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Abstract

Navier-Stokes equations are well known in modelling of an incompressible Newtonian fluid, such

as air or water. This system of equations is very complex due to the non-linearity term that

characterizes it. After the linearization and the discretization parts, we get a descriptor system

of index-2 described by a set of differential algebraic equations (DAEs). The two main parts we

develop through this paper are focused firstly on constructing an efficient algorithm based on a

projection technique onto an extended block Krylov subspace, that appropriately allows us to

construct a reduced system of the original DAE system. Secondly, we solve a Linear Quadratic

Regulator (LQR) problem based on a Riccati feedback approach. This approach uses numerical

solutions of large-scale algebraic Riccati equations. To this end, we use the extended Krylov

subspace method that allows us to project the initial large matrix problem onto a low order

one that is solved by some direct methods. These numerical solutions are used to obtain a

feedback matrix that will be used to stabilize the original system. We conclude by providing

some numerical results to confirm the performances of our proposed method compared to other

known methods.

Keywords: Algebraic Riccati equations, Feedback Matrix, Krylov subspaces, Linear

Quadratic Regulator(LQR), Navier-Stokes equations.

1. Introduction

Navier-Stokes equations (NSEs) are very important in the physics of fluid mechanics. The

existence and smoothness of solutions is not yet guaranteed, although these equations are still of

interest to engineers and scientists in many technical fields. One of the main reason that makes

the solution of NSEs not unique is the chaotically appearing turbulences due to a naturally5
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existing instabilities. In fact, these turbulences cannot be computed or predicted either, that

is why we need to seek for stabilization techniques. The stabilization of incompressible flow

problems described by Navier-Stokes equations is at the heart of a wide range of engineering

applications, since they require a stable and controlled velocity field, which is considered to be

the basis for ongoing reaction or production processes. A bench of work based on the theoretical10

setting has been established by several authors for the stabilization of two and three-dimensional

Navier-Stokes equations using a feedback control; see M. Badra [1, 2], V. Barbu et al.,[3, 4],

A.V. Fursikov [5] and J. P. Raymond et al., [6, 7, 8]. Other works have been performed for the

stabilization of two-dimensional Navier-Stokes equations based on a numerical setting by solving

large-scale Linear Quadratic Regulator (LQR) problem using a Riccati-feedback approach; see15

[9, 10]. In [9] Bansch et al., proposed a generalized low-rank Cholesky factor Newton method

to stabilize a flow around a cylinder. The LQR approach that interests us is based on a finite

dimensional matrix derived from the discretization of the linearized Navier-Stokes equations

around a steady state. After the discretization stage we get a descriptor index-2 system of

differential algebraic equations (DAEs) of a high dimension. Another way to deal with this20

stabilization problem is to choose an appropriate method that allows us to construct a reduced

system to the one described by a set of DAEs and then we stabilize the reduced system instead

of the original one. This approach is convenient since it is based on the treatment of lower

dimensional systems that makes the computation feasible. In [11] the authors use a balanced

truncation method to construct an efficient reduced system and they solve the obtained LQR25

problem associated the reduced system based on a Riccati feedback approach.

Two main parts will be covered in this paper. The first one focuses on describing an efficient

method to reduce a large-scale descriptor index-2 system of differential algebraic equations, de-

picted from a spatial discretization of the linearized Navier-Stokes equations around a steady

state. This method is based on a projection technique onto an extended block Krylov subspace,30

and it allows us to construct a reduced system that has nearly the same response characteristics.

A bench of work has been done to build an effective reduced model, such as projection tech-

niques onto suitable Krylov-based subspaces as the rational or extended-rational block Krylov

subspaces, see [12, 13, 14, 15, 16, 17, 18]. Another class of methods described in [19, 20, 21] con-

tains balanced truncation methods. Numerous model reduction methods have been explored35

for Navier-Stokes equations using balanced truncation and proper orthogonal decomposition

[22, 11]. A balanced truncation model reduction method for the Ossen equations has been

investigated in [23]. For large problems, Krylov subspace methods are more efficient in term of

cpu-time and memory requirements which is not the case for the methods based on balanced

truncation since they require solving two large Lyapunov matrix equations at each iteration of40
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the process and also the computation of singular value decompositions. All these methods that

we mentioned here work properly for a class of descriptor dynamical systems represented by

a set of ordinary differential equations (ODEs). Unfortunately, this is not our case since the

dynamical system that we are dealing with is represented by a set of DAEs and therefore these

methods are not directly applicable. Hence, one needs a process that ensures a transformation45

of DAEs into ODEs in an appropriate manner. This will result in a dense projector called the

Leray projection and to overcome this problem, we give a simplification on how to avoid this

dense projection matrix while performing our process to get a reduced system. The second part

of the paper is devoted to solving a derived Linear Quadratic Regulator (LQR) problem using

a Riccati feedback approach. The major issue that we have to deal with is to solve a large-scale50

algebraic Riccati equation [24, 25, 26], which is the key to design a controller represented by a

feedback matrix. Our aim is to stabilize the unstable system by using the constructed feedback

matrix. We propose an extended block Arnoldi algorithm with appropriate computational re-

quirements. The LQR problem used here is associated to the ODE system that relies on Leray

projections appearing after the transformation to a set of an ODEs. We will explain how to55

avoid an explicit use of the Leray projection while solving the obtained LQR problem.

The remainder of this paper is structured as follows. In Section 2, we describe the incom-

pressible Navier-Stokes equations with the linearization around a steady state, and its descriptor

index-2 system of differential algebraic equations that arise after a mixed finite element method.

The derivation of the obtained ODE system is also explained. Section 3 deals with the extended60

block Krylov subspace method that allows us to construct an appropriate reduced model to the

ODE system by avoiding the dense projection matrix that appears after the transformation to

ODEs. In Section 4, a Riccati feedback approach is explained and we show how to solve the

LQR problem associated with the ODE system. This approach is based on solving a large-scale

algebraic Riccati equation using an extended block Krylov subspace method. In the last section,65

we provide some numerical experiments to show the effectiveness of the proposed approaches.

2. Navier-Stokes equations (NSEs) : Linearization and Discretization

Navier-Stokes equations for a viscous, incompressible Newtonian fluid in a bounded domain

Ω ⊂ R2 with boundary ∂Ω are given by
∂z

∂t
− 1

Re
∆z + (z · ∇)z +∇p = f,

∇ · z = 0,
(1)

where for t ∈ [0,∞) and x = [x1 x2]T ∈ Ω ⊂ R2, the vector z(t, x) = [z1(t, x), z2(t, x)] ∈ R2

refers to the velocity field, p(t, x) ∈ R is the pressure field, f is known as the forcing term and

3



Re ∈ R+ is the Reynolds number. The operators ∆, ∇ and ∇· are defined as the Laplacien,

the Gradient and Divergence operators, respectively. The convective term in our model is a

non-linear operator defined as

(z · ∇)z =

z1
∂z1

∂x1
+ z2

∂z1

∂x2

z1
∂z2

∂x1
+ z2

∂z2

∂x2

 .
The boundary Γ = ∂Ω can be partitioned as follows

Γ = Γin ∪ Γout ∪ Γwall ∪ Γfeed.

We therefore impose the following boundary conditions on the respective parts of the boundary

z =


φfeed on Γfeed,

φin on Γin,

0 on Γwall.

The condition given below called, the do-nothing condition

− 1

Re
∇z n+ pn = 0 on Γout,

where n denotes the unit outer normal vector to Γout.

Figure 1: Domain Ω represented by a cylinder wake.

Navier-Stokes equations (NSEs) were derived independently by G.G. Stokes and C.L. Navier

in the early 1800’s. These equations describe the relationship between the velocity and the70

pressure of a moving fluid. NSEs represent the conservation of momentum. The fact that the

convection term (z · ∇)z is non-linear is what makes the NSEs complex. For incompressible

flows, the second equation of the system (1) is called the continuity equation. In what follows,

we present a linearization approach as it is described in [9].
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2.1. Linearization75

We consider a stationary motion of an incompressible fluid described by the velocity and

pressure couple (ws(t, x), ps(t, x)) that fulfills the stationary Navier-Stokes equations

− 1

Re
∆ws + (ws · ∇)ws +∇ps = f, (2)

∇ · ws = 0.

Here, the same boundary and initial conditions of the first equations are considered. The pair

(ws, ps) depicts the desired stationary but possibly unstable solution of system (1).

We define the following differences80

v(t, x) = z(t, x)− ws(x),

χ(t, x) = p(t, x)− ps(t, x).

Replacing in (1) and dropping the non-linear term, we obtain the following linearized Navies-

Stokes equations

∂v

∂t
− 1

Re
∆v + (ws · ∇)v + (v · ∇)ws +∇χ = 0, (3a)

∇ · v = 0, (3b)

defined for t ∈ [0,∞) and x ∈ Ω ⊂ R2 with Drichlet boundary conditions

v = 0 on Γin ∪ Γwall, (3c)

v = φfeed on Γfeed, (3d)

a do-nothing condition is described as

− 1

Re
∇v n+ χn = 0 on Γout,

and the initial condition

v(0, ·) = 0 in Ω.

v is defined as perturbation of our flow field z from the desired stationary flow field ws. A zero

output for t → ∞ implies that v approximates ws for t → ∞. As a consequence our flow field

achieves the properties of the desired stationary flow field.

2.2. The discrete equations85

The choice of an appropriate discretization technique depends on the specific governing

equations used, for example (compressible or incompressible flow (our case), mesh type (struc-

tured, unstructured). The classical discretization techniques are finite difference, finite element
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and finite volume. One of the known methods used to discretize instationary problems, is the

method of lines which is based on the replacement of the spatial derivatives in the PDE with

algebraic approximations leading to a system of ODEs that approximates the original PDE.

In this subsection, we briefly present the main properties of the discrete equations already es-

tablished in [9]. After using a mixed finite element method, we obtain a system of differential

algebraic equations of the form

M
d

dt
v(t) = Av(t) +Gp(t) + f(t), (4a)

0 = GTv(t), (4b)

where

v(t) ∈ Rnv : the nodal vector of the discretized velocity.

p(t) ∈ Rnp : the discretized pressure.

90

f(t) ∈ Rnv : the forcing term that contains the control.

In what follows, we assume that the forcing term f(t) is given by

f(t) = Bu(t).

Moreover, the matrices M = MT � 0 ∈ Rnv×nv and A ∈ Rnv×nv are supposed to be large

and sparse. They represent the mass matrix and system matrix, respectively. G ∈ Rnv×np is a

full rank matrix represents the discretized gradient and B ∈ Rnv×nb is the input matrix. The

system matrix A ∈ Rnv×nv can be decomposed as follows

A = − 1

Re
L−K −R.

More precisely, −Lv represents the discrete Laplacien ∆v, −Kv is the discrete convection

resulting from (w · ∇)v and −Rv refers to the discrete reaction process of (v · ∇)w. In the

Stokes system, A is symmetric negative definite matrix since there is no role to the matrices

K and R. A computational methods based on Krylov projection techniques and interpolatory

projection to built a reduced system to a Stokes system have been established respectively in

[27, 28]. We add to the system (4) an output function given by

y(t) = Cv(t),

where y(t) is the output vector and CT ∈ Rnv×nc is the output matrix that measures velocity

behaviour using information from internal nodes [9]. The system (4) can be rewritten in a
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compact form

 M 0

0 0


︸ ︷︷ ︸

M

 v̇(t)

ṗ(t)

 =

 A G

GT 0


︸ ︷︷ ︸

A

 v(t)

p(t)

+

 B

0

u(t),

y(t) =
[
C 0

] v(t)

p(t)

 ,
(5)

and we call it a descriptor system since the matrix M is singular. It uses the following matrix-

pencil  A G

GT 0

 ,
 M 0

0 0

 . (6)

This matrix pencil has nv−np finite eigenvalues λi ∈ C\0 and 2np infinite eigenvalues λ∞ =∞,

see Theorem 2.1 in [29]. The system (5) is known as an index-2 descriptor dynamical system,

for more details about the index of differential algebraic equation, see [30]. For a Reynolds

number (Re ≥ 300), some eigenvalues of the matrix pencil (A,M) lie in C+, see [9].95

Next, we present a whole process that allows us to reduce such systems. We describe a model

reduction technique via a Krylov subspace-based method in order to construct an efficient

reduced order system to (5) that has nearly the same response characteristics. To guarantee a

well processing of our suggested method, we need to establish a transformation of the system

(5) into an ordinary differential equations (ODEs).100

2.3. Deriving the ODE system

We first eliminate the discrete pressure p from (4a) using the following projection operator

Π = In −G (GTM−1G)−1GTM−1 ∈ Rnv×nv .

It is easy to check that

(ΠT )2 = ΠT , Π2 = Π, ΠG = 0, ΠM = M ΠT andM−1 Π = ΠTM−1.

The projection ΠT is an M -orthogonal projection where for x, y ∈ Rnv and M ∈ Rnv×nv , the

M -inner product is defined by

< x, y >M= (x,My) = yTMx (M is a symmetric positive definite matrix).

Notice that

null(ΠT ) = range(M−1G) and range(ΠT ) = null(GT ).

By using all these properties we can show that

0 = GTv(t) if and only if v(t) = ΠTv(t). (7)
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Multiplying (4a) by GT M−1 and using (4b), the term p can be expressed as follows

p(t) = −(GT M−1G)−1GT M−1Av(t)− (GT M−1G)−1GT M−1Bu(t).

Replacing p in (4a) and multiplying by Π yields to the following projected system

M d

dt
v(t) = Av(t) + Bu(t), (8a)

y(t) = Cv(t). (8b)

Where A = ΠAΠT ,M = ΠM ΠT , B = ΠB and C = C ΠT . Since the matrix-pencil given by

(6) has nv−np finite eigenvalues [29], a decomposition of Π can be made by employing the thin

singular value decomposition which leads to the following decomposition

Π = ΘlΘ
T
r ,

where Θl, Θr ∈ Rnv×(nv−np), are full rank matrices satisfying

ΘT
l Θr = I(nv−np).

By inserting this decomposition into (8) and considering a new variable ṽ(t) = ΘT
l v(t) with

Θrṽ(t) = ΘrΘ
T
l v(t) = ΠTv(t) = v(t), we get the following ODE system

MΘ
d

dt
ṽ(t) = AΘṽ(t) +BΘu(t), (9a)

y(t) = CΘṽ(t), (9b)

where MΘ = ΘT
rMΘr, AΘ = ΘT

r AΘr ∈ R(nv−np)×(nv−np), BΘ = ΘT
r B ∈ R(nv−np)×nb , CΘ =

CΘr ∈ Rnc×(nv−np). The matrix MΘ is non-singular due to the fact that M is symmetric and

positive definite. Notice that the three systems (4), (8) and (9) are equivalent in the sense that

their finite spectrum is the same [31] and also they realize the same transfer function. Before

proving this result we give the definition of a transfer function associated to the dynamical

system (9), to this end, we apply the Laplace transform given by

L(f)(s) :=

∫ ∞
0

e−stf(t)dt,

to the system (9), then we get the new system in the frequency domain sMΘ Ṽ(s) = AΘ Ṽ(s) +BΘ U(s),

Y (s) = CΘ Ṽ(s).

Where Ṽ(s), U(s) and Y(s) are the Laplace transform of ṽ(t), u(t) and y(t) respectively. By

eliminating Ṽ(s) from the two equations, we obtain

Y(s) = FΘ(s)U(s),

8



where

FΘ(s) = CΘ(sMΘ −AΘ)−1BΘ, (10)

is the transfer function associated to the system (9).

Remark 1. Let Fm be the transfer function associated to the reduced system. In order to

measure the accuracy of the resulting reduced system, we have to compute the error ‖FΘ−Fm‖

with respect to a specific norm. This error can also be used to know how the response of105

the reduced system is close to that of the original one since ‖Y(s) − Ym(s)‖ ≤ ‖FΘ(s) −

Fm(s)‖ ‖U(s)‖.

Denote by X = Θr(sMΘ −AΘ)−1BΘ, then FΘ = CX. In addition, X satisfies

BΘ = (sMΘ −AΘ)ΘT
l X,

or equivalently,

ΠB = Π(sM −A)ΠTX.

Due to the facts that range(ΠT ) = null(GT ) and G is of full rank, we can verify thatsM −A −G

−GT 0

X
?

 =

B
0

 .

In fact, the relation range(ΠT ) = null(GT ) guarantees

GTX = 0,

and the full rank G leads to

? = (GTG)−1GT [(sM −A)X −B],

thus, the desired result

FΘ(s) = C X =
[
C 0

]X
?

 =
[
C 0

]sM −A −G

−GT 0

−1 B
0

 = F (s), (11)

where F (s) is the transfer function associated to the original system (4). The technique used

here allows us to solve a saddle point problem instead of solving a linear system depending on

the dense matrix Π and its Θ-decomposition as established earlier in [23].110

Remark 2. We notice that instead of reducing the original system (5), we can reduce the ODE

system (9) since it has the same transfer functions as it is shown in (11).
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The matrices involved in (9) are dense due to the projector Π and its Θ-decomposition and

that is why we need a strategy to avoid using direct computations with these matrices. In the115

next subsection, we show how to construct a reduced order system to (9) by using the structure

of the original system (5) without requiring any explicit computation of the dense matrices

(MΘ, AΘ, BΘ, CΘ), and this leads to a considerable saving of cost and storage. Our calculations

involve the implicit use of the system (9) and this implies solving saddle point problems. Details

are given in the next section.120

3. A model reduction method to a descriptor index-2 dynamical system

Our goal is to find a reduced system to (9) since it realizes the same transfer function of

(5) as we mentioned before. This new system can be constructed using a projection technique

onto an extended block Krylov subspace that is defined in the following subsection.

3.1. The extended block Arnoldi algorithm125

Multiplying from the left of the first equation of the system (9) by the inverse of MΘ gives

the following system which will be called the Θ-system

d

dt
ṽ(t) = M−1

Θ AΘṽ(t) +M−1
Θ BΘu(t), (12a)

y(t) = CΘṽ(t). (12b)

The extended block Krylov subspace associated to the pair (M−1
Θ AΘ,M

−1
Θ BΘ) is defined as

follows

Kextm (M−1
Θ AΘ,M

−1
Θ BΘ) = Range([(M−1

Θ AΘ)−m(M−1
Θ BΘ), . . . , (M−1

Θ AΘ)−1(M−1
Θ BΘ)

(M−1
Θ BΘ), (M−1

Θ AΘ)(M−1
Θ BΘ), . . . , (M−1

Θ AΘ)m−1(M−1
Θ BΘ)]).

The extended block Arnoldi algorithm for the pair (M−1
Θ AΘ,M

−1
Θ BΘ) is summarized in the

following algorithm.

10



Algorithm 1 The extended block Arnoldi algorithm associated to the Θ system

• Inputs: MΘ ∈ R(nv−np)×(nv−np), AΘ ∈ R(nv−np)×(nv−np), BΘ ∈ R(nv−np)×nb and m.

• Compute [Vb1 ,Λ] = qr([M−1
Θ BΘ, (M

−1
Θ AΘ)−1M−1

Θ BΘ]).

• For j = 1, . . . ,m

1. Set V(1)
j : first nb columns of Vbj ; V(2)

j : second nb columns of Vbj .

2. Ṽj+1 = [(M−1
Θ AΘ)V(1)

j , (M−1
Θ AΘ)−1 V(2)

j ].

3. Orthogonalize Ṽj+1 with respect to Vb1 , . . . ,Vbj to get Vbj+1, i.e.,

for i = 1, 2, . . . , j

Hi,j = (Vbi )T Ṽj+1.

Ṽj+1 = Ṽj+1 − Vbi Hi,j .

end for

4. [Vbj+1, Hj+1,j ] = QR(Ṽj+1).

5. Vj+1 = [Vj , Vbj+1].

End For.

The extended block Arnoldi algorithm allows us to construct an orthonormal basis of

Kextm (M−1
Θ AΘ,M

−1
Θ BΘ) formed by the columns of {Vb1 , . . . ,Vbm}, where Vbj for (j = 1, . . . ,m)

are (nv − np) × 2nb matrices. We also have some classical algebraic properties given in the130

following proposition.

Proposition 1. Let Vm = [Vb1 , . . . ,Vbm] ∈ R2mnb×2mnb be the matrix generated using the ex-

tended block Arnoldi Algorithm 1 to the pairs (M−1
Θ AΘ,M

−1
Θ BΘ), Tm = VTmM−1

Θ AΘ Vm. Then

we have the following results

M−1
Θ AΘ Vm = Vm+1 Tm (13)

= Vm Tm + Vbm+1 Tm+1,mE
T
m, (14)

where Tm+1,m is the last 2nb × 2nb block of Tm ∈ R2(m+1)nb×2mnb and ETm is the last 2nb

columns of the identity matrix I2mnb
.

Proof 1. Using the fact that M−1
Θ AΘKextm (M−1

Θ AΘ,M
−1
Θ BΘ) ⊂ Kextm+1(M−1

Θ AΘ,M
−1
Θ BΘ) and

the orthogonality of Vm, there exists a matrix L such that

M−1
Θ AΘ Vm = Vm+1 L. (15)

11



It has been shown that Tm is an upper block Hessenberg matrix in [16, 32] and also that Tm
can be computed directly from the columns of the upper block Hessenberg matrix Hm generated135

by Algorithm 2. Since Vm+1 = [Vm,Vbm+1], we have

Tm+1 = VTm+1M
−1
Θ AΘ Vm+1

=

 VTmM−1
Θ AΘ Vm VTmM−1

Θ AΘ Vbm+1

(Vbm+1)T M−1
Θ AΘ Vm (Vbm+1)TM−1

Θ AΘVbm+1


=

 Tm VTmM−1
Θ AΘ Vbm+1

(Vbm+1)T M−1
Θ AΘ Vm (Vbm+1)TM−1

Θ AΘVbm+1

 .
We know that Tm+1 is also un upper block Hessenberg matrix, then

Tm+1,mE
T
m = (Vbm+1)T M−1

Θ AΘ Vm,

and

Tm = VTm+1M
−1
Θ AΘVm =

 Tm
Tm+1,mE

T
m

 ∈ R2(m+1)nb×2mnb .

Multiplying by VTm+1 from the left of (15), we obtain Tm = L. As a consequence we get the

desired result

M−1
Θ AΘ Vm = Vm+1 Tm

= [Vm,Vbm+1]

 Tm
Tm+1,mE

T
m


= Vm Tm + Vbm+1 Tm+1,mE

T
m.

After constructing the matrix Vm corresponding to the basis of the extended block Krylov

subspace Kextm (M−1
Θ AΘ,M

−1
Θ BΘ), we can now built the reduced system by considering the

approximation ṽ(t) ≈ Vmvm(t) and by replacing in (9), and then imposing the Petrov-Galerking

condition, we obtain the following projected reduced order dynamical system Mmv̇m(t) = Am vm(t) + Bm u(t),

ym(t) = Cm vm(t),
(16)

with the associated transfer function Fm(s) = Cm(sMm−Am)−1Bm, whereMm = VTmMVm, Am =

VTmAVm ∈ R2mnb×2mnb and Bm = VTmB ∈ R2mnb×nb , Cm = CVm ∈ Rnc×2mnb .

As we mentioned before, the explicit computation of Vm is prohibitive in our approach since

the j-th block Vbj of Vm relies on Θr, which will make our calculations infeasible due to the

density of the Θ-decomposition of the projection Π. In what follows, we describe an appropriate

process to get a reduced system to (12) by avoiding an explicit computation of Vm.
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The main computational issue when we apply the extended block Arnoldi Algorithm 1 to the

pair (M−1
Θ AΘ,M

−1
Θ BΘ) is to compute blocks of the form

Ṽ1 = [M−1
Θ BΘ, (M

−1
Θ AΘ)−1M−1

Θ BΘ] (17)

= [Ṽ(1)
1 , Ṽ(2)

1 ], (18)

and for j = 1, . . . ,m,

Ṽj+1 = [(M−1
Θ AΘ)V(1)

j , (M−1
Θ AΘ)−1 V(2)

j ] (19)

= [Ṽ(1)
j+1, Ṽ

(2)
j+1], (20)

where V(1)
j and V(2)

j are the first and second nb columns of Vbj , respectively. Our strategy

consists in reformulating those blocks onto new ones without an explicit calculation of Θr.

We set Ṽm = ΘrṼm ∈ Rnv×2mnb where Ṽm = [Ṽ1, . . . , Ṽm] ∈ R(nv−np)×2mnb and Ṽm =

[Ṽ1, . . . , Ṽm] ∈ Rnv×2mnb satisfying

ΠT Ṽm = ΘrΘ
T
l Ṽm = ΘrṼm = Ṽm, (21)

We set again Vm = ΘrVm ∈ Rnv×2mnb . All the j-th block Vj ∈ Rnv×2nb of Vm are computed

in an appropriate way, which means that we do not include the matrix Θr in our computation

and also not the block Vbj . Details are given in Algorithm 2.

ΠTVm = ΘrΘ
T
l Vm = ΘrVm = Vm, (22)

The result (21) confirms that GT Ṽm = 0 as it is shown in (7), and consequently we obtain the

following relations

• M−1
Θ BΘ = Ṽ(1)

1 ,

• MΘṼ(1)
1 = BΘ,140

• ΘT
rMΘrṼ(1)

1 = ΘrB,

• ΠMΠT Ṽ
(1)
1 = ΠB,

• Π(MṼ
(1)
1 −B) = 0,

• (MṼ
(1)
1 −B) ∈ null(Π) = range(G).

Then, the first nb block-column Ṽ
(1)
1 of Ṽ1 ∈ Rnv×2nb can be computed by solving the following

saddle point problem M G

GT 0

Ṽ (1)
1

?

 =

B
0

 .
13



The same process can be used to get Ṽ
(2)
1 by starting from the linear system (M−1

Θ AΘ)−1M−1
Θ BΘ =145

Ṽ(2)
1 . After that, one can use the qr function (in MATLAB) to find the block V1 = [V

(1)
1 , V

(2)
1 ] ∈

Rnv×2nb as described in Algorithm 2. To get the first nb block-column Ṽ
(1)
j+1 of Ṽj+1, we use the

following steps

• (M−1
Θ AΘ)V(1)

j = Ṽ(1)
j+1,

• MΘṼ(1)
j+1 = AΘV(1)

j ,150

• ΘT
rMΘrṼ(1)

j+1 = ΘT
r AΘrV(1)

j ,

• ΠMΠT Ṽ
(1)
j+1 = ΠAV

(1)
j ,

• Π(MṼ
(1)
j+1 −AV

(1)
j ) = 0,

• (MṼ
(1)
j+1 −AV

(1)
j ) ∈ null(Π) = range(G).

Then we have to solve the following saddle point problemM G

GT 0

Ṽ (1)
j+1

?

 =

AV (1)
j

0

 .
In the same manner, we can compute the last nb column Ṽ

(2)
j+1 of Ṽj+1 by starting from this155

linear system (M−1
Θ AΘ)−1 V(2)

j = Ṽ(2)
j+1 and following the same previous process.

After showing how to compute the block vectors (17) and (19) without computing neither the

matrix Vm corresponding to the orthonormal basis of Kextm (M−1
Θ AΘ,M

−1
Θ BΘ) nor Θ-decomposition

of Π, we can now present the new extended block Arnoldi algorithm based only on the sparse

system matrices of the index-2 system. Here, we have to mention that this algorithm is based160

on a Gram-Shmidt orthogonalization process, which reconstructs the blocks {V1, . . . , Vm}, such

that their columns form an orthonormal matrix Vm as described in Algorithm 2 step 3.c. This

matrix will be used in order to get an efficient reduced system to the index-2 original one

(4). Details are given in the next subsections. We summarize all these steps in the following

algorithm.165
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Algorithm 2 The extended block Arnoldi algorithm associated to the index-2 system

Inputs: M ∈ Rnv×nv , A ∈ Rnv×nv , G ∈ Rnv×np , B ∈ Rnv×nb and m.

1. solving the first saddle point problemsM G

GT 0

Ṽ (1)
1

?

 =

B
0

 ,
 A G

GT 0

Ṽ (2)
1

?

 =

B
0

 ,
2. Compute [V1,Λ] = qr

(
[Ṽ

(1)
1 , Ṽ

(2)
1 ]
)

, V1 = [V1].

3. For j = 1, . . . ,m

a. Set V
(1)
j : first nb columns of Vj ; V

(2)
j : second nb columns of Vj .

b. V̂j+1 =

M G

GT 0

Ṽ (1)
j+1

?

 =

AV (1)
j

0

 ,
 A G

GT 0

Ṽ (2)
j+1

?

 =

M V
(2)
j

0

.

c. Orthogonalize V̂j+1 with respect to V1, . . . , Vj to get Vj+1, i.e.,

for i = 1, 2, . . . , j

Hi,j = (Vi)
T V̂j+1;

V̂j+1 = V̂j+1 − ViHi,j ;

end for

d. [Vj+1, Hj+1,j ] = QR(V̂j+1).

e. Vj+1 = [Vj , Vj+1].

End For.

As we noticed, the main steps of Algorithm 2 is the solution of a saddle-point problems of

nv + np dimension in Step 1 and in Step 3.b, and we are interesting only in the first nv

rows. At each iteration, a direct solver ”\”, a built-in function on MATLAB, is used to solve

these saddle point problems. The new vector Vj+1 of the matrix Vm can be computed via

the Gram-Shmidt process as we explain in the Step 3.c. The ” ? ” refers to an np × nb block170

that is not taken into account. After m steps of Algorithm 2, we get an orthonormal matrix

Vm = [V1, V2, . . . , Vm] ∈ Rnv×2mnb with Vi ∈ Rnv×2nb . This algorithm built also an upper

block Hessenberg matrix Hm ∈ R2mnb×2mnb whose non zero blocks are the Hi,j . Notice that

each submatrix Hi,j (1 ≤ i ≤ j ≤ m) is of order 2nb × 2nb. A similar algebraic relations to the

one given by (13) can be derived using only the sparse matrices M,A and also the matrix Vm175

generated by Algorithm 2. We present this result in the following proposition.
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Proposition 2. Let Vm ∈ Rnv×2mnb and Tm ∈ R2(m+1)nb×2mnb be the orthonormal matrix

and the upper block Hessenberg matrix generated by Algorithm2, respectively. Then we have

M−1ΠAVm = Vm+1 Tm

= VmTm + Vm+1Tm+1,mE
T
m,

where Π is the projection matrix defined earlier.

Proof 2. Multiplying from the left the relation (13) by Θr, and using the fact that Vm = ΘrVm,

we get

ΘrM
−1
Θ ΘT

r AΘr Vm = ΘrVm+1 Tm, (23)

ΘrM
−1
Θ ΘT

r AVm = Vm+1 Tm. (24)

On the other hand, we know that ΠM = MΠT by definition of Π, and by using the fact that

ΠMΘr = MΘr by the Θ-decomposition, we obtain the following relations

ΠMΘr = MΘr,

ΘlΘ
T
rMΘr = MΘr,

ΘlMΘ = MΘr,

M−1Θl = ΘrM
−1
Θ ,

ΘrM
−1
Θ ΘT

r = M−1Π.

Replacing the last relation in the formula (24), we get the desired result.

Notice that from Step 1 of Algorithm 2, we have

[V1,Λ] = qr ([v, w]) , (25)

where Λ ∈ R2nb×2nb is an upper triangular matrix defined by

Λ =

Λ(1,1) Λ(1,2)

0 Λ(2,2)

 ,
and v, w are the solutions of the following saddle point problemsM G

GT 0

v
?

 =

B
0

 and

 A G

GT 0

w
?

 =

B
0

 .
We notice that M G

GT 0

v
?

 =

B
0

⇔ ΠMΠT v = ΠB, (with ΠT v = v),
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and from (25) we get

[v, w] = [V
(1)
1 , V

(2)
1 ]

Λ(1,1) Λ(1,2)

0 Λ(2,2)

 ,
thus

v = V
(1)
1 Λ(1,1),

and then

VTmM−1 ΠB = VTmV
(1)
1 Λ(1,1) =


Inb

0nb

...

0nb

Λ(1,1). (26)

We have mentioned before that in order to reduce the original system (5), we can construct

a reduced system from the Θ system (9) since they realize the same transfer function as it

is shown in (11). At the iteration m, we approximate ṽ(t) by Vmv̂m(t) where Vm is the

matrix corresponding to the orthonormal basis of Kextm (M−1
Θ AΘ,M

−1
Θ BΘ). By injecting the

approximation of ṽ(t) in the system (9) and enforcing the Petrov-Galerkin condition, we get

the following reduced system ˙̂vm(t) = VTmM−1
Θ AΘ Vm v̂m(t) + VTmM−1

Θ BΘu(t),

ym(t) = CΘVm v̂m(t).
(27)

We know that Tm = VTmM−1
Θ AΘ Vm which can be computed only from the upper block Hes-

senberg matrix Hm generated by Algorithm 2 as we mentioned before, also CΘVm = CΘrVm =

CVm, and by using the fact that M−1
Θ BΘ ∈ Kextm (M−1

Θ AΘ,M
−1
Θ BΘ) which confirms that

VmVTmM−1
Θ BΘ = M−1

Θ BΘ, then we can prove

VTmM−1
Θ BΘ = VTmM−1 ΠB.

Finally, we get the following reduced order LTI dynamical system ˙̂vm(t) = Tm v̂m(t) + Bmu(t),

ym(t) = Cm v̂m(t),
(28)

where Bm =
[
Inb

, 0nb
, . . . , 0nb

]T
Λ(1,1) ∈ R2mnb×nb as it is mentioned in (26), and Cm =

CVm ∈ Rnc×2mnb .

The reduced transfer function is given by

Fm(s) = Cm(sI2mnb
− Tm)−1Bm.

17



Another way to construct a reduced system is by considering the system (9) without inverting

the matrix MΘ. We again approximate ṽ(t) by Vmv̂m(t) where Vm is a matrix described in the

previous sections, then we get the following system VTmMΘVm ˙̂vm(t) = VTmAΘ Vm v̂m(t) + VTmBΘu(t),

ym(t) = CΘVm v̂m(t),
(29)

using the fact that Vm = ΘrVm, we get the following reduced system Mm
˙̂vm(t) = Am v̂m(t) + Bmu(t),

ym(t) = Cm v̂m(t),
(30)

with the associated reduced transfer function

Fm(s) = Cm(sMm − Am)−1Bm,

where Mm = VTmMVm, Am = VTmAVm, Bm = VTmB and Cm = CVm.

In Algorithm 2 we gave a description of the process to get the matrix Vm without any explicit180

computation of Vm or Θr.

Remark 3. The two reduced dynamical systems (28) and (30) are considered efficient reduced

systems compared to the original one represented by the index-2 system (5), but numerically

the first reduced system is more economical since its system matrices (Tm Bm, Cm) could be185

computed appropriately and without requiring matrix-vector products with A and M which is

the case for the second reduced system represented by the system matrices (Mm,Am,Bm, Cm).

4. Solving the LQR problem based on a Riccati feedback approach

The linear quadratic regulator is a well-known classical method for constructing controlled

feedback gains. This feedback allows the design of stable and efficient closed-loop systems.190

We used the transformation explained in Subsection 2.3 that allows us to deal with an LQR

problem governed by an ODE instead of an LQR problem governed by an DAE. Following that,

a classical LQR theory can be applied to solve the new problem based on a Riccati feedback

approach. The main issue with this approach is the solution of a generalized algebraic Riccati

equation (GARe). We mentioned earlier that all calculations are performed using the structure195

of the original DAE system and not that of the ODE one due to the density of projection Π

and its Θ-decomposition which can make our calculations infeasible.
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4.1. The LQR problem associated to the ODE system

The LQR problem consists in minimizing the following cost functional

J (ṽ,u(t)) :=
1

2

∫ ∞
0

(ṽTCTθ Cθṽ + u(t)Tu(t)) dt, (31)

subject to the ODE system (9) constraints defined earlier in Section 2. According to the LQR

approach, the optimal control that minimizes the functional coast (31) subject to the dynamical

constraints (9) is given by

u?(t) = −BTθ XθMθ︸ ︷︷ ︸
:=KΘ

ṽ, (32)

where Xθ ∈ R(nv−np)×(nv−np) is the unique symmetric semi-definite positive stabilizing solution

of the following generalized algebraic Riccati equation (GARe)

R(XΘ) := ATΘXΘMΘ +MΘXΘAΘ −MΘXΘBΘB
T
ΘXΘMΘ + CTΘCΘ = 0. (33)

The unique solution XΘ can be computed using an extended block Krylov subspace method.

This solution is the main ingredient to construct the feedback matrix KΘ ∈ Rnb×(nv−np) that200

asymptotically stabilizes the ODE system (9). However, solving the GARe (33) is not recom-

mended in our process due to the presence of Θ-decomposition of the projection Π. In the

next subsections, we describe how to solve such an algebraic equation (33) without using the

Θ-decomposition in our computations.

4.2. Solving the generalized algebraic Riccati equation205

Our goal is to solve the GARe (33) without any explicit computation of the dense matrices

(MΘ, AΘ, BΘ, CΘ). This statement intended to the fact that those matrices rely on Θr, and a

direct use of them can make our calculations impractical due to the density of Θ-decomposition

of the projection Π. A multiplication from the left and right of (33) by Θl and ΘT
l , respectively,

gives the following result

ΠATΘrXΘΘT
rMΠT + ΠMΘrXΘΘT

r AΠT −ΠMΘrXΘΘT
r BB

T θrXθθ
T
rMΠT + ΠCTCΠT = 0.

Setting X = ΘrXΘΘT
r , and using the fact that ΠM = MΠT , we get

ΠATXΠM +MΠTXAΠT −MΠTXBBTXΠM + ΠCTCΠT = 0.

Since XΠ = ΘrXΘΘT
r ΘlΘ

T
r = ΘrXΘΘT

r = X, same to ΠTX = X, then we obtain the following

final result

ΠATXM +MXAΠT −MXBBTXM + ΠCTCΠT = 0. (34)
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If we set K = BTXM the feedback matrix associated to (34), then the relation between KΘ

and K is given as

KΘ = BTΘrXΘΘT
rMΘr = BTXMΘr = KΘr.

In what follows, we describe an appropriate process to compute the unique solution X =

XT � 0, by avoiding an explicit computation of Θr or the solution XΘ. Multiplying GARe

(33) from the left and the right by the inverse of MΘ, we get

M−1
Θ ATΘXΘ +XΘAΘM

−1
Θ −XΘBΘB

T
ΘXΘ +M−1

Θ CTΘCΘM
−1
Θ = 0.

Then we apply the extended block Arnoldi Algorithm 1 to the pair (M−1
Θ ATΘ,M

−1
Θ CTΘ). The

same process described in Section 3 is followed here. We set again Vm = ΘrVm ∈ Rnv×2mnc

satisfying

ΠTVm = ΘrΘ
T
l Vm = ΘrVm = Vm. (35)

As we mentioned before, the orthonormal matrix Vm can be constructed using the Algorithm

2 without any explicit computation of Vm or Θr. After m iterations of the process, we can use

Proposition 2 to prove that

M−1ΠATVm = Vm+1 Tm (36a)

= VmTm + Vm+1Tm+1,mE
T
m. (36b)

We seek for a low rank approximate solution to the GARe (34) under the following form

Xm = VmYmVTm, (37)

where Ym ∈ R2mnc×2mnc is the unique solution of a low-dimensional Riccati equation defined

below. Replacing the approximation (37) in the equation (34) and multiplying from the left

and right by the inverse of M , we obtain

M−1ΠATVmYmVTm+VmYmVTmAΠTM−1−VmYmVTmBBTVmYmVTm+M−1ΠCTCΠTM−1 = 0,

which gives

TmYm + YmTTm − YmVTmBBTVmYm + VTmM−1ΠCTCΠTM−1Vm = 0.

When we apply the extended block Arnoldi Algorithm 1 to the pair (M−1
Θ ATΘ,M

−1
Θ CTΘ), we can

notice that M−1
Θ CTΘ = V(1)

1 Λ(1,1) resulting from the use of qr function in Step 2 and then

ΘrM
−1
Θ CTΘ = ΘrV(1)

1 Λ(1,1),

ΘrM
−1
Θ ΘT

r C
T = V

(1)
1 Λ(1,1).

20



We already proved that ΘrM
−1
Θ ΘT

r = M−1Π, which gives

M−1ΠCT = V
(1)
1 Λ(1,1), (38)

VTmM−1ΠCT = VTmV
(1)
1 Λ(1,1) =


Inc

0nc

...

0nc

Λ(1,1). (39)

Finally, we obtain the following low-dimensional Riccati equation

TmYm + YmTTm − YmVTmBBTVmYm + VTmV
(1)
1 Λ(1,1)CT (VTmV

(1)
1 Λ(1,1)C)T = 0, (40)

which is solved by a direct method such as care in MATLAB.

Let R(Xm) be the residual corresponding to the approximation Xm given by

R(Xm) = M−1ΠATXm +XmAΠTM−1 (41a)

− XmBB
TXm +M−1ΠCTCΠTM−1. (41b)

In order to stop the iterations, we need to compute the residual R(Xm) given by (41) without

involving Xm, since it becomes expensive as m increases. The next result shows how to compute

the residual norm of R(Xm) without involving the approximate solution, which is given only in210

a factored form at the end of the process.

Theorem 1. Let Vm ∈ R2mnc×2mnc be an orthonormal matrix generated by Algorithm2. Let

Xm = VmYmVTm be the approximate solution of the GARe (34), then the residual norm is given

by

‖R(Xm)‖ = ‖Tm+1,mE
T
mYm‖, (42)

where Em = [02nc×2(m−1)nc
, I2nc ]T and ‖‖ is the abbreviation of ‖‖2.

Proof 3. According to (36) and (41), we have

R(Xm) = M−1ΠATXm +XmAΠTM−1 −XmBB
TXm +M−1ΠCTCΠTM−1

= M−1ΠATVmYmVTm + VmYmVTmAΠTM−1 − VmYmVTmBBTVmYmVTm +M−1ΠCTCΠTM−1

= (VmTm + Vm+1Tm+1,mE
T
m)YmVTm + VmYm(TTmVTm + EmT

T
m+1,mV

T
m+1)

− VmYmVTmBBTVmYmVTm +M−1ΠCTCΠTM−1.

Using the fact that M−1ΠC = V
(1)
1 Λ(1,1) as it is described in (38), we get

R(Xm) = [Vm, Vm+1]

TmYm + YmTTm + E1Λ(1,1)(E1Λ(1,1))T (Tm+1,mE
T
mYm)T

Tm+1,mE
T
mYm 0

 Vm
Vm+1

 .
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Since Ym is the symmetric solution of the low-dimensional Riccati equation, then215

R(Xm) = Vm+1

 0 (Tm+1,mE
T
mYm)T

Tm+1,mE
T
mYm 0

VTm+1,

and finally we get the desired result

‖R(Xm)‖ = ‖Tm+1,mE
T
mYm‖. (43)

We can check weather we get the desired convergence by verifying the test ‖R(Xm)‖ < ε.

Fortunately, the residual ‖R(Xm)‖ can be computed in a suitable way as described in the

theorem above, without computing the approximate solution Xm. We take the advantage of

Xm as a symmetric positive semi-definite, so it can be decomposed into a product of two

matrices of low-rank as Xm = ZZT , where Z is a matrix of rank less than or equal to 2m.

The benefit from this decomposition is that we just need to store Z in order to compute the

approximate solution Xm. Let Ym = UΣV , the SVD decomposition of Ym where Σ is the matrix

of the singular values of Ym sorted in decreasing order. Let dtol some tolerance and define

Ur, Vr as the first r columns respectively of U and V corresponding to the r singular values

of magnitude greater than dtol. In the numerical experiments, we set dtol=10−12. Setting

Σr = [σ1, · · · , σr], we get Ym ≈ UrΣrV Tr , and it follows that

Xm ≈ ZmZTm, (44)

with Zm = VmUr(Σr)1/2.

The iterations were stopped when the relative residual norm was less than tol = 10−8

‖R(Xm)‖
‖M−1ΠCTCΠTM−1‖

< 10−8. (45)

We mentioned before that all our results are obtained without any explicit computation of Π,

so to compute M−1ΠCT in an appropriate manner we use the formula (38), and then

M−1ΠCTCΠTM−1 = V
(1)
1 Λ(1,1)(V

(1)
1 Λ(1,1))T , (46)

where V
(1)
1 is the first nc block-column of V1 ∈ Rnv×2nc and Λ(1,1) ∈ Rnc×nc is the block

(1, 1) of the upper triangular matrix Λ ∈ R2nc×2nc previously described in (25). The following

algorithm summarizes all the results explained above.
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Algorithm 3 Extended block Arnoldi Riccati algorithm (EBARA)

• Inputs: M, A ∈ Rnv×nv , G ∈ Rnv×np , B ∈ Rnv×nb , C ∈ Rnc×nv , tolerance ε, dtol,

number of iteration mmax.

• Outputs: the approximate solution Xm ≈ ZmZTm.

• For m = 1, · · · ,mmax

• Use Algorithm 2 to compute Vm an orthonormal matrix and compute Tm the block

Hessenberg matrix.

• Solve the low-dimensional Riccati equation (40) using the MATLAB function care.

• Compute the relative residual norm (45) using (43) and (46), and if it is less than ε, then

1. Compute the SVD of Ym = UΣV where Σ = diag[σ1, · · · , σ2m].

2. Determine r such that σr+1 < dtol ≤ σr, set Σr = diag[σ1, · · · , σr] and compute

Zm = VmUr(Σr)1/2.

end if.

• End For

5. Numerical experiments220

In this section, we present some numerical results to confirm the performance of the pro-

posed approaches. All the experiments were carried out using MATLAB R2018a on a computer

with Intel ® core i7 at 2.3GHz and 8Gb of RAM. The MATLAB programs representing the

two algorithms (Algorithm 2, Algorithm 3) are available in https://lmpa.univ-littoral.

fr/index.php?page_id=8. Our method is applied to a discretized Navier-Stokes equations as225

described in Section 2. We first show how our method allows us to build an efficient reduced

model by presenting the transfer functions of the original and reduced systems with the asso-

ciated error. Then we investigate the numerical solution of the GARe (34) using Algorithm 3

and as we mentioned earlier this numerical solution is actually the key to construct the matrix

feedback used to stabilize the unstable system. All the data was provided from [9]. Some in-230

formation on this data are depicted in Table 1. The state dimension nv refers to the dimension

of the discretized velocity field, and np is the dimension of the discretized pressure field, also

sparsity of each matrix A and M is given, i.e., the ratio of the number of non-zero elements

to the total number of elements in the matrix. We used different dimensions of nv and np
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corresponding to three levels. Note that the norm used here is the H∞ norm and it expressed

Table 1: The matrix dimensions for different levels

Level nv np full model (nv + np) sparsity of A&M

1 4796 672 5468 4.6 · 10−3 | 2.3 · 10−3

2 12292 1650 13942 1.8 · 10−3 | 9.05 · 10−4

3 28914 3784 32698 7.79·10−4 | 3.89 · 10−4

235

as ‖F −Fm‖∞ = sup
ω∈R
‖F (jω)−Fm(jω)‖2. To compute this norm we use the following functions

from lyapack [33]

1. lp lgfrq : Generates a set of logarithmically distributed frequency sampling points ω ∈

[10−5, 105].

2. lp gnorm : Computes a vector which contains the 2-norm ‖F − Fm‖ = σmax(F (iω) −240

Fm(iω)) for each sampling points ω ∈ [10−5, 105] and i =
√
−1.

Example 1 For this example, we show the frequency response of the original and reduced

systems. We considered the three models from Table 1 where we associate level 1 with Reynolds

number Re = 300, level 2 with Re = 400 and level 3 with Re = 500. For the three models we

used m = 120 and then the dimension of the reduced system is 2×m×nb = 480. For a Reynolds245

number Re < 100, Navier-Stokes flow starts to behave like a Stokes flow, and this comes from the

fact that the convection term (z ·∇)z in (1) doesn’t have an important impact. Figures 2, 3 and

4 illustrate the obtained results comparing the original transfer function and its approximation

for the three levels. We also plotted the error-norm between the two transfer functions. The

computed error norm ‖F −Fm‖∞ was 1.37 · 10−5 for level 1, ‖F −Fm‖∞ = 9.82 · 10−5 for level250

2 and ‖F − Fm‖∞ = 6.5 · 10−4 for level 3.
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Figure 2: Level 1 with Re= 300: Bode plot (left) and the error norms versus frequencies (right).
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Figure 3: Level 2 with Re= 400: Bode plot (left) and the error norms versus frequencies (right).

Example 2 To investigate the efficiency of Algorithm 2, we compare our method to a common

and deployed model order reduction method knows as the Balanced Truncation (BT). The main

challenge in the BT is to solve larges-scale Lyapunov equations in order to obtain the system

Gramians that will be used to generate a reduced model. The BT algorithm is available at the255

M-M.E.S.S. toolbox, see [34]. The authors used a different data from those presented in Table

1. We chose from their data two level of discretization and we summarize in Table 2 some

information. For the level 1 we used m = 70 and m = 75 for level 2. The tolerance truncation

is set to 10−5. In Figure 5, we plotted the norms ‖F (jω)‖2 and its approximation ‖Fm(jω)‖2
for different values of the frequency ω ∈ [10−5, 105] of the two methods (our method and BT).260

As can be seen, we have obtained a perfect match between the original transfer function and

its approximation for both methods. We show the obtained error-norms ‖F (jω)−Fm(jω)‖2 =

σmax(F (jω)−Fm(jω)) for different values of the frequency ω with the Reynold number Re=300
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Figure 4: Level 3 with Re= 500: Bode plot (left) and the error norms versus frequencies (right).

Table 2: The matrix dimensions for different levels

Level nv np full model (nv + np)

1 3142 453 3595

2 8268 1123 9391

in Figure 6 and with Re=400 in Figure 7. Here, you can notice that the error of our Algorithm

increases rapidly when ω ∈ (1, 103), we tried to alleviate this problem by increasing the number265

of iterations ”m”, but this choice increased the computing time and also increased the error

when ω ∈ (10−5, 1) from 10−10 to 10−4, and this also applies when ω ∈ (103, 105). This is why

we stick with the first choice and do not increase the number of iterations ’m’. We present in

Table 3 the execution time of our algorithm and that based on BT described in [34].
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Figure 6: The error-norms versus frequencies using level 1 with Re=300 (left) and with Re=400 (right).
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Figure 7: The error-norms versus frequencies using level 2 with Re=300 (left) and with Re=400 (right).

Table 3: The CPU-time (in seconds) required for both methods

Reynolds number Re=300 Re=400

Algorithm 2 BT Algorithm 2 BT

Level 1 4.55 13.92 4.17 15.47

Level 2 19.71 51.09 17.78 56.34

Example 3 In this example, we investigate the extended block Arnoldi Riccati algorithm270

(EBARA, Algorithm 3) for solving generalized algebraic Riccati equations (GARe) (34) which

is needed to compute the matrix feedback of our initial problem. We use matrices corresponding

to the level 1 of discretization in Table 1 with different Reynolds numbers Re = 300, 400 and

500. We have established a comparison between our Algorithm 3 and Algorithm 2 (a generalized

low-rank Cholesky factor Newton method) described in [9]. We have summarized in Table 5275
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the number of iterations, ADI and Newton iterations as well as the cpu-time needed to reach

the convergence of both methods

Table 4: The obtained results of both methods

Methods Algorithm 3 Algorithm 2 in [9]

# of iter. cpu-

time(sec)

Rel. res. Newton

& ADI

iter.

CPU-

time(sec)

Rel. res.

Re=300 77 136.77 8.43e−08 8 & 245 323.48 9.10e−09

Re=400 94 378.82 8.36e−08 20 & 301 1124.43sec 2.27e−07

Re=500 109 524.27 8.14e−08 - >1800 -

Stabilizing the unstable system

We recall here the matrix feedback K required to stabilize our original system (5). The

control vector is given by

u(t) = −Kv(t) where K = BTXmM.

The matrix Xm is the approximate solution to GARe (34). We use the relation (44) that allows

us to store Xm in a efficient way, then the feedback matrix has the following form

K = BTZm Z
T
mM.

The Reynolds number chosen here Re = 400 and 500 makes our original system (4) unstable

as we mentioned earlier. We plug in the input u(t) in the unstable original system (4) to get

the stabilized system described as follows

M
d

dt
v(t) = (A−BK)v(t) +Gp(t), (47a)

0 = GTv(t), (47b)

y = C v(t). (47c)

To show the effectiveness of the constructed feedback matrix K, we establish a time domain

response simulation. In all examples (before and after stabilization) we use the same constant

unit as input actuation. We use matrices corresponding to level 1 of discretization in Table 1

and we set m = 120. For each Re = 400 and 500, we first present the time domain response of
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the original and reduced systems and then we plot the time domain response associated with

the stabilized system (47) and its reduced one. It is important to notice that while we perform

the reduction process to the stabilized system (47), using the extended block Krylov subspace

method described in Section 3, we have to solve at each iteration the following saddle point

problem A−BK G

GT 0


︸ ︷︷ ︸

Â

w
?

 =

z
0

 , (48)

Notice that the product BK is dense and this in fact what makes the block (1, 1) of Â dense

too. To avoid this problem of density that can make our computation infeasible, we rewrite the

saddle point problem (48) in a low-rank form
 A G

GT 0


︸ ︷︷ ︸

A

−

B
0


︸ ︷︷ ︸

B

[
K 0

]
︸ ︷︷ ︸

K


w
?

 =

z
0

 ,

and then we use the Sherman-Morrison-Woodbury formula [35]

(A−BK)−1 = A−1 + A−1B(I−KA−1B)−1KA−1.

Besides solving the small dense matrix (Inb
−KA−1B) with right hand side K we need to solve

A−1B and A with the right hand side [z, 0]T , and this can be done easily by adding the nb

columns B to the matrix [z, 0]T , and then instead of solving the problem (48) with Â one can

solve the following saddle point problem A G

GT 0

w
?

 =

z B

0 0

 ,
using ”\”, a built-in MATLAB function.

In Figures 8 and 11, we can see that for both cases Re = 400 and 500, the time domain simulation280

of the original and reduced systems show stability and a good accuracy of the reduced output

compared to the original one. However, after t = 30s some oscillations appear due to the

instability of our original system. We can also see from the right parts of Figure 8 and Figure

11 that the error-norm ‖y− ym‖ increases as the time increases and this is due to the fact that

our reduced system loses its accuracy caused by the instability that characterizes the original285

system. The performance of the matrix feedback allows us to stabilize the unstable system.

This is shown in Figures 9, 10, 12 and 13 using two different Reynolds number Re = 400 and
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Re = 500. In the left side of these figures we display the time domain responses of the original

and reduced stabilized systems of 1st input to 1st output in Figures 9 and 12 with Re = 400

and Re = 500 respectively, and also of 2nd input to 2nd output in Figures 10 and 13 with290

Re = 400 and Re = 500 respectively. One can notice that the figures illustrate a good accuracy

of the reduced output compared to the original one. Moreover, it can be seen that after few

oscillations that end in t = 5s, the output of the stabilized system stabilize at constant values.

On the right hand side of Figures 9, 10, 12 and 13, we show the error in the outputs for the

same inputs and we notice that after the stabilization, the error ‖y − ym‖ does not increase as295

the time increases which was not the case before stabilization. This proves the accuracy of our

method of constructing a feedback matrix for stabilization using the EBARA Algorithm 3.
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Figure 8: Left: time domain response simulation of the unstable system with Re=400. Right: the error norm

‖y − ym‖.
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Figure 9: Left: time domain response for the stabilized system (input 1 to output 1) original and reduced

systems. Right: the error norm ‖y − ym‖.
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Figure 10: Left: time domain response for the stabilized system (input 2 to output 2) original and reduced

systems. Right: the error norm ‖y − ym‖.
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Figure 11: Left: time domain simulation for the unstable system with Re=500. Right: the error norm ‖y−ym‖.
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Figure 12: Left: time domain response for the stabilized system (input 1 to output 1) of original and reduced

systems. Right: the error norm ‖y − ym‖.

Conclusion

Navier-stokes equations (NSEs) are considered as the pillars of fluid mechanics. A spatial

discretization of the linearized NSEs around a steady state leads to a high dimension descriptor300

31



0 5 10 15 20 25 30 35 40

time(sec)

0

0.05

0.1

0.15

0.2

0.25

y 
a
n
d
 y

m
Original system

Reduced System

0 5 10 15 20 25 30 35 40

time(sec)

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

|y
-y

m
|

Figure 13: Left: time domain response for the stabilized system (input 2 to output 2) of original and reduced

systems. Right: the error norm ‖y − ym‖.

system of index-2 presented by a set of differential algebraic equations (DAEs). In this paper,

we proposed a projection Krylov-based method to reduce this large dimension system. Our

proposed method is based essentially on an extended block Arnoldi algorithm that allows us to

build an efficient reduced system with a reasonable cost of computations. The system of NSEs

lost its stability when Reynolds numbers are large and then we need stabilization techniques.305

One of the methods for stabilization that we used here is by solving an LQR problem based

on a Riccati feedback approach. We suggested an extended Krylov-based method to solve the

obtained large-scale algebraic Riccati equation and the obtained numerical solution is the key

to design a controller described by a feedback matrix.
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