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Abstract

Our aim through this paper is to describe a Krylov based projection method in order to reduce

high-order dynamical systems. We focus on differential algebraic equations (DAEs) of index-2 that

arise from spatial discretization of Stokes equations. An efficient algorithm based on a projection

technique onto an extended block Krylov subspace that appropriately allows us to construct a

reduced order system is described. Numerical results are provided to confirm the performance of

the derived method compared with other known ones.

Keywords: Index 2 systems, Model order reduction, Projection methods, Stokes equations,

Transfer function.

1. Introduction

Complex dynamical systems arising from descritization in space of a PDEs that modelize some

physic or engineering problems, have generally high dimensionality and this leads to a computa-

tional problem to treat those dynamical systems for simulation or control. Therefore, the need for

an appropriate method to reduce the large dimension is a very important task and this is usually

called Model Order Reduction. Many works have been realized in the recent years on model re-

duction [1, 2, 3, 4, 5, 6]. The main idea is to approach the given large-scale dynamical system of

differential equations by a new low-dimensional system that has almost the same response char-

acteristics. Consider the Multiple Input Multiple Output (MIMO in short) linear time-invariant

(LTI) system, described by the following state-space dynamical system

(Σ)

 M ẋ(t) = Ax(t) +B u(t), x(0) = 0,

y(t) = C x(t) +Du(t),
(1)

where x(t) ∈ Rn denotes the state vector, u(t) ∈ Rp and y(t) ∈ Rs are the input and the output

vectors of the system (1), respectively. The matrices A, M ∈ Rn×n are large and sparse, B ∈ Rn×p
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and CT ∈ Rn×s are supposed to have small number of columns i.e., p, s � n. For simplicity we

assume that p = s. If M is singular then the system (1) is called a ”descriptor system”, otherwise

it is called a generalized system. The main idea of model reduction is to consider a reduced model

that approximates the original one in some sense and having the form

(Σm)

 Mm ẋm(t) = Am xm(t) +Bm u(t),

ym(t) = Cm xm(t) +Dm u(t),
(2)

where Mm, Am ∈ Rm×m, Bm, C
T
m ∈ Rm×p, Dm = D ∈ Rp×p and m� n. Different computational

methods for deriving the low order dynamical system (2) have been proposed the last years.

The first class contains the well known balanced truncation method which is based on a singular

value decomposition. The second class uses Krylov-based methods and contains methods such

as moment matching techniques. The main advantage of SVD methods is that they preserve

important properties such as stability, and also provide an error-norm bound. However, they are

not suited for large scale dynamical systems and consequently are impractical for large systems

since they require a computational cost of order O(n3) and storage of order O(n2). On the

other hand, Krylov-based methods use projections onto some well chosen Krylov-type subspaces

and require lower cost and storage as compared to SVD-based methods since only matrix-vector

multiplications are required. The major challenge with balanced truncation based methods is that

they require solving two large Lyapunov equations [7, 8]. A mixing of these two methods has been

elaborated in [9], where the authors solve the two required large Lyapunov matrix equations in

balanced truncation by using projection onto some block Krylov subspaces.

Applying the Laplace transform

L(f)(z) :=

∫ ∞
0

e−ztf(t)dt,

to the system(1), gives the following system in the frequency domain zM X(z) = AX(z) +B U(z),

Y (z) = C X(z) +DU(z).

By eliminating X(z) from the two equations, we obtain

Y (z) = F (z)U(z),

where

F (z) = C (zM −A)−1B +D,

is the transfer function associated the original system (1). In a similar way, we can obtain a transfer

function Fm(z) associated to the reduced system (2) as

Fm(z) = Cm (zMm −Am)−1Bm +Dm.
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Therefore,

‖Y (z)− Ym(z)‖ ≤ ‖F (z)− Fm(z)‖‖U(z)‖.

In order to measure the accuracy of the resulting reduced system, we have to compute the error

‖F − Fm‖ with respect to a specific norm which tells us how the response of the reduced system

is close to that of the original one.

The determination of a reduced order dynamical system via projections using bases from Krylov-

type subspaces can be described as follows. We construct the block matrix Vm = [V1, . . . , Vm]

whose columns form an orthonormal basis of some Krylov-type subspace via an Arnoldi-based or

Lanczos-based processes. Then, we approximate the full order state x(t) by Vmxm(t), and by

enforcing the Petrove-Galerkin condition, we obtain the projected system VTm(MVm ẋm(t) −AVmxm(t)−B u(t)) = 0,

ym(t) = CVm xm(t) +Du(t).
(3)

Therefore, the obtained reduced order system can be expressed as Mm ẋm(t) = Am xm(t) +Bm u(t),

ym(t) = Cm xm(t) +Du(t),
(4)

where Mm = VTmMVm, Am = VTmAVm ∈ Rm×m, Bm = VTmB ∈ Rm×p, Cm = C Vm ∈ Rp×m and

D ∈ Rp×p with m� n.

In this work, we deal with a specific large system that is depicted from a spatial discretization

of Stokes equations; here D is the zero matrix. It is known as the index-2 systems and has the

following structure

 M 0

0 0

 ẋ1(t)

ẋ2(t)

 =

 A G

GT 0

 x1(t)

x2(t)

+

 B

0

u(t),

y(t) =
[
C 0

] x1(t)

x2(t)

 . (5)

Through this paper, we describe a model reduction technique via Krylov-based subspace method5

in order to construct an efficient reduced system of 5 that has nearly the same response charac-

teristics. Our methods work well for a class of descriptor dynamical systems represented by a set

of ordinary differential equations(ODEs). Unfortunately, this is not our case since the dynami-

cal system 5 is represented by a set of differential algebraic equations(DAEs) and therefore these

methods are not directly applicable to 5. To overcome this problem, we present in this paper a10

technique that allows us to transform the DAE system to an ODE one using a Leray projection.

Moreover, we give a simplification on how to avoid this dense projection matrix while we perform
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our process to get a reduced system.

Such a system (5) appears also after a spatial discretization of the linearised Navier-Stokes equa-

tions around a steady state. The difference is that with Stokes equations, the matrix A is symmetric15

definite negative, while for Navier-Stokes equations, the matrix A is neither symmetric nor neg-

ative or positive definite, see [10]. Numerous model reduction methods have been explored for

Navier-Stokes equations using balanced truncation and proper orthogonal decomposition [11, 12].

A balanced truncation model reduction method for the Ossen equations has been investigated in

[13].20

The remainder of this paper is organised as follows. Section 2 describes the incompressible Stokes

equations, and its differential-algebraic system of differential index-2 that arise after a mixed finite

element discretization. An extended block Krylov subspace method used to construct a simplified

system from the complex one 5 is explained in Section 3. In Section 3 we give some properties and

describe an algorithm that allows us to construct an orthonormal matrix in an efficient way by25

avoiding the dense projection matrix that appears after the transformation to an ODEs. Section

4 is devoted to some numerical experiments to show the effectiveness of the proposed approach.

2. The incompressible Stokes equations

We consider the incompressible Stokes equations

∂v

∂t
− ν∆v +∇p = f, (6a)

∇ · v = 0, (6b)

where the vector v(t, x) = [v1(t, x), v2(t, x)] ∈ R2 refers to the velocity, p(t, x) ∈ R is the pressure

filed, f is known as the forcing term and ν ∈ R+ is the viscosity. The operators ∆, ∇ and ∇·30

are defined as the Laplacien, Gradient and divergence operators, respectively. The choice of an

appropriate discretization procedure depends on the specific governing equations used, for example

(compressible or incompressible flow(our case)), mesh type ( structured or unstructured), etc. The

classical discretisation techniques are finite difference, finite element and finite volume. One of the

known methods used to discretize instationary problems is the method of lines which is based on35

the replacement of the spatial derivatives in the PDEs with algebraic approximations leading to a

system of ODEs that approximates the original PDE problem. In this paper we use a mixed finite

element method to discretize the Stokes equations in space, see [14]. After the discretization, we

get a system of differential-algebraic equations of the form
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M
d

dt
v(t) =

1

Re
Av(t) +Gp(t) + f(t), (7a)

0 = GTv(t), (7b)

where v(t) ∈ Rnv is the nodal vector of the discretized velocity, p(t) ∈ Rnp is the discretized40

pressure and Re = 1/ν is the Reynolds number.

In what follows, we refer to A as
1

Re
A and assume that the forcing term f(t) is given by

f(t) = Bu(t),

where u(t) is the input vector and B ∈ Rnv×nb is a full rank matrix. Moreover, the mass matrix

M ∈ Rnv×nv is symmetric and postive-definite, the discrete Laplacian matrix A ∈ Rnv×nv is

symmetric and negative definite, and G ∈ Rnv×np represents the discrete gradient matrix. We add

to the system (7) an output function given by

y(t) = Cv(t),

where y(t) is the output vector and CT ∈ Rnv×nc is a full rank matrix. The dynamical system (7)

can be rewritten in a new form as follows

 M 0

0 0

 v̇(t)

ṗ(t)

 =

 A G

GT 0

 v(t)

p(t)

+

 B

0

u(t),

y(t) =
[
C 0

] v(t)

p(t)

 , (8)

which uses the following matrix-pencil M 0

0 0

 ,
 A G

GT 0

 . (9)

This symmetric matrix pencil has nv − np finite eigenvalues λi ∈ R− and 2np infinite eigenvalues

λ∞ = ∞, see [[15], Theorem 2.1]. The dynamical system (8) is known as an index-2 descriptor

dynamical system, see [16] for more details. To guarantee a well processing of our proposed

method, we need to establish a transformation of the system (7) into an ordinary differential45

equations (ODEs). To this end, we need to introduce the discrete Leray projector denoted by Π.

After using this transformation, an adapted extended block Krylov subspace projection method

is described. This projection method allows us to construct a reduced system with a reasonable

computational costs. In the next section, we give a brief description of the extended block Krylov

Arnoldi method.50
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3. Applying the extended block Krylov subspace method

3.1. The extended block Arnoldi process

For A ∈ Rnv×nv and B ∈ Rnv×nb , the extended block Krylov subspace is defined as follows

Kextm (A,B) = Range([A−mB, · · · , A−1B,B,AB, . . . , Am−1B]).

Druskin and Knizhnerman introduced in [17] the extended Lanczos process to approximate the

action of a matrix function f(A) on a vector v where A is a symmetric matrix. The extended block

Arnoldi process to solve Lyapunov equations was defined in [18, 19]. Moreover, a model reduction55

method for large scale dynamical systems based on a projection technique onto Kextm (A,B) has been

established in [1]. We can generate an orthonormal basis formed by the columns of {V1, . . . , Vm}

of the subspace Kextm (A,B) using the following extented block Arnoldi algorithm [18, 19].

Algorithm 1 The extended-block Arnoldi algorithm

• Input : A ∈ Rnv×nv , B ∈ Rnv×nb and a fixed integer m.

• Compute V1 = qr([B,A−1B], 0)(skinny qr), V1 = [V1].

• for j = 1 · · ·m− 1

1. Set V
(1)
j : first nb columns of Vj ; V

(2)
j : second nb columns of Vj .

2. Ṽj+1 = [AV
(1)
j , A−1V

(2)
j ].

3. Orthogonalization step:

for i = 1, 2 · · · j

Hij = V Ti Ṽj+1.

Ṽj+1 = Ṽj+1 − ViHij .

end for

• qr(Ṽj+1) = Vj+1Hj+1,j .

• Vj+1 = [Vj , Vj+1].

• End.

After m steps, Algorithm 1 builds a matrix Vm = [V1, . . . , Vm] ∈ Rnv×2mnb corresponding to the

orthonormal basis of the extended block Krylov subspace and a block upper Hessenberg matrix

Hm ∈ R2mnb×2mnb whose nonzeros blocks are the Hi,j . Note that each sub-matrix Hi,j (1 ≤ i ≤

j ≤ m) is of order 2nb × 2nb. Let Tm = VTmAVm ∈ R2mnb×2mnb denote the restriction of the

matrix A to the extended block Krylov subspace. It was shown in [19] that Tm is also a block
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upper Hessenberg matrix. Assume that m steps of Algorithm 1 have been run, then we get the

following classical algebraic relations

AVm = Vm+1 Tm (10)

= Vm Tm + Vm+1 Tm+1,mE
T
m, (11)

where Tm = VTm+1AVm and Em is the last 2nb columns of the identity I2mnb
.

3.2. Deriving the ODE system60

We first eliminate the discrete pressure p from (7a) using the following projection operator

Π = In −G (GTM−1G)−1GTM−1 ∈ Rnv×nv .

It is easy to check that

(ΠT )2 = ΠT , Π2 = Π, ΠG = 0, ΠM = M ΠT andM−1 Π = ΠTM−1.

The projection ΠT is an M -orthogonal projection where for x, y ∈ Rnv and M ∈ Rnv×nv , the

M -inner product is defined by

< x, y >M= (x,My) = yTMx (M is a symmetric and positive-definite).

Notice that

null(ΠT ) = range(M−1G) and range(ΠT ) = null(G).

By using all these properties we can show that

0 = GTv(t) if and only if v(t) = ΠTv(t). (12)

Multiplying (7a) by GT M−1 and using (7b), the term p can be expressed as follows

p(t) = −(GT M−1G)−1GT M−1Av(t)− (GT M−1G)−1GT M−1Bu(t).

Replacing p in (7a) and multiplying by Π yields to the following projected system

M d

dt
v(t) = Av(t) + Bu(t), (13a)

y(t) = Cv(t). (13b)

where A = ΠAΠT ,M = ΠM ΠT , B = ΠB and C = C ΠT . Since the matrix-pencil (9) has

nv − np finite eigenvalues [15], a decomposition of Π can be obtained by using the thin singular

value decomposition which leads to the following decomposition

Π = ΘlΘ
T
r ,
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where Θl, Θr ∈ Rnv×(nv−np), are full rank matrices satisfying

ΘT
l Θr = Inv−np

.

Using this decomposition into (13) and defining a new variable ṽ(t) = ΘT
l v(t) with Θrṽ(t) =

ΘrΘ
T
l v(t) = ΠTv(t) = v(t), we get the following ODE system

MΘ
d

dt
ṽ(t) = AΘṽ(t) +BΘu(t), (14a)

y(t) = CΘṽ(t), (14b)

where Mθ = ΘT
rMΘr, Aθ = ΘT

r AΘr ∈ R(nv−np)×(nv−np), Bθ = ΘT
r B ∈ R(nv−np)×nb and Cθ =

CΘr ∈ Rnc×(nv−np). The matrix Mθ is non-singular due to the fact that M is symmetric and

defini-positive. Notice that the three systems (7), (13) and (14) are equivalent in the sense that

their finite spectrum is the same and they realize the same transfer function, see [20]. We denote by

FΘ(s) = CΘ(sMΘ−AΘ)−1BΘ = CΘX the transfer function associated to the system (14) where X

is defined by X = Θr(sMΘ−AΘ)−1BΘ with BΘ = (sMΘ−AΘ)ΘT
l X and ΠB = Π(sM −A)ΠTX.

Using the relation (12) and the fact that null(Π) = range(G), we can verify that X solves the

following saddle point problem sM −A −G

−GT 0

X
?

 =

B
0

 ,

where ? stands for a block vector of order np × nb that we are not interested in. Therefore, we get

FΘ(s) = C X =
[
C 0

]sM −A −G

−GT 0

−1 B
0

 = F (s), (15)

where F (s) is the transfer function associated to the original dynamical system (7). The technique

used here allows us to solve a saddle point problem instead of solving a linear system depending

on the dense matrix Π and its Θ-decomposition as was done in [13].

Remark 1. We notice that instead of reducing the original system (8), we can reduce the ODE

system (14) since they have the same transfer functions as it is stated in (15).65

The matrices involved in (14) are dense due to the projector Π and its Θ-decomposition, and

that is why we need a strategy to avoid using directly computations with these matrices. An

approximation of the original system (14) by a reduced one, without requiring any explicit com-

putation of the dense matrices (MΘ, AΘ, BΘ, CΘ) will be described in next subsection. Only the

structure of the original system (5) will be used. Our calculations involve using the system 1470

implicitly and this leads to solve some saddle point problems. Details will be given later.
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3.3. The extended block Arnoldi algorithm for the Θ system

Multiplying from the left by the inverse of Mθ the first equation of the system (14), which gives

the following dynamical system that we called the Θ-system

d

dt
ṽ(t) = M−1

Θ AΘṽ(t) +M−1
Θ BΘu(t), (16a)

y(t) = CΘṽ(t). (16b)

Our goal is to find a reduced order system to 16 since it realizes the same transfer function of system

8 as we mentioned before. This new system can be constructed using a projection technique onto

the extended block Krylov subspace Kextm (M−1
Θ AΘ,M

−1
Θ BΘ). We apply the extended block Arnoldi75

Algorithm 1 to the pair (M−1
Θ AΘ,M

−1
Θ BΘ) which allows to construct an orthonormal basis formed

by the columns of {Vb1 , . . . ,Vbm}, where Vbj for (j = 1, . . . ,m) in an (nv − np)× 2nb matrix.

Proposition 1. Let Vm = [Vb1 , . . . ,Vbm] ∈ R2mnb×2mnb be the matrix generated by the extended

block Arnoldi Algorithm 1 for the pair (M−1
Θ AΘ,M

−1
Θ BΘ). Then we have the following relations

M−1
Θ AΘ Vm = Vm+1 Tm (17)

= Vm Tm + Vbm+1 Tm+1,mE
T
m, (18)

where Tm+1 is the last 2nb × 2nb block of Tm ∈ R2(m+1)nb×2mnb and ETm is the last 2nb columns

of the identity matrix I2mnb
.80

Proof 1. Using the fact that M−1
Θ AΘKextm (M−1

Θ AΘ,M
−1
Θ BΘ) ⊂ Kextm+1(M−1

Θ AΘ,M
−1
Θ BΘ) and the

orthogonality of Vm, there exists a matrix L such that

M−1
Θ AΘ Vm = Vm+1 L. (19)

Since Vm+1 = [Vm,Vbm+1], we have

Tm+1 = VTm+1M
−1
Θ AΘ Vm+1

=

 VTmM−1
Θ AΘ Vm VTmM−1

Θ AΘ Vbm+1

(Vbm+1)T M−1
Θ AΘ Vm (Vbm+1)TM−1

Θ AΘVbm+1


=

 Tm VTmM−1
Θ AΘ Vbm+1

(Vbm+1)T M−1
Θ AΘ Vm (Vbm+1)TM−1

Θ AΘVbm+1

 .
As Tm+1 is an upper block Hessenberg matrix, it follows that

Tm+1E
T
m = (Vbm+1)T M−1

Θ AΘ Vm,
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and

Tm = VTm+1M
−1
Θ AΘVm =

 Tm
Tm+1,mE

T
m

 ∈ R2(m+1)nb×2mnb .

Multiplication from the left the equation 19 by VTm+1, we obtain Tm = L. Then

M−1
Θ AΘ Vm = Vm+1 Tm = [Vm,Vbm+1]

 Tm
Tm+1,mE

T
m

 (20)

= Vm Tm + Vbm+1 Tm+1,mE
T
m, (21)

which ends the proof.

In what follows, we describe an appropriate process to get a reduced system to 16 by avoiding

an explicit computation of Vm, since the j-th bloc Vbj of Vm relies on Θr, and this calculation is

not allowed in our approach, due to the density that will make our computations infeasible.

The main computational issue when we apply Algorithm 1 to the pair (M−1
Θ AΘ,M

−1
Θ BΘ) is to

compute blocks of the form

M−1
Θ BΘ, (M

−1
Θ AΘ)−1M−1

Θ BΘ, (M
−1
Θ AΘ)V(1)

j and (M−1
Θ AΘ)−1 V(2)

j ,

for j = 1, . . . ,m. Where V(1)
j and V(2)

j are the first and second nb columns of Vbj , respectively.

Our strategy consists in reformulating those blocks onto new ones without an explicit calculation

of Θr.

We set Vm = ΘrVm ∈ Rnv×2mnb satisfying

ΠTVm = ΘrΘ
T
l Vm = ΘrVm = Vm, (22)

and denote by Vj = ΘrVbj the new j-th block of Vm that we aim to compute. In what follows, we

show how to compute the block Vj ∈ Rnv×2nb in an appropriate way without using directly the

matrix Θr nor the blocks Vbj .

The result 22 confirms that GTVm = 0 as it is shown in 12, and consequently we obtain the

following results

M−1
Θ BΘ = V(1)

1 ,

MΘV(1)
1 = BΘ,

ΘT
rMΘrV(1)

1 = ΘrB,

ΠMΠTV
(1)
1 = ΠB,

Π(MV
(1)
1 −B) = 0,

(MV
(1)
1 −B) ∈ null(Π) = range(G).

10



Therefore, the first nb columns V
(1)
1 of V1 can be computed by solving the following saddle point

problem M G

GT 0

V (1)
1

?

 =

B
0

 .
The same process can be done to get V

(2)
1 using the matrix equation

V(2)
1 (M−1

Θ AΘ)−1M−1
Θ BΘ.

To get the first nb column V
(1)
j+1 of Vj+1, we follow the following process

(M−1
Θ AΘ)V(1)

j = V(1)
j+1,

MΘV(1)
j+1 = AΘV(1)

j ,

ΘT
rMΘrV(1)

j+1 = ΘT
r AΘrV(1)

j ,

ΠMΠTV
(1)
j+1 = ΠAV

(1)
j ,

Π(MV
(1)
j+1 −AV

(1)
j ) = 0,

(MV
(1)
j+1 −AV

(1)
j ) ∈ null(Π) = range(G).

Then we have to solve the following saddle point problemM G

GT 0

V (1)
j+1

?

 =

AV (1)
j

0

 .
In a same manner, we can compute the last nb column V

(2)
j+1 of Vj+1.

After showing how to compute the blocks of the matrix Vm without computing neither the matrix85

Vm corresponding to the orthonormal basis of Kextm (M−1
Θ AΘ,M

−1
Θ BΘ) nor Θr, we can now present

the new derived extended block Arnoldi algorithm based only on the sparse system matrices of

the index-2 system. Here, we have to mention that this algorithm is based on a Gram-Shmidt

orthogonalization process, which reconstructs the blocks {V1, . . . , Vm}, such that their columns

form an orthonormal matrix Vm. This matrix is the key to obtain an efficient reduced system to90

the index-2 original one 7. Details are given in the next sections.We summarize all these results in

the following algorithm.
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Algorithm 2 The extended block Arnoldi algorithm associated to the index-2 system

Inputs: M ∈ Rnv×nv , A ∈ Rnv×nv , G ∈ Rnv×np , B ∈ Rnv×nb and m.

1. Solve the first sadlle point problemM G

GT 0

V (1)
1

?

 =

B
0

 ,
 A G

GT 0

V (2)
1

?

 =

B
0

 .
2. Compute [V1,Λ] = QR

(
[V

(1)
1 , V

(2)
1 ]
)

and set V1 = [V1].

3. For j = 1, . . . ,m

a. Set V
(1)
j : the first nb columns of Vj and V

(2)
j the second nb columns of Vj .

b. Ṽj+1 =

M G

GT 0

V (1)
j+1

?

 =

AV (1)
j

0

 ,
 A G

GT 0

V (2)
j+1

?

 =

M V
(2)
j

0

.

c. Orthogonalize Ṽj+1 with respect to V1, . . . ,Vj to get Vj+1, i.e.,

for i = 1, 2, . . . , j

Hi,j = (Vi)
T Ṽj+1.

Ṽj+1 = Ṽj+1 − ViHi,j .

end for

d. [Vj+1, Hj+1,j ] = QR(Ṽj+1).

e. Vj+1 = [Vj , Vj+1].

End For.

As we noticed earlier, the main step in Algorithm 2 is the solution of saddle-point problems of

dimension nv + np. To solve these problems in our numerical tests, we used LU factorisation

from MATLAB. A second way for solving those sparse saddle-point could be done by applying an95

iterative solver with a preconditioner. Similar algebraic relations to those given by 17 could be

stated using only the sparse matrices (M,A) and the matrix Vm generated by Algorithm 1. We

present this result in the following proposition

Proposition 2. Let Vm ∈ Rnv×2mnb be an orthonormal matrix generated by Algorithm1 and

12



Tm ∈ R2(m+1)nb×2mnb an upper block Hessenberg matrix. Then we have the next result

M−1ΠAVm = Vm+1 Tm

= VmTm + Vm+1Tm+1E
T
m.

Proof 2. Multiplying from the left 17 by Θr, and using the fact that Vm = ΘrVm, we get

ΘrM
−1
Θ ΘT

r AΘr Vm = ΘrVm+1 Tm, (23)

ΘrM
−1
Θ ΘT

r AVm = Vm+1 Tm. (24)

On the other hand, ΘrM
−1
Θ ΘT

r = M−1Π, in fact

firstly, it is easy to prove that ΠMΘr = MΘr by using the Θ-decomposition and also the fact that

ΠM = MΠT , ΘT
l Θr = Inv−np .

Then,

ΠMΘr = MΘr,

ΘlΘ
T
rMΘr = MΘr,

ΘlMΘ = MΘr,

M−1Θl = ΘrM
−1
Θ ,

ΘrM
−1
Θ ΘT

r = M−1Π,

we replace this final result in the formula 24, then we get the desired result

M−1ΠAVm = Vm+1 Tm

= VmTm + Vm+1Tm+1E
T
m.

The upper block Hessenberg matrix Tm is defines as

Tm =

 Tm
Tm+1E

T
m

 ∈ R2(m+1)nb×2mnb ,

where Tm = VTmM−1ΠAVm ∈ R2mnb×2mnb .100

Which ends the proof.

A result has been proven by Simoncini to calculate Tm directly from the columns of the upper

block Hessenberg matrix Hm generated by Algorithm 2, without computing neither the inverse of

M nor the projection matrix Π, for more details see [19].

Notice that from step 1 of Algorithm 2 we have

[V1,Λ] = qr ([v, w]) , (25)

13



where Λ ∈ R2nb×2nb is an upper triangular matrix defined by

Λ =

Λ(1,1) Λ(1,2)

0 Λ(2,2)

 ,
and v, w are the solutions of the following saddle point problemsM G

GT 0

v
?

 =

B
0

  A G

GT 0

w
?

 =

B
0

 ,
we know that M G

GT 0

v
?

 =

B
0

⇔ ΠMΠT v = ΠB,

and from 25 we find that

[v, w] = [V
(1)
1 , V

(2)
1 ]

Λ(1,1) Λ(1,2)

0 Λ(2,2)

 ,
thus

v = V
(1)
1 Λ(1,1),

and then we have the following result

VTmM−1 ΠB = VTmV
(1)
1 Λ(1,1) =


Inb

0nb

...

0nb

Λ(1,1). (26)

We have mentioned before that in order to reduce the original system (7), we can construct a

reduced system from the one that we call it Θ system (14) since they realize the same transfer

function as it is shown in 15. At the iteration m, we approach ṽ(t) by Vmv̂(t) where Vm is a matrix

corresponding to the orthonormal basis of Kextm (M−1
Θ AΘ,M

−1
Θ BΘ). By injecting the approximation

of ṽ(t) in the system (14) and enforcing the Petrov-Galerkin condition, we get the following reduced

system  ˙̂v(t) = VTmM−1
Θ AΘ Vm v̂(t) + VTmM−1

Θ BΘ u(t),

ym(t) = CΘVm v̂(t).
(27)

We know that Tm = VTmM−1
Θ AΘ Vm which can be computed only from the upper block Hessenberg

matrix Hm generated by Algorithm 2 as we mentioned before, also CΘVm = CΘrVm = CVm, and

by using the fact that M−1
Θ BΘ ∈ Kextm (M−1

Θ AΘ,M
−1
Θ BΘ) which confirms that VmVTmM−1

Θ BΘ =

M−1
Θ BΘ, then we can prove

VTmM−1
Θ BΘ = VTmM−1 ΠB,

14



finally, we get the reduced system described as follows ˙̂v(t) = Tm v̂(t) + Bm u(t),

ym(t) = Cm v̂(t),
(28)

where Bm =
[
Inb

, 0nb
, . . . , 0nb

]T
Λ(1,1) ∈ R2mnb×nb as it is mentioned in 26, and Cm = CVm ∈

Rnc×2mnb .

The reduced transfer function is given by

Fm(s) = Cm(sI2mnb
− Tm)−1Bm.

Another way to construct a reduced system is by considering the Θ-system 14 without inverting

the matrix MΘ. We again approximate ṽ(t) by Vmv̂(t) where Vm is a matrix described in the

previous sections, then we get the following system VTmMΘVm ˙̂v(t) = VTmAΘ Vm v̂(t) + VTmBΘ u(t),

ym(t) = CΘVm v̂(t),
(29)

using the fact that Vm = ΘrVm, we get the following reduced system Mm
˙̂v(t) = Am v̂(t) + Bm u(t),

ym(t) = Cm v̂(t),
(30)

with the associated reduced transfer function

Fm(s) = Cm(sMm − Am)−1Bm,

where Mm = VTmMVm, Am = VTmAVm, Bm = VTmB and Cm = CVm. In Algorithm 2 we gave a

description of the process to get the matrix Vm without any explicit computation of Vm or the

matrix Θr.

Remark 2. The obtained reduced systems (28) and (30) are considered as an efficient reduced105

systems to the original one represented by the index-2 system (8). Numerically, the first reduced

system (28) is more required since its system matrices (Tm Bm, Cm) could be computed in a ap-

propriate manner and without requiring matrix-vector products with A and M which is the case

for the second reduced system (30) represented by the system matrices (Mm,Am,Bm, Cm).

4. Numerical examples110

In this section, we present some numerical tests showcasing the performance of our method

compared to others known methods. We show the effectiveness of the proposed model reduction

method based on the extended block Krylov subspace for the DAE system (7), that arises after a

15



spatial discretization of Stokes equations. A comparison of the proposed method with other known

methods such as the classical block Krylov subspace and interpolatory projection methods is also115

depicted in this section. All the examples were carried out using MATLAB on a computer with

Intel ® core i7 at 2.3GHz and 8Gb of RAM. All the data was provided from [14]. In Table 1, we

present the different dimensions of nv which is the dimension of the discretized velocity field, and

np is the dimension of the discretized pressure field.

120

Table 1: The Matrix dimensions

Level of dicritization nv np full model (nv + np)

1 4796 672 5468

2 12292 1650 13942

3 28914 3784 32698

For different levels, we use matrices B ∈ Rnv×2 and C ∈ R6×nv . Note that the norm used here is

the H∞ norm defined by

‖F − Fm‖∞ = sup
ω∈R
‖F (jω)− Fm(jω)‖2. (31)

To compute this norm we use the following functions from the library lyapack [21]

1. lp lgfrq : Generates a set of logarithmically distributed frequency sampling points ω ∈

[10−5, 105].

2. lp gnorm : Computes a vector which contains the 2-norm ‖F−Fm‖ = σmax(F (iω)−Fm(iω))

for each sampling points ω ∈ [10−5, 105], i =
√
−1 and σmax denotes the maximum singular125

value.

Remark 3. Turbulent flow occurs at high Reynolds number and it is usually modelled by the

Navier-Stokes equations. In our numerical examples, we used fourth different low Reynolds numbers

(100, 200, 300 and 500) since we are interested in the Stokes equations that describes a laminar130

flow regime.

Example 1. In the first example, we present the frequency response of the original system

(Level 3) and the frequency response of the reduced system with m = 80 and two different Reynolds

numbers Re=100 in Figure 1 and Re=500 in Figure 2. In the left sides of Figures 1 and 2 we

plotted the norms ‖F (jω)‖2 and its approximation ‖Fm(jω)‖2 for different values of the frequency135
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ω ∈ [10−5, 105]. As can be seen from Figures 1 and 2, we have obtained a perfect match between

the original transfer function and its approximation. In the right sides of Figure 1 and Figure

2, we plotted the obtained error-norms for different values of the frequency ω with the Reynold

numbers Re=100 and Re=500. Let us remark here that one of the problems in using projection

Krylov-based subspace methods is that we do not have a good way of selecting the best dimension140

of the projected subspace. In our examples, we used an heuristic selection for the value of m.
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Figure 1: Bode plot (left) and the error-norms versus frequencies (right) with Re=100.
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Figure 2: Bode plot (Left) and the error-norms versus frequencies (Right) with Re=500.

In Figure 3, we show a comparison between our method and the so-called classical block Krylov

subspace method (CBKSM) described in [22]. We set m = 30, then the dimension of the extended

block Krylov subspace is 2m and to establish a fair comparison, we choose m = 60 as a dimension

of the classical block Krylov subspace. The errors for our method and the CBKSM computed by145

formula (31) are, respectively, 6.17×1e−06 and 6.16×1e−02.

17



10
-5

10
0

10
5

10
-20

10
-18

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Figure 3: The obtained error-norms ‖F (jω)− Fm(jω)‖2 for different values of the frequency ω ∈ [10−5, 105] of our

method (dash-dotted line) and the CBKSM (dashed line) with Re=100.

We have to mentioned here that we did not use a rational Krylov projection methods because of

the difficulty in finding the appropriate poles si that characterize the rational Krylov subspace.

Example 2. In the second example, we compared our proposed method with the one based

on an interpolatory projection method; see [23]. The authors established a bi-tangential Hermite150

interpolation for index-2 descriptor systems via Iterative Rational Krylov Algorithm (IRKA in

short). For both methods, we used m = 30. The quality of the interpolatory method via IRKA

depends on the number of cycles, which means the number of times the interpolation points are

updated. We considered here a number of cycles equal to 10. Notice that when we tried a number

of cycles more than 10, IRKA becomes expensive. In this example we used the matrices from Level155

1 of discretization. In table 2, we reported the H∞ error norm and the required cpu-time for our

proposed method and IRKA . As can be seen from this table, the extended Krylov-based method

returns the best results in times of accuracy and cpu-time.

Table 2: The calculation time and the Err-H∞

Reynolds numbers Extended Krylov-based method IRKA

cpu-time Err-H∞ cpu-time Err-H∞
Re=100 3.69sec 6.17 × 10−06 37.77 sec 3.77× 10−04

Re=200 4.16sec 5.09 × 10−06 38.12 sec 2.2 × 10−05

Re=300 3.72sec 5.86 × 10−06 38.11sec 2.34× 10−05

In Figure 4, we showed the error-norm ‖F − Fm‖∞ between the original frequency response and

its approximation of both methods with a Reynold number Re=300. In Table 3, we reported the160
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Figure 4: Error-norms versus frequencies

results comparing our method and IRKA after the 1st cycle, also in Figures 5, 6 and 7, we present

the error-norms of both methods with three different Reynolds number. All the figures 5, 6 and 7,

clearly show that the proposed method has good accuracy compared to the IRKA method.

Table 3: The calculation time and the H∞-error

Reynolds numbers Extended Krylov-based method IRKA

cpu-time Err-H∞ cpu-time Err-H∞
Re=100 3.69sec 6.17 × 10−06 6.71sec 1.38× 10−05

Re=200 4.16sec 5.09 × 10−06 6.9sec 1.45 × 10−05

Re=300 3.72sec 5.86 × 10−06 7.13sec 2.41× 10−05
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Figure 5: The error-norms of both methods: Krylov(blue dash-dot line) and IRKA(red dash line) with Re=100.
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Figure 6: The error-norms of both methods: Krylov(blue dash-dot line) and IRKA(red dash line) with Re=200.
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Figure 7: The error-norms of both methods: Krylov(blue dash-dot line) and IRKA(red dash line) with Re=300.
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Example 3. In this example, we display a time domain simulation resulting from fourth

different input selections. We use the matrices of Level 2 of dicretization and we set m = 40. In165

the left sides of Figures 8–11, we plotted the outputs for the following input selections ui(t) =

0.5 exp(−t)(2 + sin(2iπt)) in Figure 8, ui(t) = sin(6it) in Figure 9, ui(t) = sin(it) in Figure 10

and ui(t) = exp(−t)(sin(πit)) in Figure 11 for (i = 1, 2) since we have two inputs (B ∈ Rnv×2).

As you notice all the figures 8–11 illustrate a good accuracy of the reduced output compared to

the original one. Error in the outputs for the same input selections given above are presented on170

the right sides of Figures 8–11.
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Figure 8: Left: time domain response (output 1 for input 1 with u1(t) = 0.5 exp(−t)(2 + sin(2πt))). Right: the

error-norms ‖y − ym‖2.
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Figure 9: Left: time domain response (output 2 for input 2 with u2(t) = sin(12t)). Right: the error-norms ‖y−ym‖2.
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Figure 10: Left: time domain response (output 1 for input 1 with u1(t) = sin(t)). Right: the error-norms ‖y−ym‖2.
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Figure 11: Left: time domain response (output 2 for input 2 with u2(t) = e−tsin(2πt)). Right: the error-norms

‖y − ym‖2.

Example 4. For the last example, we showed a visualisation test using two known benchmark

examples, namely driven cavity and cylinder wake. See [24] for more details about these benchmark

examples. As a first test, we considered a driven cavity on the unit square Ω = (0, 1)2 while for

the second test, we considered the cylinder wake on the domain as illustrated in Figure 12. All the

examples are modelled by the following Stokes equations as described in Section 2.

∂v

∂t
− 1

Re
∆v +∇p = 0, (32a)

∇ · v = 0, (32b)

v|Γ = g, (32c)

v|t=0 = v0, (32d)

where Re is the Reynolds number and v0 is an initial condition. The boundary conditions that
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Figure 12: An illustration of the computational domains. Top: driven cavity flow, Bottom: flow around a cylinder.

model the driven cavity example is described as follows

g :

 v = [1, 0]T on Γ0,

v = [0, 0]T elsewhere.

For the cylinder wake example, we prescribe at the inflow Γ0 a parabolic velocity profile through

the function

h(s) = 4
(

1− s

0.41

) s

0.41
.

At the Γ1 outflow a do-nothing condition is imposed, as well as no-slip condition i.e., zero Dirchlet

conditions at the upper and lower wall of the domain and at the cylinder periphery.

g :


v = [h(x1), 0]T on Γ0,

pn− 1
Re

∂v
∂n = [0, 0]T on Γ1,

v = [0, 0]T elsewhere.

For both examples, we considered Re=50 and aim to determine a reduced system via our proposed

method describe by Algorithm 2. The dimension of the reduced systems is m = 30 and the

dimension of the state space of the first test is nv +np = 4796+672 = 5468 and for the second test

nv + np = 3042 + 441 = 3483. The data of the second test was provided from [11] with B ∈ Rnv×6
175

and C ∈ R8×nv . A visual comparison of the velocity computed via the full and the reduced system

is performed. One can notice that for both tests, the reduced system captures the dynamic of the

full system with a good precision.
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Figure 13: Cylinder wake : The |v| magnitude obtained from the full system (top) and |vm| obtained from the

reduced system (bottom). The error ‖v − vm‖ = 5.57× 1e−05.

Figure 14: Lid driven cavity : The |v| magnitude obtained from the full system (left) and |vm| obtained from the

reduced system (right). The error ‖v − vm‖ = 3.62× 1e−06.

Conclusion180

In this paper, we proposed some projection methods based on extended Krylov subspaces to

get reduced order multiple input and multiple output large-scale dynamical systems obtained by a

discretization in space of Stokes equations. After a spacial discretization, we obtained differential

algebraic equations (DAEs) of index-2. Before projecting, we used a technique to transform the

initial DAE system (7) to an ODE system (14). We gave a strategy to avoid dense computations,185

while performing the model reduction through an extended block Krylov algorithm. The given

numerical results show the performance of the proposed approach for Stokes equations.
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