and imitative reasoning[END_REF] and is not an instance of mathematical competency.

In the area of assessment, the role of mathematical competence (or other process-oriented, competence-like constructs) has been investigated especially within the design of written test tasks.

The focus of the previous studies (e.g., [START_REF] Boesen | Assessing mathematical competencies: An analysis of Swedish national mathematics tests[END_REF] has been, above all, on generally describing the mathematical practices that are required to complete test tasks; that is, no attention has been paid to the degree of insightfulness with which the practices may be employed in the tasks. Some studies (e.g., [START_REF] Drüke-Noe | Empirische Untersuchungen zur Aufgabenkultur in Klassenarbeiten neunter und zehnter Klassen im Fach Mathematik [Empirical investigations to task culture within written teacher-made tests in 9th and 10th grade in mathematics[END_REF][START_REF] Siller | Competency level modelling for school leaving examination[END_REF] have also examined on what level different mathematical practices need to be employed in the tasks. All such studies relate their competence levels to cognitive demand, that is, being able to complete test tasks of increasing complexity is seen as an indicator of greater competence. While certainly addressing some relevant aspects of mathematical competence, it is debatable to what extent the previous studies have managed to capture the central aspect of 'acting with insight', as postulated by [START_REF] Niss | Mathematical competencies revisited[END_REF]. The sole focus on the existence of different mathematical practices or on the complexity of these practices does not allow us to determine whether students are truly required to act with insight to obtain a correct solution in the test tasks.

A current project aims to examine to what extent mathematical competence in terms of [START_REF] Niss | Mathematical competencies revisited[END_REF] needs to be activated in written teacher-made tests in Germany, Sweden and Finland. For this aim, both the mathematical practices required by test tasks and the quality with which the practices need to be employed by students will be examined in a theoretical task analysis. As argued above, the latter cannot be achieved by simply drawing on existing competence frameworks. As a first step in the project, a new framework has therefore been developed. This paper presents the framework and introduces the notion of competency-related tools as a part of the framework.

Mathematical competence: What it is and what it is not

Despite being essential for their notion of mathematical competence, [START_REF] Niss | Mathematical competencies revisited[END_REF] themselves do not further elaborate on what it means to act with insight, but rather rely on intuitive understanding of this particular aspect of competence. We draw on [START_REF] Lithner | A research framework for creative and imitative reasoning[END_REF] conceptualization to provide a more precise definition of acting with insight. Lithner describes mental processes of task solving that can either be founded on mathematical understanding or be based on rote learning. In this paper, we will refer to the mental process of task solving as a "solution sequence". In line with Lithner, a solution sequence consists of choosing a strategy in response to a particular task and implementing the strategy to reach a conclusion. Based on a large body of empirical data, Lithner conceptualizes the mental processes of task solving founded on mathematical understanding as solution sequences that are supported by arguments "anchored in intrinsic mathematical properties of the components involved in the reasoning" (2008, p. 266). If the task solving is not supported by understanding, the possible arguments supporting the solution sequence are based on surface properties.

We therefore conclude: acting with insight-and thus mathematical competence-can be closer characterized as action that is supported by arguments that are anchored in intrinsic mathematical properties of the components involved in the situation. This should be distinguished from action that is based on considering only surface properties of tasks or of the mathematical components involved in the situation.

Competencies versus competency-related tools

On the more concrete level of mathematical practices, we refer to mathematical practices employed with insight-in line with [START_REF] Niss | Mathematical competencies revisited[END_REF]-as mathematical competencies and to practices employed without insight as technical tools and competency-related tools learnt by rote. Technical tools generally comprise context-free procedural skills and factual knowledge. Procedural skills refer to "the ability to carry out [emphasis added] well-delineated and well-rehearsed rule-based operations and routines" (Niss et al., 2016, p. 613). Furthermore, factual knowledge contains other fundamental elements that competency-related tools and competencies may build on. For this reason, factual knowledge forms part of technical tools, despite not being a mathematical practice.

Competency-related tools, on the other hand, are well-delineated and well-rehearsed routines with a particular function. They are often more complex encapsulations (see [START_REF] Tall | Reflections[END_REF] of different technical tools and situational knowledge. Therefore, competency-related tools do not merely allow the carrying out of routines as is the case with technical tools; they also enable the adequate choice of routines in familiar situations. For example, if a person has completed plenty of tasks in which extra-mathematical information of a type "maximal height/temperature/volume" gets translated into "maximal value of a mathematical function", then this translation may become a modelling-related tool to the person in question. The function of this tool is to mathematise a specific sort of extramathematical situations.

Given that both technical and competency-related tools are well-rehearsed routines, they are always relative to an individual person. They can also either be based on insight or be a result of rote learning. In the first case, the tools function as mental building blocks that can be flexibly drawn upon and combined in different ways by competencies in a wide array of situations. In the latter case, no mathematical insight is involved and the tools are therefore not available for competencies. As wellrehearsed routines, they can still be applied mechanically and in a limited number of (mostly) familiar situations, the application of the tools learnt by rote may lead to correct solutions.

Assessing mathematical competence based on written task solutions

While the mastering of procedural skills can be demonstrated by simply performing the skills correctly [START_REF] Højgaard | Competencies, skills and assessment[END_REF], a correct solution is a valid indicator of competence only if we can be sure that the solution has been generated by insightful acting. The likelihood for this is considerably higher if the solution sequence required to solve a task is unfamiliar. In the case of familiar solution sequences, both strategy choice and strategy implementation can be conducted with routine, and the solution sequence as a whole can thus be successfully performed mechanically. In written tasks, it is hard to distinguish afterwards whether a routine solution has been produced with or without insight as routine solutions tend to look the same irrespective of the quality of action that produced them. Hence, written tasks with a familiar solution sequence allow to generally identify mastery of technical and competency-related tools, but they cannot provide valid evidence of mathematical competence. If an unfamiliar solution sequence is required to solve a task instead, it is decisive whether insight is necessary to generate the unfamiliar parts of the solution sequence. Certain surface properties of a task or digital tools that are allowed as aid, for example, sometimes facilitate correct superficial solutions even if an unfamiliar solution sequence needs to be created. Hence, we conclude that mathematical competence can be measured validly in written tasks when an unfamiliar solution sequence is required to solve a task and the task does not contain any task features that would enable someone to solve the task correctly based on superficial considerations only. The framework for classifying mathematical competence requirements that results from the considerations in the previous sections can be seen in its entirety in Figure 1. 

Operationalising the framework

Our aim is to theoretically examine whether mathematical competence needs to be activated in written teacher-made tests in different countries by distinguishing mathematical competencies from technical and competency-related tools. Based on the previous sections, therefore need a way of determining which of the tasks in a particular test require the students taking the test to create an unfamiliar solution sequence with insight in order to obtain a correct solution. Whether an unfamiliar solution sequence is required or not is highly dependent on students' prior learning experiences. These are difficult to ascertain in detail from an outsider perspective. For our task analysis, we use an adapted form of a method developed by [START_REF] Palm | Mathematical reasoning requirements in Swedish upper secondary level assessments[END_REF]. In this method, the collective learning experiences of a school class are approximated with the textbook used in the class. According to our experience, teaching and learning in mathematics continues to be strongly guided by the textbook in all of the three countries (Germany, Sweden, Finland) included in our study. Hence, textbooks can still be regarded as acceptable approximations of the actual learning experiences in these countries.

In the method of Palm et al., assessment tasks are compared with textbook tasks to infer whether it is reasonable that students can solve the assessment tasks by imitating familiar solution sequences or whether creating unfamiliar solution sequences is required. The former is assumed to be possible if students can both identify the task type and carry out the necessary procedure with routine. The procedure of task analysis by Palm et al. (steps 1-3), together with our extension (documentation of possible unfamiliar parts of the solution sequence in step 3 and steps 4-5), looks as follows:

1. Analysis of the assessment task: a) Determine possible procedures that can solve the assessment task. b) Describe the task features of the task. 2. Analysis of the textbook: a) Search for textbook tasks that can be solved with the same procedure or other instances in the textbook (worked examples, theory paragraphs) that include the procedure. b) Search for textbook tasks or other instances with similar task features as in the assessment task. 3. Conclusion about the type of solution sequence required to solve the assessment task (familiar -locally unfamiliar -globally unfamiliar). Documentation of possible unfamiliar parts of the solution sequence.

4. Closer analysis of the unfamiliar parts of the solution sequence: are there individual task features or contextual factors that are likely to enable a correct superficial solution? 5. Analysis of the mathematical practices employed in the assessment task.

As relevant task features for the analysis (see steps 1, 2 and 4) [START_REF] Palm | Mathematical reasoning requirements in Swedish upper secondary level assessments[END_REF] mention task assignment, mathematical components provided in the task text and their representation, possible context of the task, linguistic features, explicitly formulated hints and response format. In line with Palm et al., the solution sequence is considered familiar (see step 3) if at least three instances in the textbook both contain the same procedure and exhibit similar task features as in the assessment tasks. Locally unfamiliar solution sequences contain a minor new element, while in globally unfamiliar solution sequences substantial parts of the solution sequence are new. The types of practices examined in our study (see step 5) relate to mathematical modelling, reasoning and operating. As [START_REF] Siller | Competency level modelling for school leaving examination[END_REF] argue, essential parts of school mathematics are covered to large extent by considering these three types of practices. We categorize the mathematical practices into technical tools, competency-related tools or competencies depending on the preceding analysis of the task requirements concerning the quality of action and on the type of the practice.

Examples of classifications of test tasks

In the following, we demonstrate the procedure of the task analysis described in the previous section by analysing two assessment tasks from Finnish upper secondary school calculus.

Task 1. Determine the function f that has a minimum value -7 at 𝑥𝑥 = 3 and a second derivative 𝑓𝑓 ′′ (𝑥𝑥) = 2𝑥𝑥 -2.

1. Analysis of the assessment task: a) Solution: Find the general antiderivative of the second derivative function to obtain 𝑓𝑓 ′ (𝑥𝑥). Repeat the procedure to obtain 𝑓𝑓(𝑥𝑥). Translate the information provided in the task into 𝑓𝑓(3) = -7 and 𝑓𝑓 ′ (3) = 0. Solve the resulting system of equations to determine the constants of integration. b) Task features: The assignment is to determine a function given its second derivative and further characteristics. The mathematical components include a second derivative of a polynomial function, a minimum value and the x-coordinate of the minimum point. A constructed response with an explicit justification of the two equations is required.

Analysis of the textbook: a)

There are four instances in the textbook with the same assignment and the same global solution algorithm. In all four instances the mathematical components are partly different. As a result, the local step of translating the task information into equations in each textbook task differs from the corresponding step in Task 1. b) There are no instances that would exhibit similar task features as Task 1, while needing to be solved with a different global procedure.

Conclusion:

Since the assignment and the global solution algorithm are featured in more than three instances in the textbook, the strategy choice and most parts of the strategy implementation are considered to be familiar. Yet the solution sequence as a whole is regarded as locally unfamiliar in Task 1. The unfamiliar part concerns inferring from the task text that the function passes through (3, -7) and its derivative is zero at 𝑥𝑥 = 3 and translating the information into adequate equations.

Closer analysis of the unfamiliar parts:

The textbook provides only few occasions to practice making similar translations as in Task 1 in other contexts. Thus, it is judged that the students cannot perform these translations mechanically. The task features do not enable a correct superficial solution either; hence, insight is required in the unfamiliar part of the solution sequence in Task 1.

Mathematical practices:

Devising the familiar global strategy for the task corresponds to an operating-related tool. In the unfamiliar part a change of representation (verbal-symbolic) is made and needs to be explicitly justified in the solution. The former corresponds to operating competency and the latter to reasoning competency. The rest of the solution (finding antiderivatives of functions, solving the system of equations) corresponds to the application of technical tools.

Task 2.

At what angle does the graph of the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 3 + 8 intersect the y-axis?

1. Analysis of the assessment task: a) Solution: The task can be solved by determining the angle between the y-axis and the tangent line to the graph at the point of intersection. For that, find the slope of the tangent at the point of intersection. Given that the slope is 0, the tangent line is horizontal. The angle between the graph and the y-axis is therefore 90°. b) Task features: The assignment is to determine the angle between the graph of a function and a line. The mathematical components include a polynomial function, represented in a symbolic form, and the y-axis. There is no more specific context in the task. Possible verbal clues to a solution might be the phrase "at what angle" and the word "intersect". There are no explicitly formulated hints. A short constructed response is required.

Analysis of the textbook:

There are no instances that include the solution described above in its entirety or the y-axis as a mathematical component. There are, however, four instances that clearly contain the same general assignment (determine the angle of intersection) with other mathematical components (e.g., the x-axis and a curve). The algorithm of finding a tangential angle, which can be applied at the beginning of Task 2, constitutes the main part of the solution in all these four instances.

Conclusion:

Given that both the assessment task and more than three instances in the textbook contain the same general task assignment, the strategy choice is considered to be familiar. The first part of the strategy implementation also follows the familiar algorithm. Due to a different mathematical component in Task 2, the y-axis, the familiar algorithm needs to be altered after having determined the slope of the tangent line. This is a minor new element in the solution sequence; hence, Task 2 requires a locally unfamiliar solution sequence.

Closer analysis of the unfamiliar parts:

The chain of reasoning that needs to be carried out in the last part of the task solution (a tangent line with slope 0 is horizontal; thus, the angle between the tangent line and the y-axis is 90°) is unfamiliar in the given context, yet it is judged to be trivial at this stage of schooling. Trivial refers here to the fact that the content knowledge that needs to be drawn on is content that students have met on numerous occasions during the preceding school years. Due to this expanded familiarity, the content knowledge can be applied mechanically in all sorts of situations. Furthermore, digital tools for plotting the graph of the function have been available in the test situation. In the graphical representation, the 90-degree angle between the graph and the y-axis is evident. Thus, the access to the digital tools increases the likelihood of a correct, yet superficial solution in the task. Considering these contextual factors, it is judged that the unfamiliar part of the solution sequence in Task 2 can be successfully carried out even without insight.

Mathematical practices:

Translating the task text into the form "find the tangential angle at the point of intersection" corresponds to the application of an operating-related tool that serves the function of devising a strategy. Carrying out the succeeding algorithm to determine the slope of the tangent corresponds to the application of a technical tool. The unfamiliar part combines factual knowledge to justify the answer. This corresponds to a reasoning-related tool, given that the justification may occur here without insight.

Discussion

Although the notion of mathematical competence was introduced twenty years ago, the research related to mathematical competence has so far had a one-sided focus on mathematical practices. In our framework for classifying mathematical competence requirements, we have combined the aspect of mathematical practices with the idea of acting with insight, which is a fundamental part of the original notion of mathematical competence posited by [START_REF] Niss | Mathematical competencies revisited[END_REF]. Even if our framework has emerged within the context of classroom assessment, we believe that its terminology contributes to the general discussion about mathematical competence both in the field of research and in school practice. If the goal is to promote mathematical competence in school mathematics, it is essential that we distinguish between actual competence founded on insight and mere application of competency-related tools learnt by rote whenever we plan assessment and teaching.

Moreover, the operationalisation of the framework that we propose offers a new approach to investigating competence requirements in written teacher-made test tasks. Given that this method of task classification takes into account the prior learning experiences of students, the task classification is considerably more time-consuming than the task classifications that are based on previous competence frameworks (see e.g., [START_REF] Drüke-Noe | Empirische Untersuchungen zur Aufgabenkultur in Klassenarbeiten neunter und zehnter Klassen im Fach Mathematik [Empirical investigations to task culture within written teacher-made tests in 9th and 10th grade in mathematics[END_REF][START_REF] Siller | Competency level modelling for school leaving examination[END_REF][START_REF] Boesen | Assessing mathematical competencies: An analysis of Swedish national mathematics tests[END_REF]. However, if we wish to capture true mathematical competence in terms of Niss, then placing the emphasis on insightful acting and consequently paying attention to prior learning experiences is in our eyes the inevitable implication of the definition of mathematical competence. [START_REF] Siller | Competency level modelling for school leaving examination[END_REF] have also noted that the lack of attention to prior learning experiences is a general restriction in their framework and can distort the conclusions about the competence requirements that are drawn from a task analysis.

In order to be able to continue improving the method of task classification presented in this paper, further attention needs to be given to how to determine the degree of familiarity of a task (see step 3). It is often not straightforward to classify a concrete test task as familiar or unfamiliar. It seems clearand is also at least partially shown in empirical studies (see [START_REF] Palm | Mathematical reasoning requirements in Swedish upper secondary level assessments[END_REF]-that the individual task features employed here for the task classification can be used to establish relatedness between two tasks. However, it is unclear how the interaction of different task features affects the perception of relatedness in concrete cases. In the case of Task 2 discussed above, for instance, we assumed that the general task assignment "find the angle of intersection" was likely to be the decisive task feature that would enable students to notice the relatedness of the assessment task to the relevant instances in the textbook. This assumption was based on the fact that the same general task assignment had been a prominent task feature in all tasks somehow related to determining angles of intersection that students had encountered prior to the test. Nevertheless, it is unknown to us whether the different mathematical component in the task (y-axis) also affects students' perception of relatedness and therefore their strategy choice. We have assumed so far that the different mathematical component primarily affects the strategy implementation in this concrete task. To shed more light on the actual effects of interaction of task features in different phases of the task solving process, empirical studies with students would be necessary.
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 1 Figure 1: Framework for classifying mathematical competence requirements in written tasks