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In the present paper, we are interested in developing iterative Krylov subspace methods 
in tensor structure to solve a class of multilinear systems via the Einstein product. In 
particular, we develop tensor variants of the GMRES and Golub–Kahan bidiagonalization 
processes in tensor framework. We further consider the case that mentioned equation 
may be possibly corresponds to a discrete ill-posed multidimensional problem. Applications 
arising from color image and video restoration are included.

© 2022 Published by Elsevier B.V. on behalf of IMACS.

1. Introduction

In this paper, we are interested in approximating the solution of the following linear tensor equation

min‖�(X ) − C‖F , (1)

where � is a linear tensor mapping with C ∈RI1×...×IN × J1×...× J M and X ∈RI1×...×IN × J1×...× J M is an unknown tensor to be 
determined. The linear mapping � should be

φ(X) = A ∗N X , or φ(X) = A ∗N X ∗M B,

where A ∈ RI1×...×IN ×I1×...×IN , B ∈ R J1×...× J M× J1×...× J M , the notations ∗N and ∗M represent the Einstein product along N
and M modes which be defined later.

Tensor equations arise in many applications of modern sciences, e.g., engineering [27], signal processing [24], data mining 
[26], tensor complementarity problems, computer vision, see [10,23,28] for more details. The most recent tensor approaches 
used for numerically solving PDEs have been investigated in [11]. For those applications, one has to take advantage of the 
multidimensional structure to build rapid and robust methods for solving the related problems. For an extensive literature 
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on tensors, one can see for example the papers in [21,22]. Over the last years, many specialized methods for solving tensor 
problems of type (1) have been developed, see e.g. [19] for tensor forms of the Arnoldi and Lanczos processes for well-posed 
problems. Huang et al. [19] pointed out that tensor equations of the form (1) appear in continuum physics, engineering, 
isotropic and anisotropic elastic models. Multilinear systems of the form (1) may also arise from discretization of the high-
dimensional Poisson problem using finite difference approximations [3,19].

In the current paper, we are interested in developing robust and fast iterative Krylov subspace methods via the Einstein 
product to solve ill-posed problems originating from color image and video processing applications. Standard and global 
Krylov subspace methods are suitable when dealing with grayscale images, e.g., [1,2,8,9], while Krylov subspace methods 
can handle similar applications when the blurring linear operator can be decomposed into a Kronecker product of two 
matrices; see [1,2]. However, much work has to be done to numerically solve problems related to multichannel images (e.g. 
color images, hyper-spectral images and videos). We show that modeling these problems in the form of tensor equations 
(1) makes it possible to develop tensor iterative Krylov subspace methods and allows to significantly reduce the overall 
computational cost. We find that solving this kind of problems with the Einstein product can keep the computational cost 
low and the iterative methods based on this product are better than the matrix-based iterative methods. This is because, 
first, without vectorization, the solution and the different types of point spread function (PSF) have a one-to-one correspon-
dence so that sophisticated and complicated boundary conditions are easily integrated in the multilinear system. Second, 
the tensor structure allows the application of tensor Krylov subspace methods. This method replaces the evaluation of the 
matrix-vector products of the standard Krylov subspace methods by evaluation of tensor-tensor products, which can be ex-
ecuted efficiently on many modern computers. It is also worth noting that tensor iterative Krylov subspace methods, based 
on T-product, have been proposed to solve large multilinear tensor equations, e.g., [12,13,8,9]. There are some advantages in 
computing in a Einstein tensor structured domain rather than the T-product. The PSF tensor preserves the low bandwidth 
since the main nodal points sit on the tensor diagonal entries and the rest of the stencil points lie on the off-diagonal 
positions. Although the PSF matrices used in [12,13] to build the blurring tensor model are banded, the blurring matrices 
in higher dimensions have larger bandwidths.

The remainder of paper is organized as follows: In Section 2, we present some symbols and notations used throughout 
the paper. Section 3 includes reviewing the implementation of Tikhonov regularization for tensor equation (1). Furthermore, 
we apply the global forms of GMRES and Golub–Kahan methods via the Einstein product in conjunction with Tikhonov 
regularization. We present the block tensor version of the algorithms in Section 4. Basically, the block tensor forms of the 
Arnoldi process, the GMRES and the Golub–Kahan algorithms are developed and their properties are studied. Section 5 deals 
with reporting the results corresponding to the proposed algorithms for solving numerical examples on restoring blurred 
and noisy color images and videos. Concluding remarks can be found in section 6.

2. Definitions and notations

In this section, we give a brief overview of some basic concepts and present some notions being exploited in the rest of 
the paper. A tensor is a multidimensional array of data and the order is the number of its indices, which is called modes 
or ways. Tensors can be seen as a natural extension of scalars, vectors and matrices to the higher order. Indeed, a scalar 
is a zero order tensor, a vector is a first order tensor and a matrix can be regarded as a tensor of order two. Throughout 
this work, vectors and matrices are respectively denoted by lowercase and capital letters, and tensors of higher order are 
represented by calligraphic letters. We first recall the definition of the n-mode tensor product with a matrix; for more 
details, see [22].

Definition 1. The n-mode product of the tensor A = [ai1 i2...in ] ∈ RI1×...×IN and the matrix U = [u jin ] ∈ R J×In denoted by 
A ×n U , is a tensor of order I1 × . . . × In−1 × J × In+1 × . . . × IN with entries defined by

(A×n U )i1 i2...in−1 jin+1...iN =
IN∑

in=1

ai1i2...iN u jin .

The n-mode product of the tensor A ∈RI1×...×IN with the vector v = [vin ] ∈RIn is an (N − 1)-mode tensor denoted by 
A×̄v whose elements are given by

(A×̄v)i1...in−1in+1...iN =
∑

in

xi1i2...iN vin .

In what follows, we recall the definition and some properties of the tensor Einstein product which is an extension of the 
matrix product; for more details see [3]

Definition 2. Let A ∈ RI1×...×I L×K1×...×KN , B ∈ RK1×...×KN × J1×...× J M , the Einstein product of the tensors A and B is the 
tensor of size RI1×...×I L× J1×...× J M whose elements are defined by
348
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(A ∗N B)i1...iL j1... jM =
∑

k1,...,kN

ai1...iLk1...kN bk1...kN j1... jM .

Here we comment that for a given tensor A ∈ RI1×...×IN × J1×...× J M , the transpose of A, denoted by AT , is the tensor 
whose elements are bi1...iM j1... jm = a j1... jN i1...iM .

Definition 3. The definition of the scalar product between two tensors and its induced norm are given as follows. In partic-
ular, we state the inner product and norms with respect to the Einstein product.

1. The inner product of two same size tensors X , Y ∈RI1×···×IN is defined by

〈X ,Y〉 =
I1∑

i1=1

I2∑
i2=1

. . .

IN∑
iN=1

xi1 i2···iN
yi1i2···iN

.

Notice that for even order tensors X , Y ∈RI1×...×IN × J1×...× J M , we have

〈X ,Y〉 = tr(X T ∗N Y)

where Y T ∈R J1××...× J M×I1×...×IN denote the transpose of Y . The corresponding Frobenius norm X is given by

||X ||F = 〈X ,X 〉 =
√

tr(X T ∗N X ), (2)

where the trace of an even-order tensor Z ∈RI1×...×IN ×I1×...×IN is given by

tr(Z) =
∑

i1...iN

zi1...iN i1...iN .

Notice that the two tensors X , Y ∈RI1×...×IN × J1×...× J M are orthogonal if and only if 〈X , Y〉 = 0.
In [4], the �N product between the N-mode tensors X ∈RI1×···×IN−1×IN and Y ∈RI1×···×IN−1× Ĩ N has been defined as an 

IN × Ĩ N matrix whose (i, j)-th entry is

[X �N Y]i j = tr(X::···:i �N−1 Y::···: j), N = 3,4, . . . ,

where

X �2 Y = X T Y, X ∈RI1×I2 ,Y ∈ RI1× Ĩ2 .

Basically, the product X �N Y is the contracted product of the N-mode tensors X and Y along the first N − 1 modes. It is 
immediate to see that for X , Y ∈RI1×···×IN , we have

〈X ,Y〉 = tr(X �N Y), N = 2,3, . . . ,

and

‖X‖2 = tr(X �N X ) = X �(N+1) X .

We end the current subsection by recalling the following useful proposition from [4].

Proposition 1. Suppose that B ∈RI1×···×IN ×m is an (N + 1)-mode tensor with the column tensors B1, B2, . . . , Bm ∈RI1×···×IN and 
z = (z1, z2, . . . , zm)T ∈ Rm. For an arbitrary (N + 1)-mode tensor A with N-mode column tensors A1, A2, . . . , Am, the following 
statement holds

A�(N+1) (B×̄N+1 z) = (A�(N+1) B)z. (3)

3. Krylov subspace methods via Einstein product and Tikhonov regularization

In this section, we define the tensor global Arnoldi generalizing the classical one [20] and propose iterative methods 
based on Global Arnoldi and Global Golub–Kahan bidiagonalization (GGKB) combined with Tikhonov regularization that are 
applied to the restoration of color images and videos from an available blur and noise-contaminated versions.
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3.1. Tikhonov regularization

Many applications require the solution of several ill-conditioning systems of equations of the form (1) with a right hand 
side contaminated by an additive error,

�(X ) = C + E, (4)

where E is the tensor of error terms that may stem from measurement and discretization errors. An ill-posed tensor 
equation may appear in color image restoration, video restoration, and when solving some partial differential equations in 
several space dimensions. In order to diminish the effect of the noise in the data, we replace the original problem by a 
regularized one. The most popular regularization method is due to Tikhonov [30] for which the original problem is replaced 
by the new one

Xμ = argmin
X

(
‖�(X ) − C‖2

F + μ‖X‖2
F

)
. (5)

The choice of the parameter μ affects how sensitive Xμ is to the error E in the contaminated right-hand side. For the 
vector and matrix cases, many techniques for choosing a suitable value of μ were examined in the literature; for instance 
see [7,9,31] and references therein.

3.2. The GMRES method via Einstein product

Let � be a linear mapping from the tensor space RI1×...×IN × J1×...× J M onto RI1×...×IN × J1×...× J M The m-th tensor Krylov 
subspace is defined by

Km(�,V) = span{V,�(V), . . . ,�m−1(V)} ⊆ RI1×...×IN × J1×...× J M (6)

where �i(V) = �(�i−1(V)) for i = 1, 2, 3, . . ., where �0(V) = V . The process for constructing an orthonormal basis of (6)
is given in Algorithm 1.

Algorithm 1 Global Arnoldi process.
1. Inputs: A linear mapping �, and a tensor V ∈RI1×...×IN × J1×...× J M and an integer m.
2. Set β = ‖V‖F and V1 = V/β .
3. For j = 1, . . . , m

(a) W = �(V j)

(b) for i = 1, . . . , j.
• hij = 〈Vi , W〉,
• W = W − hijVi

(c) endfor
(d) h j+1, j = ‖W‖F . If h j+1, j = 0, stop; else
(e) V j+1 = W/h j+1 j .

4. EndFor

Let H̃m be the upper Hessenberg matrix of size ()m + 1) × m whose entries are the hij from Algorithm 1 and let Hm be 
the matrix obtained from H̃m by deleting the last row. Then, it is not difficult to verify that V1, V2, . . . , Vm obtained from 
Algorithm 1 form an orthonormal basis of the tensor Krylov subspace Km(�, V). Analogous to [4,20], we can prove the 
following proposition.

Proposition 2. Let V be the (M + N + 1)-mode tensor with frontal slices V1, V2, . . . , Vm and Wm be the (M + N + 1)-mode tensor 
with frontal slices �(V1), . . . , �(Vm). Then

Wm = Vm+1 ×(M+N+1) H̃ T
m (7)

= Vm ×(M+N+1) H T
m + hm+1,m Lm ×(M+N+1) Em,

where Em = [0, 0, . . . , 0, em]. Here, the vector em is the m-th column of the identity matrix Im and Lm is the (M + N + 1)-mode 
whose frontal slices are all zero except that last one being equal to Vm+1.

Let X ∈ RI1×...×IN × J1×...× J M , � a linear tensor mapping, C ∈ RI1×...×IN × J1×...× J M and consider the following tensor 
equation

�(X ) = C. (8)

Using Algorithm 1, we can propose the tensor global GMRES method to solve the problem (8). As for the global GMRES, 
we seek for an approximate solution Xm , starting from X0 such that Xm ∈X0 +Km(�, V) and by solving the minimization 
problem
350
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‖Rm‖F = min
X∈X0+Km(�,V)

‖C − �(X )‖F , (9)

where Rm = C − �(Xm). Assume that m steps of Algorithm 1 have been performed. Given an initial guess X0, we set

Xm = X0 +Vm×̄(M+N+1) ym, (10)

which gives Rm =R0 −Wm×̄(M+N+1) ym . In view of Proposition 1 and using the relations (7) from Proposition 2, it follows 
that

‖C − �(Xm)‖F = ‖Vm �(M+N+1) (C − �(Xm))‖2

= ‖Vm �(M+N+1) (R0 −Wm×̄(M+N+1) ym)‖2

= ‖βem+1
1 −Vm �(M+N+1) (Wm×̄(M+N+1) ym)‖2

= ‖βem+1
1 − (Vm �(M+N+1) Wm)ym)‖2

which shows that the unknown vector ym is determined as follows:

ym = arg min
y

‖βem+1
1 − H̃m y‖2. (11)

The relations (10) and (11) define the tensor global GMRES (TG-GMRES). Setting X0 = 0 and using the relations (9), 
(10) and (11) it follows that instead of solving the problem (5) we can consider the following low dimensional Tikhonov 
regularization problem

‖βem+1
1 − H̃m y‖2

2 + μ‖y‖2
2. (12)

The solution of the problem (12) is given by

ym,μ = arg min

∥∥∥∥( H̃m√
μI

)
y −

(
βem+1

1
0

)∥∥∥∥
2
. (13)

The minimizer ym,μ of the problem (13) is computed as the solution of the linear system of equations

H̃m,μ y = H̃ T
mβem+1

1 (14)

where H̃m,μ = (H̃ T
m H̃m + μI). However, solving (13) is numerically better than solving the (14).

Notice that the Tikhonov problem (12) is a matrix one with small dimension as m is generally small. Hence it can be 
solved by some techniques such as the GCV method [15] or the L-curve criterion [16,17,8,9]. An appropriate selection of the 
regularization parameter μ is important in Tikhonov regularization. Here we can use the generalized cross-validation (GCV) 
method [6,15,31]. For this method, the regularization parameter is chosen to minimize the GCV function

GC V (μ) = ||H̃m ym,μ − βem+1
1 ||22

[tr(I − H̃m H̃−1
m,μ H̃ T

m)]2
= ||(I − H̃m H̃−1

m,μ H̃ T
m)βem+1

1 ||22
[tr(I − Hm H−1

m,μ H̃ T
m)]2

.

As the projected problem we are dealing with is of small size, we cane use the SVD decomposition of H̃m to obtain a more 
simple and computable expression of GC V (μ). Consider the SVD decomposition of H̃m = U�V T . Then the GCV function 
can be expressed as (see [31])

GC V (μ) =

m∑
i=1

(
g̃i

σ 2
i + μ

)2

( m∑
i=1

1

σ 2
i + μ

)2
, (15)

where σi is the ith singular value of the matrix H̃m and g̃ = β1U T em+1
1 .

As the number of outer iterations increases, it is possible to compute the m-th residual without forming the solution. 
This is described in the following theorem.

Proposition 3. At step m, the residual Rm = C−�(Xm) produced by the tensor global GMRES method for solving (1) has the following 
expression

Rm = Vm+1×̄(M+N+1) (γm+1 Q mem+1) , (16)
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where Q m is the unitary matrix obtained by QR decomposition of the upper Hessenberg matrix ̃Hm and γm+1 is the last component of 
the vector β Q T

mem+1 in which β = ‖R0‖F and e� ∈R� is the last column of identity matrix. Furthermore,

‖Rm‖F = ∣∣γm+1
∣∣ (17)

Proof. At step m, the residual Rm =R0 −Wm×̄(M+N+1) ym can be expressed as

Rm = R0 − (Vm+1 ×(M+N+1) H̃ T
m)×̄(M+N+1) ym

= R0 −Vm+1×̄(M+N+1)(H̃m ym)

by considering the QR decomposition H̃m = Q mŨm of the (m + 1) × m matrix H̃m , we get

Rm = R0 −Vm+1×̄(M+N+1)(Q mŨm ym).

Using Proposition 1 and straightforward computations show that

‖Rm‖2
F = ‖R0 −Vm+1×̄(M+N+1)(Q mŨm ym)‖2

F

= ‖Vm �(M+N+1) (R0 −Vm+1×̄(M+N+1)(Q mŨm ym))‖2
2

= ‖Q m(Q T
m(βem+1

1 ) − Ũm ym)‖2
2

= ‖β Q T
mem+1

1 − Ũm ym‖2
2

= ‖zm − Ũm ym‖2
2 + ∣∣γm+1

∣∣2
where zm denotes vector obtained by deleting the last component of Q T

m(βem+1
1 ). Since ym solves problem (11), it follows 

that ym is the solution of Ũm ym = zm , i.e.,

‖zm − Ũm ym‖2 = 0.

Note that Rm can be written in the following form

Rm = βVm+1×̄(M+N+1)e
m+1
1 −Vm+1×̄(M+N+1)(H̃m ym)

= Vm+1×̄(M+N+1)(βem+1
1 − H̃m ym)

= Vm+1×̄(M+N+1)(Q m(Q T
m(βem+1

1 )−Ũ ym))

= Vm+1×̄(M+N+1)(Q mγm+1em+1).

Now the result follows immediately from the above computations. �
The tensor global GMRES algorithm with the Tikhonov regularization for the projected problem, is summarized as fol-

lows:

Algorithm 2 Global GMRES method via Einstein product.
1. Inputs A linear mapping �, initial guess X0, a tolerance ε, number of iterations between restarts m and Maxit a maximum number of outer iterations.
2. Compute R0 = C − �(X0), set V = R0 and k = 0
3. Determine the orthonormal frontal slices V1, . . . , Vm of Vm , and the upper Hessenberg matrix H̃m by applying Algorithm 1 to the pair (�,V).
4. Determine μk as the parameter minimizing the GCV function given by (15)
5. Determine ym as the solution of low-dimensional Tikhonov regularization problem (12) and compute Rm

6. If ||Rm| |F < ε or k > Maxit; Set Xm = X0 +Vm×̄(M+N+1) ym and stop.
else: Set V = Rm , k = k + 1 and go to Step 3.

3.3. The Golub–Kahan method via the Einstein product

Instead of projecting orthogonally onto a Krylov subspace and using GMRES method for solving the obtained minimiza-
tion problem, one can apply others schemes based on the Krylov subspaces Km(�, V) and Km(�T , W).

Here, we exploit the tensor Golub–Kahan algorithm via the Einstein product. It should be commented here that the 
Golub–Kahan algorithm has been already examined for solving ill-posed Sylvester and Lyapunov tensor equations with 
applications to color image restoration [5] using the classical n-mode product.

Let C ∈RI1×...×IN × J1×...× J M be given tensor. Then, the global Golub–Kahan bidiagonalization (GGKB) algorithm associated 
to the linear operator � and the initial tensor C is summarized as follows.
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Algorithm 3 Global Golub–Kahan algorithm.
1. Inputs A linear mapping � and an integer �.
2. Set σ1 = ‖C‖F , U1 = C/σ1 and V0 = 0
3. For j = 1, 2, . . . , � Do
4. Ṽ = �T (U j) − σ jV j−1
5. ρ j = ‖Ṽ‖F if ρ j = 0 stop, else
6. V j = Ṽ/ρ j

7. Ũ = �(V j) − ρ jU j

8. σ j+1 = ‖Ũ‖F

9. if ρ j = 0 stop, else
10. U j+1 = Ũ/σ j+1
11. EndDo

Assume that � steps of the GGKB process have been performed, we form the lower bidiagonal matrix C� ∈R�×�

C� =

⎡⎢⎢⎢⎢⎢⎣
ρ1
σ2 ρ2

. . .
. . .

σ�−1 ρ�−1
σ� ρ�

⎤⎥⎥⎥⎥⎥⎦
and

C̃� =
[

C�

σ�+1eT
�

]
∈R(�+1)×�.

Proposition 4. Assume that � steps of Algorithm 3 have performed and all non-trivial entries of the matrix ̃C� are positive. Let Vτ and 
Uτ be (M + N + 1)-mode tensors whose frontal slices are given by V j and U j for j = 1, 2, . . . , τ , respectively. Furthermore, let Wτ

and W̃τ be the (M + N + 1)-mode tensors having frontal slices �(V j) and �T (U j) for j = 1, 2, . . . , τ , respectively. The following 
relations hold:

W� = U�+1 ×(M+N+1) C̃ T
� , (18)

W̃� = V� ×(M+N+1) C T
� . (19)

Proof. From Lines 7 and 10 of Algorithm 3, we have

�(V j) = ρ jU j + σ j+1U j+1 j = 1,2 . . . , �

which conclude (18) from definition of n-mode product. Similarly, Eq. (19) follows from Lines 4 and 6 of Algorithm 3. �
Here, we apply the following Tikhonov regularization approach and solve the new problem

min
X

(
‖�(X ) − C‖2

F + μ−1‖X‖2
F

)
, (20)

We comment on the use of μ−1 in (20) instead of μ below. As for the iterative tensor Global GMRES method discussed 
in the previous subsection, the computation of an accurate approximation Xμ requires that a suitable value of the regu-
larization parameter be used. In this subsection, we use the discrepancy principle to determine a suitable regularization 
parameter assuming that an approximation of the norm of additive error is available, i.e., we have a bound ε for ‖E‖F . This 
priori information suggests that μ has to be determined such that,

‖C − �(Xμ)‖F = ηε, (21)

where η > 1 is the safety factor for the discrepancy principle. A zero-finder method can be used to solve (21) in order to find 
a suitable regularization parameter which also implies that ‖C − �(Xμ)‖F has to be evaluated for several μ-values. When 
the tensor A is of moderate size, the quantity ‖C − �(Xμ)‖F can be easily evaluated. This computation becomes expensive 
when A is a large tensor, which means that its evaluation by a zero-finder method can be very difficult and computationally 
expensive. In what follows, it is shown that this difficulty can be remedied by using a connection between the Golub–Kahan 
bidiagonalization (GGKB) and Gauss-type quadrature rules. This connection provides approximations of moderate sizes to 
the quantity ‖C − �(Xμ)‖F and therefore gives a solution method to inexpensively solve (21) by evaluating these small 
quantities; see [1,2] for discussion on this method.
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Let us consider the following functions of μ,

φ(μ) = ∥∥C − �(Xμ)
∥∥2

F (22)

G� fμ = ‖C‖2
F eT

1 (μC�C T
� + I�)

−2e1, (23)

R�+1 fμ = ‖C‖2
F eT

1 (μĈ�Ĉ T
� + I�+1)

−2e1; (24)

Gl f and R�+1 fμ are pairs of Gauss and Gauss-Radau quadrature rules, respectively, and they approximate φ(μ) as follows

G� fμ ≤ φ(μ) ≤ R�+1 fμ (25)

As shown in [1,2], for a given value of l ≥ 2, we solve for μ the nonlinear equation

G� fμ = ε2 (26)

by using Newton’s method.
The use the parameter μ in (20) instead of 1/μ, implies that the left-hand side of (21) is a decreasing convex function 

of μ. Therefore, there is a unique solution, denoted by με , of

φ(μ) = ε2

for almost all values of ε > 0 of practical interest and therefore also of (26) for � sufficiently large; see [1,2] for analyses. 
We accept μ� that solve (21) as an approximation of μ, whenever we have

R�+1 fμ ≤ η2ε2. (27)

If (27) does not hold for μl , we carry out one more GGKB steps, replacing � by � + 1 and solve the nonlinear equation

G�+1 fμ = ε2; (28)

see [1,2] for more details. Assume now that (27) holds for some μ� . The corresponding regularized solution is then com-
puted by

X� = V�×̄(M+N+1) y�, (29)

where yμ�
solves

(C̄ T
� C̄� + μ−1

� Il)y = σ1C̄ T
� e1, σ1 = ‖C‖F . (30)

The unknown vector y can also be computed by solving the least-squares problem

min
y∈R�

∥∥∥∥[μ
1/2
� C̄�

I�

]
y − σ1μ

1/2
� e1

∥∥∥∥
2

, (31)

which is numerically better than solving (30). The following result shows an important property of the approximate solution 
(29). We include a proof for completeness.

Proposition 5. Under assumptions of Proposition 4, let μ� solve (26) and let yμ�
solve (31). Then the associated approximate solution 

(29) of (20) satisfies∥∥�(Xμ�
) − C

∥∥2
F = R�+1 fμ�

Proof. By Eq. (18), we have �(Xμ�
) =W�×̄(M+N+1) y� =U�+1×̄(M+N+1)(C̃� y�). Using the above expression, we obtain∥∥�(Xμ�

) − C
∥∥2

F = ∥∥U�+1×̄(M+N+1)(̃C� y�) − σ1U1
∥∥2

F

= ∥∥U�+1×̄(M+N+1)(̃C� y�) −U�+1×̄(M+N+1)(σ1e1)
∥∥2

F

= ∥∥U�+1×̄(M+N+1)

(
C̃� y� − σ1e1

)∥∥2
F

=
∥∥∥U�+1 �(M+N+1) (U�+1×̄(M+N+1)

(
C̃� y� − σ1e1

)
)

∥∥∥2

F

=
∥∥∥(U�+1 �(M+N+1) U�+1

)(
C̃� y� − σ1e1

)
)

∥∥∥2

2

= ∥∥C̃ y − σ e
∥∥2
� � 1 1 2
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recalling that σ1 = ‖C‖F . We now express yμ�
with the aid of (30) and apply the following identity

I − A
(

AT A + μ−1 I
)−1

AT =
(
μA AT + I

)−1

with A replaced by Ĉ� , to obtain

∥∥�(Xμ�
) − C

∥∥2
F = σ 2

1

∥∥∥∥e1 − C̃�

(
C̃ T

� C̃� + μ−1
� I�

)−1
C̃ T

� e1

∥∥∥∥2

F

= σ 2
1 eT

1

(
μ�C̃�C̃ T

� + I�+1

)−2
e1

= R�+1 fμ�

which conclude the assertion. �
The following algorithm summarizes the main steps to compute a regularization parameter and a corresponding regular-

ized solution of (1) using GGKB and quadrature rules method for Tikhonov regularization.

Algorithm 4 GGKB and quadrature rules method for Tikhonov regularization.
1. Inputs A linear mapping �, η ≤ 1 and ε.
2. Determine the orthonormal bases Ul+1 and Vl of tensors, and the bidiagonal matrices C� and ̃C� by implementing Algorithm 3.
3. Determine μ� that satisfies (26) with Newton’s method.
4. Determine yμ�

by solving (31) and then compute Xμ�
by (29).

4. Block Krylov subspace methods via Einstein

In this section the block generalizations of the GMRES and Golub–Kahan methods via Einstein product are theoretically 
discussed. To this end, first, some required definitions and proprieties are given. Then, we present the block Arnoldi process 
in tensor framework.

4.1. Basic concepts

In this part, we briefly recall some preliminaries which are used for deriving the block versions of the algorithms, for 
more details see [3,25,29]. The unfolded tensor is given by the following definition which is refereed to a matrix obtained 
by systematically reorganizing the tensor’s entries into a two-dimensional array.

Definition 4. The transformation ΨI J from the tensor space RI1×...×IN × J1×...× J M into the matrix space R(I1...IN )×( J1... J M )

with ΨI J (X ) = X is defined component-wise as

Xi1...iN j1... jM = (Xivec(i,I)ivec(j,J))

where X ∈ RI1×...×IN × J1×...× J M , X ∈ R(I1...IN )×( J1... J M ) , ivec(i, I) and ivec(j, J) are respectively two index functions corre-
sponding to the subscript set i := {i1, . . . , iN} and j := { j1, . . . , jM}, i.e.,

ivec(i, I) = i1 +
N∑

r=2

(ir − 1)

r−1∏
u=1

Iu . (32)

ivec(j,J) = j1 +
M∑

s=2

( js − 1)

s−1∏
v=1

J v , (33)

and I := {I1, . . . , IN }, J := { J1, . . . , J M} are respectively referred to the row mode and the column mode of X .

By Definition 4, the concepts of upper/lower triangular, sub-column and row/column block for matrices can be extended 
for tensors using the following three definitions.

Definition 5. Let U and R belong to C I1×...×IN ×I1×...×IN .

1. The tensor U is upper triangular if the entries ui1,...,iN , j1,..., jN = 0 when ivec(i, I) ≥ ivec(i, J).
2. The tensor R is lower triangular if the entries ri1,...,iN , j1,..., jN = 0 when ivec(i, I) ≤ ivec(j, J).
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Definition 6 (Sub-column tensor). Let A = (ai1,...,iN , j1,..., jM ) ∈ C I1×...×IN × J1×...× J M . The j-th sub-column of A is the tensor 

A(:,...,:| j1,..., jM ) = (a:,...,:, j1,..., jM ) ∈C I1×...×IN where j = jM +
M−1∑
r=1

[
( jr − 1)

M∏
L=r+1

J L

]
.

Definition 7. Let A ∈C I1×...×IN × J1×...× J M , B ∈C I1×...×IN ×K1 ×...×KM , C ∈C J1×...× J M×I1×...×IN and D ∈CK1×...×KM×I1×...×IN . 
Then, the following block tensors can be defined analogous to block matrices.

1. Row block tensor: The row block tensor of A and B denoted by [A B] is the tensor of size IN × β1 × . . . × βM where 
IN = I1 × I2 × . . . × IN , and βi = J i + Ki for i = 1, . . . , M .

2. Column block tensor: The column block tensor of C and D is defined as[
C
D

]
=
[
CT DT

]T ∈Cβ1×...×βM×IN

where IN = I1 × I2 × . . . × IN , and βi = J i + Ki for i = 1, . . . , M .
3. Let T1 = [A1 B1], T2 = [A2 B2] be two row block tensors, where A1 ∈RI1 ×...×IN × J1×...× J M , B1 ∈RI1×...×IN ×K1×...×KM , 

A2 ∈RL1×...×LN × J1×...× J M and B2 ∈RL1×...×LN ×K1×...×KM . We define the following block tensor accordingly,[
T1
T2

]
=
[
A1 B1
A2 B2

]
∈Cρ1×...×ρN ×β1×...×βM

where ρi = Ii + Li, i = 1, . . . , N and β j = J j + K j, j = 1, . . . , M .

We end this subsection by the following useful proposition which provide properties of the Einstein product between 
block tensor, see [29] for more details.

Proposition 6. Let the tensors A, B, C, D, Ai and Bi for i = 1, 2 are defined in the same way given by Definition 7 and F ∈CIN ×IN

where IN = I1 × I2 × . . . × IN as before. Then, the following statements hold:

• F ∗N [A B] = [F ∗N A F ∗N B] ∈CIN ×β1×...×βM .

•
[
C
D

]
∗N F =

[
C ∗N F
D ∗N F

]
∈Cβ1×...×βM×IN .

• [A B] ∗M

[
C
D

]
=A ∗M C +B ∗M D ∈CIN ×IN .

•
[
A1 B1
A2 B2

]
∗M

[
C
D

]
=
[
A1 ∗M C +B1 ∗M D
A2 ∗M C +B2 ∗M D

]
∈Cρ1×...×ρM×IN .

4.2. Block Arnoldi process via the Einstein product

In this part, we present the block Arnoldi process for tensors via the Einstein product which can be seen a generalization 
of the well-know block Arnoldi process for matrices.

Let A ∈ RI1×...×IN ×I1×...×IN be a square tensor and V ∈ RI1×...×IN × J1×...× J M . The m-th tensor block Krylov subspace is 
defined by

KBlock
m (A,V) = Range

([
V,A ∗N V, . . . ,Am−1 ∗N V

])⊆ RI1×...×IN (34)

where Ai =A ∗N Ai−1 for i = 1, . . . , m − 1 where A0 is the identity tensor and for any Z ∈RI1×...×IN × J1×...× J M , the Range
of Z is defined by

Range(Z) =
{
Y ∈ RI1×...×IN | Y = Z ∗M X for some X ∈R J1×...× J M

}
.

To apply the block version of the Arnoldi process via the Einstein product, we need to present QR factorization via the 
Einstein product in the following theorem.

Theorem 1. Let A ∈RI1×...IN × J1 ×...× J M , then there exists an orthogonal tensor Q ∈RI1××...IN × J1×...× J M (QT ∗N Q = IM ) and the 
upper triangular tensor R ∈R J1××... J M× J1××... J M such that

A = Q ∗M R. (35)

The decomposition (35) is called the QR factorization of the tensor A.
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Proof. Let A ∈ RI1×...IN × J1×...× J M , assume that the QR factorization of the unfolding matrix A = ΨI J (A) is: A = Q R , we 
have A = Q R . Since Ψ is a bijection, we get

A = Ψ −1
I J (A) = Ψ −1

I J (Q R)

= Q ∗M R �
The algorithm for constructing an orthonormal basis of the tensor block Krylov subspace (34) is given by Algorithm 5. 

Notice that in the case N = M = 1, Algorithm 5 reduces to the well known block Arnoldi process.

Algorithm 5 Bock Arnoldi process via the Einstein product.
1. Inputs: A tensor A ∈RI1×...×IN ×I1×...×IN , a tensor V ∈RI1×...×IN × J1×...× J M and the integer m.
2. Set V = Q ∗M R, Vb

1 = Q and H1,0 = R.
3. For j = 1, . . . , m
4. W = A ∗N Vb

j
5. for i = 1, . . . , j.

• Hi j = VbT

i ∗N W ,

• W = W −Vb
i ∗M Hi j

6. endfor
7. W = Q ∗M R, Vb

j+1 = Q and H j+1, j = R.
8. EndFor

For notational simplicity, we set

V b
m =

[
Vb

1 ,Vb
2 , . . . ,Vb

m

]
∈RIN ×γ1×...×γM

V b
m+1 =

[
V b

m,Vb
m+1

]
∈RIN ×λ1×...×λM

ET
m = [OM ,OM , . . . ,IM ] ∈R J M×γ1×...×γM

Hm = (Hi, j)1≤i, j≤m ∈Rγ1× ...×γM×γ1×...×γM

H̃m =
[

Hm

Hm+1,m ∗M ET
m

]
∈Rλ1×...λM×γ1×...×γM

where IN = I1 × . . . × IN and J M = J1 × . . . × J M , γi = m Ji and λi = (m + 1) J i for i = 1, . . . , M . We end this section by the 
following proposition which could be directly deduced from the steps of Algorithm 5.

Proposition 7. We can state now the following useful relations that could be easily proved.

A ∗N V b
m = V b

m+1 ∗M H̃m, (36)

and

A ∗N V b
m = V b

m ∗M Hm + Vb
m+1 ∗M Hm+1,m ∗M ET

m. (37)

4.3. Block GMRES via the Einstein product

Here, we consider the tensor equation A ∗N X = C where A ∈ RI1×...×IN ×I1×...×IN and C ∈ RI1×...×IN × J1×...× J M . Let 
V ∈ RI1×...×IN × J1×...× J M . If the sub-columns of a tensor U of size (I1 × . . . × IN × J1 × . . . × J M) are in KBlock

m (A, V), then 
U can be expressed as

U =
m∑

i=1

Ai−1 ∗N V ∗M S

where S ∈ R J1×...× J M× J1×...× J M . Let X0 ∈ RI1×...×IN × J1×...× J M be an initial guess tensor and R0 = C − A ∗N X0 be the 
corresponding residual. The m-th step of block GMRES method determines the approximation Xm to the exact solution X ∗
of (1) such that

Xm −X0 ∈ KBlock
m (A,R0) (38)

and

Ri,m ⊥ KBlock
m (A,A ∗N R0) (39)
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where Ri,m denote the i-th sub-column of Rm = C −A ∗N Xm . Consider the block column tensor Lm = [
R0, A ∗N R0, . . . ,

Am−1 ∗N R0
] ∈ RI1×...×IN ×γ1×...×γM and Wm = A ∗N Lm , where γi = m Ji, i = 1, . . . , M . The relation (38) can be expressed 

as follows

Xm = X0 +Lm ∗M Ym (40)

where Ym =
⎡⎢⎣Y1

.

.

.

Ym

⎤⎥⎦ ∈Rγ1×...×γM× J1 ×...× J M , Yi ∈R J1 ×...× J M× J1×...× J M .

The orthogonality condition (39) implies that

(W T
m ∗N Wm) ∗M Ym = W T

m ∗N R0 (41)

Using the relations (40) and (41), it is not difficult to conclude the following theorem.

Theorem 2. Assuming that the tensor (W T
m ∗N Wm) is nonsingular, then the approximation Xm and the corresponding residual Rm

are expressed as follows

Xm = X0 +Lm ∗M (W T
m ∗N Wm)−1 ∗M (W T

m ∗N R0) (42)

and

Rm = R0 −Wm ∗M (W T
m ∗N Wm)−1 ∗M (W T

m ∗N R0) (43)

As we are dealing with an orthogonal projection, the residual norm of the iterates produced by the tensor block GMRES 
satisfies the following minimization property.

‖Rm‖F = min
Z∈Km(A,R0)

‖C −A ∗N Z‖F (44)

Notice that Z = X0 + Lm ∗M Y with Y ∈ Rγ1× ...×γM× J M
and then, by using the relation (36) and the fact that R0 =

Vb
1 ∗M H1,0 =V b

m+1 ∗M E1 ∗M H1,0, we observe that

Rm = R0 −A ∗N Lm ∗M Y

= V b
m+1 ∗M E1 ∗M H1,0 −V b

m+1 ∗M H̃m ∗M Y

= V b
m+1 ∗M (E1 ∗M H1,0 − H̃m ∗M Y ).

Consequently, one can conclude that

‖Rm‖F = min
Y

‖E1 ∗M H1,0 − H̃m ∗M Y‖F . (45)

As a result, the approximation Xm is given by

Xm = X0 +Lm ∗M Ym, (46)

where Ym solves the problem (45).

4.4. Block Golub–Kahan method

In this part, we briefly mention a possible implementation for the block version of Golub–Kahan algorithm using the 
Einstein product. Consider the tensor equation

A ∗P X = C (47)

where A ∈ RI1×...×IN ×K1×...×K P and C ∈ RI1×...×IN × J1×...× J M . The block version of the Golub–Kahan bidiagonalization 
method via Einstein product produces column block tensors Um+1 ∈ RI1×...IN ×λ1×...×λM and Vm ∈ RK1×...×K P ×γ1×...×γM

with orthonormal column tensors U1, . . . , Um+1 and V1, . . . , Vm where λi = (m + 1) J i and γi = m Ji for i = 1, . . . , M .
The block Golub–Kahan bidiagonalization algorithm via Einstein product is summarized in Algorithm 6.
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Algorithm 6 Block Golub–Kahan algorithm via Einstein product.
1. Inputs The tensors A and C, and an integer m.
2. Set V0 = 0 and R0 = C −A ∗P X0 = Q ∗M R, U1 = Q, A1 = R.
3. For j = 1, . . . , m

(a) Ṽ = AT ∗N U j −V j−1 ∗M A j

(b) Ṽ = Q ∗M R, (QR factorization); and set V j = Q, B j = R.
(c) Ũ = A ∗P V j −U j ∗M B j .
(d) Ũ = Q ∗M R, (QR factorization); and set U j+1 = Q, A j+1 = R.

4. End for

Let C̃m ∈Rλ1×...λM×γ1×...γM and Cm, Dm ∈Rγ1×...γM×γ1×...γM as follows

C̃m =

⎡⎢⎢⎢⎢⎢⎢⎣

B1

A2 B2
. . .

. . .
. . .

Am Bm

Am+1

⎤⎥⎥⎥⎥⎥⎥⎦ ,Cm =

⎡⎢⎢⎢⎢⎣
B1

A2 B2
. . .

. . .
. . .

Am Bm

⎤⎥⎥⎥⎥⎦ ,Dm =

⎡⎢⎢⎢⎢⎣
B1 A2

B2
. . .

. . .
. . . Am

Bm

⎤⎥⎥⎥⎥⎦ .

The following proposition provides some relations that can be directly concluded from steps of Algorithm 6.

Proposition 8. The tensors produced by the tensor block Golub-Kahan algorithm satisfy the following relations

A ∗P Vm = Um+1 ∗M C̃m, (48)

= Um ∗M Cm + Um+1 ∗M Am+1 ∗M ET
m, (49)

AT ∗N Um = Vm ∗M Dm, (50)

R0 = Um+1 ∗M E1 ∗M A1, (51)

where ET
m = [OM ,OM , . . . ,IM ] ∈ R J1×...× J M×γ1×...×γM , E1 =

⎡⎢⎣ IM
.
.
.

OM

⎤⎥⎦ ∈ Rλ1×...×λM× J1×...× J M and Um = [U1, . . . , Um] ∈

RIN ×γ1×...×γM .

Proposition 9. Assume that Vm is a column block tensor whose block columns V1, V2, . . . , Vm are computed by Algorithm 6. Let 
Xm =X0 +Vm ∗M Ym with Ym ∈Rγ1×...×γM× J1×...× J M be an approximation for the exact solution X ∗ of (47). Then

Xm = arg min
X=X0+Vm∗MY

‖A ∗P X − C‖F (52)

where Ym solves the minimization problem

min
Y

‖E1 ∗M A1 − C̃m ∗M Y‖F (53)

Proof. Using the results of Proposition 8, we get

||C −A ∗P Xm||F = ||Um+1 ∗M E1 ∗M A1 −Um+1 ∗M C̃m ∗M Ym‖F

= ‖Um+1 ∗M (E1 ∗M A1 − C̃m ∗M Ym)‖F = ‖E1 ∗M A1 − C̃m ∗M Ym‖F ,

which ends the proof.
The low dimensional minimization tensor problem (53) is then solved by a QR factorization of the tensor C̃m . �

5. Numerical results

This section provides some numerical results to show the performance of Algorithms 2 and 4 when applied to the 
restoration of blurred and noisy color images and videos. For clarity and definiteness, we first focus on the formulation of a 
tensor model, describing the blurring that is taking place in the process of going from the exact to the blurred RGB image 
(or video). Notwithstanding what has just been said, recovering RGB (or video) from their blurry and noisy observations 
can be seen as a tensor problem of the form (1). Therefore, it is very important to understand how the model (1) can be 
constructed for RGB images and color video deblurring problems. In what follows, we concentrate only on the formulation 
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of the tensor model for RGB image deblurring problems and comment at the end of this section how a similar one can be 
formulated for color video deblurring problems. We recall that an RGB image is just multidimensional array of dimension 
M × N ×3 whose entries are the light intensity. Throughout this paper, we assume that the original RGB image has the same 
dimensions as the blurred one, and we refer to it as N × N × 3 tensor. Let C represent the available blurred RGB image, X
denote the desired unknown blurred RGB, and A be the tensor describing the blurring that is taking place in the process of 
going from X to C . It is well-known in the literature of image processing that all the blurring operators can be characterized 
by a Point Spread Function (PSF) describing the blurring process and the boundary conditions outside the image, see [18]. 
Let P stand for the two-dimensional PSF array. Once the array P is specified, we can as well build the blurring tensor A. 
By using the fact that the blurring process of an RGB image is simply a multi-dimensional convolution operation of the 
PSF array P and the original three-dimensional image X , the blurring tensor A can be easily constructed by placing the 
elements of P in the appropriate positions. Note that the PSF is a two-dimensional array P describing the image of a single 
white pixel, which makes its dimensions much smaller than N . Therefore, P contains all the required information about the 
blurring throughout the RGB image C . To illustrate this, the discrete operation for multi-dimensional convolution using a 
3 × 3 local and spatially invariant PSF array P with p22 is its center, and assuming zero boundary conditions, is given by:

Ci jk = p33Xi−1 j−1k + p32Xi−1 jk + p31Xi−1 j+1k + p23Xi j−1k + p22Xi jk (54)

+ p21Xi j+1k + p13Xi+1 j−1k + p12Xi+1 jk + p11Xi+1 j+1k, (55)

for i, j = 1, ..., N and k = 1, 2, 3. Here the zero boundary conditions are imposed so the values of X are zero outside the RGB 
image, i.e., Xi0k = XiN+1k = X0 jk = XN+1 jk = 0 for 0 < i, j < N + 1 and k = 1, 2, 3. The fourth order tensor A ∈RN×N×N×N

associated with (54), with partition (1, N,1, N), can be partitioned into matrix blocks of size N × N . Each block is denoted 
by A(2,4)

i2,i4
= A (:, i2, :, i4) ∈RN×N with i2, i4 = 1, 2, . . . , N . The nonzero entries of the matrix block A(2,4)

a,b ∈RN×N are given 
by

(A(2,4)

a,b )a−1b−1 = p33; (A(2,4)

a,b )ab+1 = p21

(A(2,4)

a,b )a−1b = p32; (A(2,4)

a,b )a+1b−1 = p13

(A(2,4)

a,b )a−1b+1 = p31; (A(2,4)

a,b )a+1b = p12

(A(2,4)

a,b )ab−1 = p23; (A(2,4)

a,b )a+1b+1 = p11

(A(2,4)

a,b )ab = p22

for a, b = 2, . . . , N − 1.
The first following examples apply Algorithms 2 and 4 to the restoration of blurred color image and video that have 

been contaminated by Gaussian blur and by additive zero-mean white Gaussian noise. We consider the blurring to be local 
and spatially invariant. In this the case the entries of the Gaussian PSF array P are given by

pij = exp

(
−1

2

(
(i − k)

σ

)2

− 1

2

(
( j − �)

σ

)2
)

,

where σ controls the width of the Gaussian PSF and (k, �) is its center, see [18]. Note that σ controls the amount of 
smoothing, i.e. the larger the σ , the more ill posed the problem. The original tensor image is denoted by X̂ in each example 
and A represents the blurring tensor. The tensor Ĉ =A ∗N X̂ represents the associated blurred and noise-free multichannel 
image. We generated a blurred and noisy tensor image C = Ĉ + N , where N is a noise tensor with normally distributed 
random entries with zero mean and with variance chosen to correspond to a specific noise level ν := ‖N ‖F /‖Ĉ‖F . To 
determine the effectiveness of our solution methods, we evaluate

RE =
∥∥∥ X̂ − Xrestored

∥∥∥
F

‖ X̂‖F

and the Signal-to-Noise Ratio (SNR) defined by

SNR(Xrestored) = 10log10
‖ X̂ − E( X̂)‖2

F

‖Xrestored − X̂‖2
F

where E( X̂) denotes the mean gray-level of the uncontaminated image X̂ . All computations were carried out using the 
MATLAB environment on an Intel(R) Core(TM) i7-8550U CPU @ 1.80 GHz (8 CPUs) computer with 12 GB of RAM. The 
computations were done with approximately 15 decimal digits of relative accuracy.
360



M. El Guide, A. El Ichi, K. Jbilou et al. Applied Numerical Mathematics 181 (2022) 347–363
Fig. 1. Example 1: Original image (left), blurred and noisy image (right).

Table 1
Results for Example 1.

Noise level Method PSNR RE CPU-time (seconds)

10−3 Algorithm 2 21.76 6.09 × 10−2 8.28
Algorithm 4 24.37 4.51 × 10−2 7.29
GKB 24.22 4.51 × 10−2 18.45

10−2 Algorithm 2 20.60 6.96 × 10−2 3.31
Algorithm 4 20.97 6.67 × 10−2 1.58
GKB 20.08 6.66 × 10−2 5.52

Fig. 2. Example 1: Restored image by Algorithm 4 (left), and restored image by Algorithm 2 (right).

5.1. Example 1

This example illustrates the performance of Algorithms 2 and 4 when applied to the restoration of 3-channel RGB color 
image that have been contaminated by Gaussian blur and additive noise. The original (unknown) RGB image X̂ ∈R256×256×3

is the papav256 image from MATLAB. It is shown on the left-hand side of Fig. 1. For the blurring tensor A, we consider 
a PSF array P with σ = 2 under zero boundary conditions. The associated blurred and noisy RGB image Ĉ = A ∗N X̂ is 
shown on the right-hand side of Fig. 1 with the noise level ν = 10−3. Given the contaminated RGB image C , we would like 
to recover an approximation of the original RGB image X̂ . Table 1 compares, the computing time (in seconds), the relative 
errors and the PSNR of the computed restorations. The restoration for noise level v = 10−3 is shown on the left-hand side 
of Fig. 2 and it is obtained by applying Einstein tensor global GMRES method (Algorithm 2) with input A, C , X0 = O, 
ε = 10−6, m = 10 and Maxit = 10. Using GCV, the computed optimal value for the projected problem in Algorithm 2
was μ = 9.44 × 10−4. The strategy of performing restarts with GCV is essentially based on restarting the global Arnoldi 
algorithm: at each restart the regularization parameter, the initial guess are updated employing the last values computed 
when m steps of global Arnoldi are used, where m is a chosen parameter; we keep restarting the global Arnoldi algorithm to 
a certain number of outer iterations that guarantees that the obtained solution and the computed regularization parameter 
satisfy the discrepancy principle. The restoration obtained with Algorithm 4 is shown on the right-hand side of Fig. 2. 
The discrepancy principle with η = 1.1 is satisfied when � = 61 steps of the method have been carried out, producing a 
regularization parameter given by μ� = 2.95 × 10−4. For comparison with existing approaches in the literature, we report 
in Table 1 the results obtained with the method proposed in [7] for solving the corresponding matrix form of (4). This 
method utilizes the connection between (standard) Golub–Kahan bidiagonalization and Gauss quadrature rules for solving 
large ill-conditioned linear systems of equations obtained by matricization of problem (4). We refer to this method as GKB. 
It is a solution method based on first reducing the blurring matrix to a small bidiagonal matrix with the aid of Golub–Kahan 
bidiagonalization (GKB) and then applying the connection between GKB and Gauss-type quadrature rules (the same as the 
ones in (23)-(24) to determine an approximation of xμ that satisfies the discrepancy principle associated to the matrix 
problem. It determines the regularization parameter analogously to Algorithm 4, and uses a similar stopping criterion. The 
results in Table 1 with GKB method have been obtained after having carried out � = 61 steps of GKB algorithm. From 
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Fig. 3. Frame no. 5: Original frame (left), blurred and noisy frame (right).

Table 2
Results for Example 2.

Noise level Method PSNR Relative error CPU-time (second)

10−3 Algorithm 2 15.48 6.84 × 10−2 38.93
Algorithm 4 19.24 4.43 × 10−2 27.37

10−2 Algorithm 2 14.50 7.65 × 10−2 15.55
Algorithm 4 15.13 7.11 × 10−2 4.40

Table 1, we can state that tensor Krylov-based methods perform better than their matrix counterpart in terms of CPU-
time. The GKB method performs equally well as Algorithm 4 in terms of restorations quality, but Algorithm 4 is found to 
require less CPU time than GKB, this is because the blurring tensor has a lower bandwidth than the blurring matrix. In fact, 
reducing the bandwidth of these sparse blurring matrices directly and substantially improves the number of operations and 
storage locations. The cost of this computation is dominated by the evaluation of one tensor-tensor product (TTP) with A
for Algorithm 2 and Algorithm 4. Table 1 shows that Algorithm 2 requires more CPU time than Algorithm 4. This is due to 
the fact that Algorithm 4 performs less tensor-tensor products than Algorithm 2. About the number of iterations to carry out 
when performing GCV for each restart, it is well-known that the approximate solutions computed by the Arnoldi-Tikhonov 
method can very quickly fulfill the discrepancy principle and deliver a regularized solution belonging to a Krylov subspace 
of dimension m. We can note that, for this example, the chosen m = 10 satisfies the discrepancy principle. As a consequence, 
the generated Krylov subspaces tend to be the same and the discrepancy principle continues to be satisfied. In this situation, 
although the quality of the reconstruction may not be substantially improved, performing additional restarts could still be 
useful in order to keep updating the regularization parameter with slightly better approximations of the solution and, as a 
consequence, obtain slightly more accurate reconstructions.

5.2. Example 2

In this example, we evaluate the effectiveness of Algorithms 2 and 4 when applied to the restoration of a color video 
defined by a sequence of RGB images. Video restoration is the problem of restoring a sequence of k color images (frames). 
Each frame is represented by a tensor of N × N × 3 pixels. In the present example, we are interested in restoring 10 
consecutive frames of a contaminated video. We consider the xylophone video from MATLAB. The video clip is in MP4 
format with each frame having 240 × 240 pixels. The (unknown) blur- and noise-free frames are stored in the tensor 
Ĉ ∈RN×N×3×10. These frames are blurred by a blurring tensor A of the same kind and with the same parameters as in the 
previous example. Fig. 3 shows the 5th exact (original) frame and the contaminated version, which is to be restored. Blurred 
and noisy frames are generated by Ĉ = A ∗N X̂ where the tensor E represents white Gaussian noise of levels ν = 10−3 or 
ν = 10−2. Table 2 displays the performance of algorithms. For Algorithm 2, we have used as an input A, C , X0 = O, 
ε = 10−6, m = 10 and Maxit = 10. For the ten outer iterations, minimizing the GCV function produces μ10 = 9.44 × 10−4. 
Using Algorithm 4, the discrepancy principle with η = 1.1 has been satisfied after � = 59 steps of the method, producing a 
regularization parameter given by μ� = 1.06 × 10−4. The restorations obtained with Algorithms 2 and 4 are shown on the 
left-hand and right-hand sides of Fig. 4, respectively. Similar to Example 1, Table 2 also shows that Algorithm 2 requires 
more CPU time than Algorithm 4. The primary reason is that factorization using Golub-Kahan bidiagonalization contains the 
relevant desired (spectral) information. Precisely, we can get slightly better approximations of the solution whenever we 
increase �. It is shown in [14] that for sufficiently many steps of GKB, the spaces range(U�+1) and range(U�+1) contain to 
high accuracy the subspaces of s spectral vectors, for s ≥ 1 fixed and not too large. Computed examples in [14] indicate that 
it often suffices to choose � ≤ 3s. It is therefore unlikely that many steps of this bidiagonalization process have to be carried 
out in order to be able to compute useful approximations of the columns of the desired solution. On the one hand, after 
the first iterations of the Arnoldi algorithm, singular values of the Hessenberg matrices approximate the largest singular 
values of the original tensor A; by solving the projected problem using Tikhonov regularization. The computed relative 
errors essentially depend on the decay of the singular values of the Hessenberg matrices, and therefore they tend to have a 
similar behavior after a certain number of iterations have been completed.
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Fig. 4. Frame no. 5: Restored frame by Algorithm 4 (left), and restored frame by Algorithm 2 (right).

6. Conclusions

In this paper, we extended the GMRES and Golub–Kahan bidiagonalization in conjunction of Tikhonov regularization 
for solving (possibly) ill-conditioned multilinear systems via Einstein product with perturbed right-hand side. We gave also 
tensor block version of these processes and derive some theoretical results. Numerical experiments were disclosed for image 
and video processing to demonstrate the feasibility of the proposed iterative algorithms.
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