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This study examines preservice mathematics teachers' reasoning about conditional probability and Bayes' rule. A multidimensional diagnostic test was developed to estimate the teachers' mastery of four essential skills (i.e., attributes): understanding and applying i. basic probability concepts, ii. conditional probability, iii. Bayes' rule, and iv. dealing with difficulties and biases. The test was administered to a sample of 532 preservice mathematics teachers, and the data was analyzed using the log-linear diagnostic classification model. The analysis showed that while 22.9% of the teachers mastered all four attributes, 11.6% of them failed to master any attribute. Moreover, on average, the preservice teachers' mastery percentages of the four attributes were 66.2, 63.6, 46.5, and 49.8%, respectively. The study also reports the diagnostic quality of the diagnostic test at the item level, mastery classifications, and attribute relationships.

Introduction

Change and chance are omnipresent in everyday life and contribute to uncertainty. Because it allows for quantifying uncertainty within data, probability is regarded as a guide for making reasoned decisions in real-world situations [START_REF] Borovcnik | Reasoning with risk: Teaching probability and risk as twin concepts[END_REF][START_REF] Jones | Research in probability: Responding to classroom realities[END_REF]. Reasoning with conditional probability and Bayes' rule allows individuals to make appropriate on-time improvements in their beliefs, conclusions, or attitudes concerning random events when new information emerges [START_REF] Diaz | University students' knowledge and biases in conditional probability reasoning[END_REF].

Despite its relevance and the research available on students' and teachers' conceptions of probability, we failed to find a comprehensive test that diagnoses conditional probability and Bayesian reasoning of preservice mathematics teachers (PSTs). The available research is primarily based on traditional psychometric models, often using total test scores to assess test-takers' overall knowledge and performance (Bradshaw et al., 2014). Due to the complexity of conditional probability reasoning, these models may not be suitable for explaining test takers' multifaceted characteristics. Therefore, this study expands the assessment of PSTs' conditional probability and Bayes' rule by developing a comprehensive multidimensional diagnostic test. Using this test, we aim to provide cognitive diagnostic feedback on PSTs' strengths and weaknesses in fine-grained knowledge and skills (attributes) essential for conditional probability and Bayes' rule. By identifying the skills that account for conditional probability and Bayesian reasoning and validating these skills with a diagnostic test, we expect to contribute to the body of research on the assessment of probability learning.

This study estimates PSTs' conditional probability reasoning by measuring their mastery of four attributes: Understanding and applying i. basic probability concepts, ii. conditional probability, iii. Bayes' rule, and iv. dealing with difficulties and biases. The following research questions are answered:

1. What are the PSTs' strengths and weaknesses in conditional probability and Bayesian reasoning? 2. What are the item and attribute level characteristics of the diagnostic conditional probability and Bayesian reasoning test?

Assessing conditional probability and Bayesian reasoning

Researchers from different disciplines (e.g., [START_REF] Fischbein | Brief report: The evolution with age of probabilistic, intuitively based misconceptions[END_REF][START_REF] Kahneman | Subjective probability: A judgment of representativeness[END_REF][START_REF] Konold | Informal conceptions of probability[END_REF] have examined students' understanding of the critical probability concepts, the role of using different representations in reasoning about conditional probability and Bayes' rule, and the reciprocity of intuitive reasoning mechanisms and normative meanings of probabilistic thinking. The pertinent literature collectively documents that students struggle to understand probability (Biehler & Pratt, 2012;[START_REF] Zwanch | A preliminary genetic decomposition of probabilistic independence[END_REF]. Some researchers argue that PSTs often experience issues related to conditional probability; therefore, they may need help to evaluate and correct these misconceptions in their students [START_REF] Batanero | Teaching statistics in school mathematicschallenges for teaching and teacher education: A joint ICMI/IASE study[END_REF]. Conducting a study with undergraduate psychology students, Díaz and de la Fuente (2007) found that reasoning with conditional probability has a multidimensional trait.

Based on the previous studies, we developed a multidimensional diagnostic test to assess PSTs' understanding of conditional probability and Bayes' rule using cognitive diagnostic models (CDMs). Typically, unidimensional psychometric models measure examinees' cognitive ability by assigning a single score indicating an overall estimation of the ability (Bradshaw & Templin, 2014). CDMs, conversely, break down the content into a set of particular skills deemed necessary in understanding a subject. Next, CDMs classify examinees as masters or nonmasters of these cognitive skills based on their responses to the test items.

Methods

Development of the conditional probability and Bayesian reasoning test

The first step in developing the diagnostic test was to determine the attributes that would be estimated. We determined four attributes in Table 1 using the studies on conditional probability (Diaz & de la Fuente, 2006, 2007). A comparison of the four attributes with the organization of probability chapters in introductory statistics and probability textbooks (e.g., [START_REF] Bock | Stats: Modeling the world-AP edition[END_REF][START_REF] Gould | Instructor's edition: Introductory statistics Exploring the world through data[END_REF] confirmed the four attributes. After determining the four attributes, we acquired 21 items, most of them previously used in earlier research (e.g., [START_REF] Batanero | Preparing teachers to teach conditional probability: A didactic situation based on the Monty Hall problem[END_REF]Díaz & Batanero, 2009;[START_REF] Diaz | Assessing students' difficulties with conditional probability and Bayesian reasoning[END_REF]Díaz et al., 2012). We translated the items into Turkish and conducted a pilot study with 27 PSTs attending a probability and statistics course offered at a large public university. The items were given in an openended format so that we could identify various possible answers from the PSTs. We used the PSTs' answers to convert each item into a multiple-choice format with five options. The next step was determining the item-attribute alignment, represented by a Q-matrix (Bradshaw et al., 2014). In a Qmatrix, "1" indicates that an item measures an attribute, and "0" indicates that an item does not. We asked three experts working in the field of probability education to independently code (i.e., entering "1" or "0" to indicate whether an item measures an attribute) the test items for their measured attributes. The experts had research or teaching experience in probability at the undergraduate level. Using the independent codes from the three experts, we obtained our initial Q-matrix in which the four attributes were measured by 8, 7, 8, and 12 items, respectively.

The data collection procedure

Using an online survey, we administered the test to a voluntary sample of 532 PSTs from nine universities in different regions of Türkiye. A time limit was not set for completing the test, and no restrictions were placed on the use of technology. The PSTs were primarily female (77.6%, n = 413), almost half of them were currently enrolled in a probability course (48.6%, n = 259), and the student distribution for first-year students, sophomores, juniors, and seniors was 5.8, 37.8, 34.5, and 21.9%, respectively.

We used the CDM item analysis executable developed by [START_REF] Bradshaw | CDM item analysis executable[END_REF] to determine item difficulty and item-attribute discrimination indices (Table 2). Three of the items were both very difficult and also undiscriminating. We removed these three items and conducted the subsequent analyses using the remaining 18 items. The mean item difficulty of the test was .48, which suggested that the test items had an acceptable difficulty level. Moreover, item-attribute discrimination indices showed that the test items discriminated between masters and nonmasters of the four attributes (usually, items with discrimination index below .30 are regarded as poor discriminating items [de la [START_REF] De La Torre | An empirically based method of Q-matrix validation for the DINA model: Development and applications[END_REF]). 

Model fit and data analysis

After obtaining the final version of the test, we investigated whether a hierarchical or nonhierarchical relationship existed among the four attributes. We expected a linear hierarchical relationship among Attribute 1, Attribute 2, and Attribute 3, in which the mastery of Attribute 2 necessitated the mastery of Attribute 1, and the mastery of Attribute 3 necessitated both the mastery of Attribute 1 and Attribute 2. Hence, for instance, if an item measured Attribute 2 (i.e., a code 1 was entered), it is also expected to measure Attribute 1 and a code 1 was entered for Attribute 1. Accordingly, we analyzed the PSTs' responses in R software by applying a Log-Linear Cognitive Diagnosis Model (LCDM) using two separate Q-matrices (one included hierarchical relationships among attributes 1-3, and one did not include hierarchical relationships). We used the LCDM in our analysis because it allows both compensatory and noncompensatory relationships between mastery status of attributes (Bradshaw et al., 2014) and provides "empirical information regarding a reasonable model" (Henson et al., 2009, p. 208). The Root Mean Square Error of Approximation (RMSEA) fit indices for nonhierarchical and hierarchical LCDM were .036 and .049, respectively. As the RMSEA value of the nonhierarchical LCDM model indicated a better fit, we continued the further data analysis using this model.

The LCDM analysis was conducted using the Mplus software [START_REF] Muthen | Mplus user's guide[END_REF]. The LCDM estimates the intercept, simple main effects, and interaction effects. We only considered one-way and two-way log-linear structural model parameterizations in our LCDM model. While the one-way structural model estimates the intercept and simple main effects, the two-way structural model estimates the intercept, simple main effects, and two-way interaction effects. To determine whether a one-way or a two-way structural parametrization fits the data better, we compared these two parametrizations by conducting a chi-square difference test using the log-likelihood values with the Maximum Likelihood Robust (MLR) estimator [START_REF] Muthen & Muthen | Ensuring positiveness of the scaled difference chi-square test statistic[END_REF]. A significant chi-square difference (p < .05) implies that the parametrization with more freely estimated parameters better fits the data than the parametrization with fewer freely estimated parameters [START_REF] Werner | Deciding between competing models: Chi-square difference tests[END_REF]. Table 3 shows that the two-way parametrization fitted the data better than the one-way parametrization. Therefore, subsequent analyses were carried out using the two-way parametrization. We obtained our best-fit model, which estimated 57 parameters, by removing nonsignificant interaction and simple main effects. 

Results

The LCDM places each examinee into attribute profiles based on the examinees' mastery of attributes. Following Bradshaw et al. (2014), we classify masters and nonmasters with respect to the mastery status of a specific attribute (master if 1 with respect to the attribute, nonmaster if 0 with respect to the attribute). In Figure 1, we presented the attribute profiles and estimated percentages of PSTs belonging to each profile. Approximately 122 PSTs (22.9%) mastered all four attributes (1111 or Class 16), whereas 62 PSTs (11.6%) failed to master any attributes (0000 or Class 1). Moreover, while 34 PSTs (6.4%) and 95 PSTs (17.8%) mastered only Attribute 1 and Attribute 3, respectively, none of them mastered Attribute 2 and Attribute 4 alone. In addition, 116 PSTs (21.8%) mastered all attributes except Attribute 3. According to Figure 1, the most observed classes were Classes 16, 14, 3, 1, and 13, with 22.9%, 21.8%, 17.8%, 11.6%, and 9.9% of the PSTs, respectively. These five classes add up to 84% of the PSTs. Class 16 included the greatest number of PSTs that indicated the mastery of all the attributes. Class 14 has the second-highest percentage and indicates the PSTs who mastered all but the third attribute. The third-largest group was Class 3, which stands for the mastery of Attribute 3 only. The fourth-largest group was Class 1, which showed proportions of the PSTs with no mastery, which was 11.6 %. The fifth-largest group was Class 13, composed of the PSTs who mastered Attributes 1 and 2 together. Relatively fewer PSTs belonged to the Classes 6, 8, 9, 12, and 15. As we present in Table 4, Attribute 3 appears to be a distinct trait from Attributes 1, 2, and 4 and contributed little to mastering these three attributes. Hence, fewer PSTs existed in Classes 8, 12, and 15. On the other hand, the scarcity of PSTs belonging to Classes 6 and 9 might result from high positive correlations among attributes 1, 2, and 4. Finally, none of the participants belonged to the latent classes 2, 5, 4, 7, 10, and 11.

We calculated overall attribute mastery by summing up the corresponding percentages in Figure 1. For instance, mastery of Attribute 1 was calculated by summing up the percentages in Class 9 to 16 because these classes indicate the mastery of the first attribute in all possible combinations with other attributes. As a result, we found that approximately 66.2% of the PSTs mastered Attribute 1 (understanding and applying basic probability concepts), 63.6% of them mastered Attribute 2 (understanding and applying conditional probability), 46.5% of them mastered Attribute 3 (understanding and applying the Bayes' rule), and 49.8% of them mastered Attribute 4 (dealing with difficulties and biases of conditional probability). For the mastery status of these four attributes, we calculated the following CDM reliability indices: .80, .86, .69, and .91. These indices suggest that Mplus provided highly reliable estimations for Attributes 1, 2, and 4 but moderate reliability for Attribute 3.

We calculated tetrachoric correlations among the four attributes to understand the multidimensionality of the conditional probability and Bayesian reasoning test. Table 4 shows that the test could distinguish targeted components of the multidimensional construct, except for Attribute 3. It was expected that the four attributes would be distinct but related. Table 4 suggests that Attribute 3 was a distinct trait but not much related to the remaining attributes. The negative correlation and lack of correlation between Attribute 3 and Attributes 1, 2, and 4 indicate that further research is necessary to understand Attribute 3's unique behavior. The LCDM calculates item parameter estimates for each item to estimate the examinees' attribute mastery status. Items 14 and 13 were the most difficult items for the PSTs who did not master the measured attributes (i.e., nonmasters of the measured attributes): None of the nonmasters could correctly answer these two items. It is noteworthy to remember that these two items had the most remarkable item difficulty indices (see Table 2). On the other hand, Items 3 and 7 were the most accessible items for the nonmasters; 66.7% and 61.2% of them correctly answered these two items, respectively. Furthermore, over half of the nonmasters correctly answered Items 1, 4, 11, and 15. On average, 33.3% of the nonmasters answered the items correctly. Besides, mastering attributes usually increased the success rates of PSTs in answering the items correctly. For example, in item 2, which measures Attribute 3 and Attribute 4, (i) nonmasters of these two attributes had 37%; (ii) masters of Attribute 4 had 75%; and (iii) masters of both attributes had 100% probability of answering the item correctly. Therefore, individuals who achieve mastery in an attribute are also more likely to have solved the underlying items correctly. Similar increases in proportions are also observed for Items 3,4,6,8,9,10,11,13,14,16,17,and 18, although the mastery of the attributes did not result in a probability value of 100% in some of these items.

Table 5 presents five randomly selected PSTs' item responses, estimated proportions of attribute mastery, and most likely attribute profile information. Table 5 shows that PST5 correctly answered 15 items and mastered all four attributes. PST1 mastered the first, second, and fourth attributes by correctly answering 12 items, whereas PST4 had eight correct responses and mastered the first and second attributes. PST3 had five correct responses and could not master any attributes, whereas PST2 also had five correct responses but mastered Attribute 3. The classification illustrates that two students would get the same performance score only if the results were interpreted according to the traditional psychometric models. As illustrated in the table, the mastery of an attribute may not require correctly solving all items measuring this particular attribute. 
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 1 Figure 1: Attribute profile classes and percentages of attribute mastery

Table 1 : Attributes of the diagnostic test

 1 

	Attribute	Description
	A1: Understanding and applying basic	-The concepts that are prerequisites to conditional probability
	probability concepts	-Simple probability, joint probability, mutual exclusiveness
		-Independence of events without resorting to the conditional probability
	A2: Understanding and applying	-Computing conditional probability from contingency tables
	conditional probability	-Recognizing that conditional probability involves a restriction
		-Distinguishing conditional, simple, and joint probabilities
		-Computing conditional probabilities in a simple experiment
	A3: Understanding and applying the	-Calculating total probability
	Bayes' rule	-Using the Bayes' rule
	A4: Dealing with difficulties and	Dealing with the biases:
	biases of conditional probability	-Confusing conditional and causal reasoning
		-Fallacy of the time axis
		-Base-rate fallacy
		-Conjunction fallacy

Table 2 : The item difficulty and attribute discrimination indices Initial Item Number Item Difficulty Item-Attribute Discrimination

 2 

						Final Item
			A1	A2	A3	A4	Number
	1	0.576		0.722		1
	2	0.616			0.922	0.722	2
	3	0.835	0.494		0.506	3
	4	0.046		0.114		Removed
	5	0.739		0.647		4
	6	0.378	0.725			0.69	5
	7	0.148	0.136			Removed
	8	0.263	0.7			0.474	6
	9	0.852	0.532			0.452	7
	10	0.545		0.88		8
	11	0.056			0.247	0.168	Removed
	12	0.702	0.646			9
	13	0.578			0.857	0.775	10
	14	0.393	0.473	0.665		11
	15	0.271		0.757		0.581	12
	16	0.198			0.532	0.389	13
	17	0.125			0.351	0.225	14
	18	0.484		0.531		0.51 15
	19	0.443	0.824			16
	20	0.438			0.779	0.749	17
	21	0.223			0.494	0.472

Table 3 : Chi-Square test results and fit indices for one-way and two-way structural parametrizations

 3 

	Parametrization	AIC	BIC	SSA BIC	LL	NPR	Chd	df	p
	One-way	10694.63 10968.34 10765.18	-5283.31	64	-	-	-
	Two-way	10692.34 11021.64 10777.22	-5269.16	77	28.29	1	.000
	…..								
	Best-fit	10670.21 10913.98 10733.05	-5278.10	57	-	-	-
	Note: AIC: Akaike's information criteria; BIC: Bayesian information criteria; SSA BIC: sample size adjusted Bayesian
	information criteria; LL: Log-likelihood; NPR: number of estimated parameters; Chd: chi-square difference; df: degrees
	of freedom.								

Table 4 : Tetrachoric correlations among the four attributes

 4 

		A2	A3	A4
	A1	.93	-.19	.77
	A2		-.10	.96
	A3			.07

Table 5 : PSTs' item responses, estimated attribute mastery, and most likely profile

 5 

			Estimated Proportion of Attribute Mastery	
	PSTs	Response Pattern	Att1	Att2	Att3	Att4	Profile (Class)
	PST1	111101101111001010	.993	.993	.321	.988	14 (1101)
	PST2	0101**000010011000	.000	.000	1.00	.000	3 (0010)
	PST3	101100000010001000	.017	.000	.002	.000	1 (0000)
	PST4	001101111000000110	.978	.873	.090	.255	13 (1100)
	PST5	111111111101101110	.979	1.00	1.00	.999	16 (1111)
	Note. * indicates a missing response.					

Discussion

The analyses suggest that almost half of the PSTs did not master "understanding and applying Bayes' rule," which is consistent with the previous studies. Understanding Bayes' rule and making judgments based on Bayesian reasoning is reported to be often more challenging for students, teachers, and professionals (Hoffrage et al., 2000). Our results suggest that a robust understanding of conditional probability and flexibly applying several probabilities are insufficient to master Bayes' rule. Therefore, we agree that Bayesian reasoning requires higher cognitive processes [START_REF] Diaz | Prospective teachers' difficulties in solving Bayes problems[END_REF]Gigerenzer, 2002).

In this study, we developed a diagnostic instrument to investigate deficiencies and strengths concerning conditional probability and Bayesian reasoning competence in PSTs. The study's findings could be used to enhance teaching and learning conditional probability and curricula in a more evidence-based way. Our findings suggest a need for future studies focusing on understanding Bayes' rule. The permanent literature (Chow & Van Haneghan, 2016;Hoffrage et al., 2000;Vargas et al., 2019) extensively suggests that when probability problems are given using natural frequencies, the success rate dramatically increases in Bayes' rule. While using probabilities instead of natural frequencies might be less problematic for classical conditional probability problems, the complexity it adds to problems becomes less affordable by the PSTs in Bayesian reasoning cases. Therefore, more detailed studies, such as those focusing on representations, are needed to understand Bayesian reasoning better. Such studies would also increase the quality of individual test items and the overall quality of instruments.