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Prospective teacher’s representations of fractions 
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Mathematics learning is more effective if students explore ideas in different ways by making 

connections between different representations. This paper aims to share an exploratory study with 

34 prospective elementary school teachers that seeks to understand what kind of representations they 

have about some fractions. In the beginning, symbolic representations were strongly used, mainly 

equivalent fractions. Although this mode of representation remained, some diversity of combinations 

of symbolic, visual, and verbal representations emerged throughout the study, highlighting students’ 

interconnected knowledge of fractions and their capacity to represent fractions in different ways. 
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Introduction 

Effective mathematics instruction needs to engage students in making connections between 

mathematical representations to contribute to a deeper understanding of mathematical concepts and 

procedures (NCTM, 2017). In line with this idea, Portuguese mathematics teachers are currently 

implementing a new curriculum where the development of multiple representations is one of the six 

skills that students must develop along with other skills such as communication, reasoning, problem-

solving, connections, and computational thinking.   

The complexity of teaching and learning rational numbers is widely accepted and the use of multiple 

representations can be a powerful tool to increase students’ understanding and interconnected 

knowledge (Moseley, 2005; Tripathi, 2008). In this sense, prospective teachers’ instruction needs to 

engage them in sharing and discussing multiple representations when learning mathematics, so they 

could do it with their students while they are teaching. Opportunities to produce external 

representations and the internalization of mathematical ideas through a social activity must be given 

to future teachers (Pape & Tchoshanov, 2001). In addition, Dreher et al.  (2016) suggest that the use 

of multiple representations and their interconnections for conceptual understanding of mathematics 

should be seen as a key element in the development of teachers’ pedagogical content knowledge.  

To provide such an opportunity, an exploratory study was conducted during the course of Numbers 

and Operations in the second semester of the first year of the bachelor’s degree that prepares future 

teachers. This study seeks to understand what kind of representations prospective elementary school 

teachers have about fractions. 

Theoretical background 

Mathematical representation can be described as “a mental or physical construct that describes 

aspects of the inherent structure of a concept and the interrelationships between the concept and other 

ideas” (Tripathi, 2008, 438). It is a way to externalize an internal, mental abstraction representation 

and must be thought as a tool for thinking, explaining, and justifying mathematics (Pape & 
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Tchoshanov, 2001). When someone produces an external representation (e.g., a number line, a 

numerical expression, or a circle) a physical product is provided to communicate, and directly to teach 

mathematical ideas (Mainali, 2021).  

In 1966, Bruner presented a learning model based on three levels of engagement with representations: 

enactive (e.g., manipulating concrete materials), iconic (e.g., pictures and graphs), and symbolic (e.g., 

numerals). In 1987, Lesh, Post, and Behr based on Bruner’s ideas suggest that mathematical concepts 

can be explored using multiple ways such as manipulatives, pictures, and written symbols, as Bruner 

stressed, and added two more levels - verbal and real-world.  

According to Cramer et al. (2002) the use of iconic and enactive modes of representation is essential 

to make connections to oral language and symbols. A lack of understanding of the relationship 

between symbolic representations of a fraction and its enactive or iconic representation does not allow 

the student to comprehend the relationship between the numerator and the denominator or how this 

relationship affects the size of the number. For example, a student develops a deep understanding of 

the meaning of  
3

4
 (symbolic form) when they can understand it as a quantity formed by 3 parts with 

the size of one quarter represented in a rectangle or in a number line (iconic form), or as a measure 

of a string that has lengths of three-quarters of a meter (enactive form). Cramer et al. (2002) also 

emphasise that the fundamental concept of equivalent fractions should reflect more than just 

procedural knowledge for generating equal fractions, it should be rich in connections between 

symbols, models, images, and context.  

In Behr’s et al. (1983) perspective, there are five meanings for rational numbers that students need to 

understand: (i) part-whole relationship; (ii) measure; (iii) quotient; (iv) operator; and (v) ratio. If 

representing mathematical concepts in different ways allows the construction of connections between 

representations, highlights conceptual knowledge and various aspects of the structure of the 

mathematical concept, “using different representations is like examining the concept through a 

variety of lenses, with each lens providing a different perspective that makes the picture (concept) 

richer and deeper” (Tripathi, 2008, 439). In this sense, the use of multiple representations certainly 

contributes to students’ deeper understanding of rational numbers and their different meanings. 

Thus, mathematics learning is more effective if students explore ideas in different ways by making 

connections between different representations so that they can be aware that symbols are just only 

one way to represent mathematical ideas (Cramer et al., 2002; Kilpatrick et al., 2001).  

Methods 

This research has an exploratory design framed by a qualitative methodology (Denzin & Lincoln, 

2005). The participants were 34 prospective elementary school teachers (from now on named only 

students), even though the numbers of students that attended the lesson varied during the study 

between 21 to 34, from the course of Number and Operations (second semester, first year of the 

bachelor’s degree). The data was collected weekly for five weeks, through research teacher and 

students’ notes.  

The task proposed to the students was the routine “Fraction of the day”, while they were working 

with rational numbers in the course. The course had two lessons a week. In one lesson, the students 



 

 

were challenged to write down as many representations of a given fraction as possible on a sheet of 

paper. The teacher collects students’ notes, and for the second lesson of the week, she selects a 

diversity of representations that can promote a whole class discussion about different modes of 

representations and their relationships. These discussions intend to increase students’ representations 

of fractions, emphasise the importance of using multiple representations of a fraction, share different 

representations, and relate students' knowledge to what was being covered in the course about rational 

numbers so that it could be deepened.  

The routine “Fraction of the day” started with important benchmarks 
1

2
 and 

3

4
. The third fraction was 

2

3
 which represents a repeating decimal. The fourth fraction was 

4

5
, one very close to the unit and the 

last fraction used was 
5

10
, equivalent to the first one.  

Inspired by Lesh et al. (1987) the data was analysed using three main categories and several 

subcategories that emerged from the data, as shown in Table 1. Manipulatives were not used in the 

routine, and for that reason, it was not considered. All the written forms used by students that were 

not symbols (numbers), were included in the “verbal” category. 

Table 1: Categorization of fractions representations 

 Categories 

Symbols Visual Verbal 

S
u
b
ca

te
g
o
ri

es
 

Decimal  

Repeating decimal 

Equivalent fractions 

Percent  

Operations  

Others 

Discrete unit 

Continuous unit 

Number line 

Fraction/decimal reading 

Word problems 

Others 

Prospective elementary school teachers’ representation of fractions  

“Fraction of the day” was a number routine developed with students from the course of Numbers and 

Operations in 2021-22. During the five weeks of the study, students used multiple representations for 

each fraction of the day that reflected their conceptual and procedural knowledge. Table 2 gives an 

overview of the representation students used for all five fractions. Students started with strong use of 

symbolic representations (16 out of 25 students used only symbolic representation) in the first 

fraction, but along the study, they integrated other representations including word problems.  

According to the data, they moved from only using symbolic representations to combining them with 

visual and verbal representations (18 out of 27 students) by the end of the study. The last fraction of 

the day was 
5

10
 to see if students’ representations changed when compared with 

1

2
, an equivalent 

fraction used in the first routine. Table 2 shows that no one used only symbolic representations to 

represent 
5

10
 as they did before with 

1

2
. 



 

 

Table 2: Numbers of students who used a certain mode of representation  

 Fraction of the day  

Mode of representation 
𝟏

𝟐
 

𝟑

𝟒
 

𝟐

𝟑
 

𝟒

𝟓
 

𝟓

𝟏𝟎
 

Symbolic 16 4 2   ---  --- 

Visual/verbal  ---  --- ---  1  --- 

Symbolic/verbal  ---  --- --- 1  --- 

Symbolic/visual 8 24 11 21 9 

Symbolic/visual/verbal 1 4 8 11 18 

Total number of students 25 32 21 34 27 

Table 3 presents the relation between the number of students who used a certain mode of 

representation in each category and the number of students who participated in the routine. 

Concerning symbolic representation, equivalent fractions were the most used in the study, but a 

considerable number of students used frequently decimals and percentages. Only in the fraction, 
3

4
, 

the use of decimals had a higher frequency when compared with other symbolic representations.  

Table 3: Relation between the number of students who used a certain mode of representation in each 

category and the number of students who participated in the routine 

 Fraction of the day  

Mode of Representation 
𝟏

𝟐
 

𝟑

𝟒
 

𝟐

𝟑
 

𝟒

𝟓
 

𝟓

𝟏𝟎
 

S
y
m

b
o
li

c 

Decimal  23/25 23/32 --- 12/34 23/27 

Repeating decimal --- --- 6/21 --- --- 

Percent 15/25 21/32 3/21 8/34 20/27 

Equivalent fractions 24/25 21/32 19/21 24/34 25/27 

Operations 5/25 14/32 10/21 19/34 11/27 

Others 2/25 --- --- 4/34 1/27 

V
is

u
al

 

Discrete unit 5/25 9/32 6/21 13/34 12/27 

Continuous unit 7/25 24/32 17/21 28/34 24/27 

Number line --- 4/32 7/21 15/34 7/27 

V
er

b
al

 

Fraction reading 2/25 4/32 5/21 9/34 12/27 

Word problems --- --- 2/21 5/34 8/27 

Others --- --- --- 1/34 1/27 



 

 

Figure 1a) shows some students’ representations of 
1

2
 used for discussion by the teacher. Many 

equivalent fractions can be observed, although there are others such as visual representations using 

discrete and continuous units or fraction as an operator (
1

2
 𝑜𝑓 10 = 5). Despite emerging in the 

discussion, no one used number line or word problems in the first fraction.  

One student tried to generalize fractions that represent 
1

2
, through the expression 𝑥 ÷ 2. This 

expression was included in the subcategory of “Others” since it is an algebraic expression. To discuss 

this expression and its veracity, some divisions between two numbers (that emphasise fractions as a 

quotient) were suggested by students. They started with 1 ÷ 2 and then 4 ÷ 2. This second quotient 

leads them to understand that 𝑥 ÷ 2 was not a generalization of fractions that represents 
1

2
. It needs to 

be 𝑥 ÷ 2𝑥. This conclusion that arose from the whole class discussion highlights the relation between 

the numerator and denominator in this kind of fraction. 

In Figure 1b), to the fraction 
3

4
 it is possible to observe that students added some more modes of 

representation when compared with those used for 
1

2
. Number line appears as well as a lot of 

operations that emphasised important relationships such as the decomposition of 
3

4
 into 

1

4
+

1

2
 or 3 ×

1

4
  

using multiplication, repeated addition with fractions or with decimals, as well as 
3

4
 as half of 

3

2
, for 

example. Verbal representations appeared only through fraction/decimal reading (e.g., three-quarters 

or seventy-five hundredths).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) b) 

Figure 1: Students’ mode of representation a) of 
𝟏

𝟐
 and b) of 

𝟑

𝟒
 

During the discussion, the teacher challenged students to think in a context that could give meaning 

to 
3

4
. This was an important input for students to start using word problems afterward (Figure 2).   

For 
2

3
, sharing and measurement context appeared in students’ word problems as well as a triangle 

(not common representation) as a continuous unit. The visual representation of the 
2

3
 shaded in the 

triangle, circle, or rectangle, or even in the discrete model, can be easily connected with the operation 

1 −
1

3
 where a piece with a size o 

1

3
 was removed from the unit. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Students’ mode of representation of  
𝟐

𝟑
 

New modes of representation emerged in the fraction 
4

5
, influenced not only by the whole class 

discussion of the previous fractions but certainly by the rational number approach that was ongoing 

in the class. Several students also analysed the magnitude of the fraction comparing it with 
1

2
 and with 

the unit as we can see in Figure 3. Students’ word problems stressed part-whole relationships and 

measurement in the context of a pizza and the length of a table.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Students’ mode of representation of 
𝟒

𝟓
 

In the last fraction, 
5

10
 equivalent to the first one used, a diversity of combinations between modes of 

representation emerged when compared with those used by students in the case of 
1

2
. For example, 

the set of representations inside the rectangle in Figure 4, belongs just to one student. This shows a 

big effort to share different meanings of 
5

10
 using symbolic, visual, and verbal representations. In the 

case of this student, it is possible to perceive that there are less symbolic representations when 

compared to the visual ones. One of the students used the square root of 
25

100
 to represent 

5

10
. Although 

it does not highlight the concept of a fraction like other modes of representation, it is interesting to 

observe that the student knows a different equivalent symbolic representation of 
5

10
. 

 

 

 

 



 

 

 

 

 

 

 

 

Figure 4: Students’ mode of representation of 
𝟓

𝟏𝟎
 

Discussion and conclusion 

The routine “Fraction of the day” provided students the opportunity to discuss their fractions 

representations through whole-class discussions. A high number of students used strongly, at the 

beginning of the study, symbolic representations (e.g., equivalent fractions), but over the five weeks, 

a diversity of combinations of modes of representations (symbolic, visual, and verbal) emerged. From 

the second routine on, students started to present several interconnected representations. For example, 

to the fraction 
2

3
, they shaded two parts with the size of 

1

3
 in a continuous unit (triangle, circle, and 

rectangle) divided into three equal parts that can be related with 
1

3
+

1

3
,  2 ×

1

3
 or even visually with 

1 −
1

3
 (one unit with 

1

3
 not shaded). They also selected 4 objects from a set of 6 in a discreet unit 

(where the disposition of objects emphasised that 2 groups of 2 objects were shadowed) and used a 

point on a number line divided into 3 or 6 equal parts to represent 
2

3
 as well as the multiplicative 

relations between numerators and denominators to express the equality 
2

3
=

4

6
. All these 

representations highlight that students understand how to represent equivalent fractions beyond the 

symbolic form (Cramer et al., 2002; Kilpatrick et al., 2001). Note that for 
1

2
, the first fraction, 24 out 

of 25 students used equivalent fractions in symbolic form, but during the study, word problems with 

context that could be related to part-hole relationships (e.g., shown in the circle representation) and 

with measurement (e.g., shown in the number line) also appear. Thus, the use of multiple 

representations seems to have increased the students' interconnected knowledge of fractions 

(Moseley, 2005; Tripathi, 2008) and enabled them to represent fractions in different ways. The work 

developed in this study proved to be essential for discussing mathematical ideas and the concept of 

fractions in a relational way using different lenses (Tripathi, 2008). Considering the students' 

evolution, this routine seems to have contributed to improving the students' representation of fractions 

and, therefore, deepening their knowledge of rational numbers and their meanings (Behr et al., 1983), 

especially the meanings of part-whole, measure, quotient, and operator. 

This exploratory study highlights the importance of being aware of prospective teachers’ multiple 

representations of mathematical concepts and its importance to develop a more consistent, 

interconnected, and deeper mathematical knowledge. This study can be a starting point for further 

research about prospective teachers’ multiple representations in the field of rational numbers (not 

only fractions) as well as with in-service teachers.  
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