
HAL Id: hal-04413392
https://hal.science/hal-04413392

Submitted on 23 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a distributed SaaS management system in a
multi-cloud environment

Linda Ouchaou, Hassina Nacer, Chahrazed Labba

To cite this version:
Linda Ouchaou, Hassina Nacer, Chahrazed Labba. Towards a distributed SaaS management system
in a multi-cloud environment. Cluster Computing, 2022, 25 (6), pp.4051-4071. �10.1007/s10586-022-
03619-x�. �hal-04413392�

https://hal.science/hal-04413392
https://hal.archives-ouvertes.fr

A Distributed Service Management System for
Community Cloud Federation Environments

Linda Ouchaoua, Hassina Nacera, Chahrazed Labbab

aMOVEP Laboratory, Computer Science Department, University of Science and Technology
Houari Boumediene, 16000 Algiers, Algeria

bLorrain University, LORIA F-54000 Nancy, France

Abstract

Nowadays, cloud federation is gaining a momentum since it provides its users
with reduced costs, greater flexibility and elasticity, high availability and bet-
ter fault-tolerance. Despite these advantages, these environments present many
challenges, including the difficulty of fulfilling diverse user requirements due to
the exponential growth of the offered services. Further, the diversity and het-
erogeneity of cloud providers in the federation lead to interoperability issues
that complicate the service management. Both of these issues, if not dealt with
effectively, can have adverse impacts on the federation’s profit as well as on the
user experience. Thus, to meet these challenges, we propose in this paper a
threefold contribution (i) a noval cloud federation architecture, (ii) a suitable
service management system and (iii) a service publication algorithm in order
to manage, store and retrieve efficiently cloud services within the federation.
Our solution consists in combining several concepts including trust, semantic
Web (ontologies), clustering methods, graph theory and the community deploy-
ment model. Our aim is to automate the management process, maximise the
profit and ensure a better user experience. Our experiments highlight the effec-
tiveness of the proposed cloud federation architecture as well as the deployed
management system in optimizing the storage space and answering effectively
and rapidly users’ requests.

Keywords: Cloud Computing, Federation of Clouds, Service Management,
Virtual Storage, Publication, Discovery, Federation.

1. Introduction

The cloud computing paradigm, as it emerged initially, consists of a single
provider offering a centrally managed and administered set of resources as a
service. However, being limited by the use of a single cloud service provider is

Email addresses: ouchaoulynda1494@gmail.com (Linda Ouchaou), sino_nacer@yahoo.fr
(Hassina Nacer), chahrazed.labba@loria.fr (Chahrazed Labba)

Preprint submitted to Computer Standards & Interfaces January 23, 2024

very risky and costly, as it may not meet all of the user’s current and future
requirements. Today’s cloud users and cloud providers tend to avoid this vendor
lock-in problem by adopting the use of multi-cloud platforms and, more recently,
cloud federations.

In fact, cloud federation is the coalition of multiple Cloud Providers (CP)
that provides their users with various benefits. These advantages include sur-
mounting the constraint of finite physical resources of individual CP [1], offering
a wider variety of services without any constraints on the number of accepted
requests, overcoming the vendor lock-in issue, enjoying lower latency, greater
elasticity and scalability, as well as better fault tolerance.

While the use of cloud federation has a long list of benefits, it also comes
with a series of challenges. These include (i) trust and interoperability issue
introduced by the diversity and the heterogeneity of the CP, (ii) storage man-
agement issues due to the exponential growth of the published software services
(SaaS) (iii) lack of service description standards and automated service discovery
methods that effectively retrieve desired services to respond to users’ demands
(vi)the inability to deal with the composition and discovery issues of SaaS ser-
vices due to the fact that cloud federations operate at the IaaS provider level.
It therefore focuses only on the IaaS cloud services layer [48 j2].

Several approaches have been proposed in the literature to address these
issues. We distinguish on the one hand the solutions that address the ser-
vice management issue, such as the clustering-based methods [2, 3, 4, 5, 6, 7],
registry-based methods [8], graph-based methods [2, 3, 5], ontology-based meth-
ods [3, 9, 10, 7, 8], and uni or multi dimensional indexing-based methods
[11, 12, 13, 14, 15]). On the other hand, authors proposed several solutions
for addressing the cloud federation creation issue [16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27]. However, existing solutions consist either in managing services or
in building efficient federation infrastructures, none of them takes into account
the possibility of addressing both service management and federation creation
at the same time. Furthermore, despite the effectiveness of federated clouds for
resource scaling, cloud federations are unable to handle the composition and
discovery issues due to the fact that they operate at the provider’s (not service)
level and focus solely on the IaaS cloud services’ layer [20].

Therefor, to cope with these challenges, we propose in this paper (i) a hierar-
chical cloud federation architecture built by using trust, semantic web (WordNet
domain ontology [28]) as well as the community deployment model. The trust
concept is used in order to obtain a trustworthy federation that removes the
interoperability issues between the involved cloud providers. The ontology and
the community deployment model are used to organise and deploy the involved
cloud providers in the federation into communities with a domain of interest
each, (ii) provide a distributed service management system by using cluster-
ing and graph theory methods to efficiently store the published services in the
federation and (iii) provide an automated service publication algorithm (while
respecting the proposed architecture hierarchy and management system) to han-
dle the service publication requests. The reason we use several concepts (trust,
ontologies, the community deployment model, clustering and graph theory) is

2

due to the fact that we believe that their combination has a greater added
value as it allows us to address several issues at once to obtain a more complete
solution.

The remainder of this paper is organized as follows. Section 2 presents a
review of some existing cloud federation architectures as well as a review of some
cloud service management solutions. Section 3 presents the proposed solution
for the service management problem in cloud federation environments. Section
4 states the experimental setup and analyzes the experimental results. Finally,
section 6 concludes the paper.

2. Related Works

We focus in this section on giving an overview on the move to federated
cloud environments as well as presenting the works conducted on cloud service
management in either federated of non federated cloud environments.

2.1. From Single Clouds to Community Cloud Federation

Dealing with single-cloud providers became less popular with customers due
to several risks such as service availability failure [18], the increasing difficulty
in meeting the variety of users’ needs [29], the vendor-lock-in issues [30], data
reliability and consistency [31], trust [25], and security. To cope with these
challenges, the adoption of multi-cloud environments has been advocated by
many organizations and researchers, one can cite intercloud [31, 32, 33], cloud-
of-clouds [34] and multi-cloud [10]. In [33] the authors assume that the main
objective of migrating to multi-cloud environments is to improve the services
offered within single-clouds by distributing reliability, trust and security among
several CPs. However, the providers involved in a multi-cloud environment
create interoperability issues because of them being heterogeneous. This het-
erogeneity is resulted by the lack of a standard architecture. Consequently,
each CP is being responsible for the management of its own services according
to their own policies and having no information about the rest of the services
of the other CPs. Moreover, this heterogeneity creates difficulties for users to
switch between various cloud providers.

To overcome this challenge, the concept of trust is introduced by several
research works within multi-cloud environments in order to create a single access
point and to run this environment as a single organisation by creating a cloud
federation [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]

Garćıa [35] assumes that a federation should enable the collaboration and
cooperation of different providers, delivering resources to the users when a single
resource provider is not able to satisfy the user demands, in a collaborative way.
Whereas, Hammoud et al. [26] define cloud federation as an architecture that
allows cloud providers using their unallocated virtual machines, by merging their
resources to serve a pool of clients whose requests cannot be handled by any of
these providers alone. Moreover, Abdo et al. [18] assume that cloud federation
is the next step in creating a new cloud computing ecosystem.

3

The National Institute of Standards and Technology (NIST) presents in [36]
the NIST cloud federation reference architecture as a conceptual model in or-
der to identify the fundamental federation functions that may be important to
different participating stakeholders in different application domains. It includes
the following components: Cloud Service Consumer, Cloud Service Provider,
Federation Manager, Federation Operator, Federation Auditor, Federation Car-
rier, Federation Broker. These components identify how federations can be
organized and used, but does not dictate how any of this must be done. That
is determined by the requirements of the specific federation instance, as defined
by the federation members. They also emphasis that there is a wide spectrum
of possible federation deployments that can range from very simple federations
where many of the elements of this conceptual model are simply not needed, to
very large federations that will require extensive governance machinery to be in
place.

For instance, in [26], authors propose an approach based on genetic algo-
rithms and evolutionary game theory to address the problem of forming a cloud
federation in order to achieve optimality in profit and stability among federa-
tions. Authors in [25] propose to address the problem of building a trustwor-
thy cloud federation through the game theoretic approach by classifying the
providers, based on how they cooperate to form a coalition. [23] propose a
framework for cloud federation and introduces the basic processes of building
service federation among multiple cloud providers in order to address the lim-
itation of provider’s capability and the magnanimity of task quantity for big
data, as well as a multi-objectives task assigning model in the cloud federa-
tion, to help organizations manage and optimize their service resources. In [21],
authors propose to find a solution build a cloud Federation by following a game-
theoretic approach considering the trust between the participating CSPs. This
technique will also allow the CSPs to take decision unilaterally based on their
own decisions depending on the profit they would receive upon inclusion into
the federation.

2.2. Cloud Service Management

We propose through Fig. 1 a classification of existing cloud service man-
agement methods including clustering-based methods, registry-based methods,
graph-based methods, ontology-based methods and indexing-based methods
(uni or multidimensional). These solutions can be used either in single or mul-
tiple cloud environments (federated or not), they only need to be adapted ac-
cording to the characteristics of each. In this work, we focus on examining the
SaaS management solutions for any environment and study their adaptability
for a cloud federation. Table ?? gives an overview of this study.

Authors in [2] proposed a solution to manage Mashups services into clus-
ters in a cloud-based Internet of Things environment. To proceed, the authors
first built a graph service network to describe Mashups, Web APIs, and their
relations. Then, they manage the obtained graph into Clusters using genetic
algorithms. The algorithm used determines the number of clusters automati-
cally. The work in [4] propose a clustering-based Approach for SaaS services

4

Cloud Service

Management

Mul!-CloudSingle-Cloud

Federted Non-Federated

Clustering Indexing Registry Seman!c Web

mul!dimensionalunidimensional

R Tree [15]

A Tree [13]

Quad Tree [14]

Octree [12]

VA File [16]

Cloud Ontology

[10] [8]

WordNet

SaaS Regitry

[9]

B Tree [57]

Gene!c Algorithm [3]

Graph Par!!onning

[3] [6]

K-means [6]

Func!onality grouping

[5] [8]

Fig. 1: Cloud Services Management Methods Classification.

discovery in single-cloud environment. They manage and cluster SaaS services
into functionally similar clusters. The similarity measure used to build the clus-
ters is based on the number of occurrences (frequency) of each concept in each
service, and each cluster is represented by one of its SaaS services (chosen ran-
domly). The approach presents some limitations, it is difficult to guarantee that
each service is well described with adequate concepts and adequate number of
occurrence. Moreover, the request is modeled using a keyword vector, and it
remains difficult for clients to specify queries that perfectly match their require-
ments due to the lack of knowledge of their expected service functionalities.
Authors in [9] worked on developing technology solutions for automated cloud
service management using semantic Web and Text Mining techniques in order
to represent cloud legal documents in a machine-actionable form. These auto-
mated techniques can be developed to understand, analyze and make decisions
based on the knowledge extracted from documents such as service level agree-
ments. Therefore, it is crucial to describe the documents in a very adequate
way, which can appear to be difficult and time consuming. In [5], authors pro-
pose to manage Mashup services into clusters. The authors first build a service
graph network based on the relationships among services. Then, a clustering
algorithm based on K-means and Agnes methods is used to derive Mashup ser-

5

vice clusters. In[7] an approach with the capability to automatically identify
and cluster cloud services into functionally similar clusters using cloud service
ontology and cosine similarity is proposed. The ontology is build using the
NIST [37] cloud concepts. This cloud service categorization is helpful in deter-
mining whether a given web source is a cloud service or not. We distinguish
also management solutions based on uni or multi dimensional index structures
[14, 38, 12, 13, 15, 11]. These solutions propose a two-level management model
for data (DaaS) in a cloud Computing environment. In a network of several
compute nodes, data is managed as following; each compute node manages its
data by building a local index according to a multidimensional tree structure
(R-Tree, A-Tree, Quad-Tree, etc.). Then, each compute node (or some particu-
lar compute nodes) publishes a portion of its local index to a global index. The
global index is built on top of the local indexes, and it represents an overview
of the offering of the network. However, despite the fact that these solutions
solve the problem for large-scale data (DaaS) in the cloud environment, these
solutions do not include service types for SaaS service models. Authors in [34]
present a virtual cloud storage system called DepSky, which consists of a com-
bination of different clouds to build a multi-cloud environment. The DepSky
system addresses the availability and the confidentiality of data in their storage
system by using multi-cloud providers, combining Byzantine quorum system
protocols, cryptographic secret sharing an d erasure codes.

2.3. Comparative Study

The analysis of this research works revealed some limitations. Despite the
effectiveness of federated clouds for resource scaling, cloud federations are unable
to handle the composition and discovery issues due to the fact that they operate
at the provider’s (not service) level and focus solely on the IaaS cloud services’
layer [20]. This problem can be countered by using a community deployment in
the federation. For example, in [20] a trust framework is proposed to create a
federation of cloud communities that supports, in addition to resource scaling,
discovery, marketing and composition facilitation. However existing solutions
and consist either in managing services or in building efficient federations, none
of them takes into account the possibility of addressing both service management
and federation creation at the same time.

Table 1 sums up some of the most relevant works related to cloud service
management techniques according to the following criteria:

• Environment: it defines whether the management solution is design for
(single-clouds) or (multi-clouds).

• Service Type it determines the type of the service the proposal deals
with: Data as a Service (DaaS), Software as a Service (SaaS), Platform as
a Service (PaaS), Infrastructure as a Service (IaaS) or (Mashup services).

• Service Model: it specifies whether the proposals use a formal represen-
tation (graph or any data structure) to represent the relationship between
the services.

6

• Management Method: it indicates which method (Clustering), (In-
dexing), (Registry), (Ontology) or (Blockchain) is used for the service
management.

• Purpose: it indicates the issues that the authors work on.

• We note that a cell containing () as value means that the information
was unavailable in the study.

Table 1: Survey of works related to cloud service management
techniques.

Ref Year Environment Service Management Purpose
Type Model Method

[39] 2019 single- DaaS – Blockchain Management
cloud

[25] 2018 multi SaaS No Clustering Discovery
cloud

[2] 2018 single- Mashup Graph Clustering Discovery
cloud

[3] 2018 single- SaaS Graph Clustering, Discovery,
cloud Indexing, Publication

Ontology.
[4] 2017 single- SaaS – Clustering Discovery

cloud
[9] 2016 single- IaaS, – Ontology Management

cloud PaaS,
SaaS.

[5] 2016 – Mashup Graph Clustering Discovery
[11] 2016 single- DaaS – multidimensional Management

cloud Indexing
[10] 2016 multi Micro No Ontology Management

cloud services
[6] 2016 single- DaaS – Clustering Management,

cloud Processing.
[7] 2015 single- IaaS, – Clustering, Discovery

cloud PaaS, Ontology
SaaS,

[8] 2014 single- SaaS – Ontology, Recommendation
cloud Registry

[15] 2010 single- DaaS No multidimensional
cloud Indexing

[12] 2011 single- DaaS No multidimensional Data
cloud Indexing Processing

Continue on next page

7

Table 1 – Continued from previous page
Ref Year Environment Service Management Purpose

Type Model Method
[13] 2011 single- DaaS No multidimensional Data

cloud Indexing Management
[40] 2011 single- – No Ontology Management

cloud
[38] 2010 single- DaaS No unidimensional Data

cloud Indexing Processing
[14] 2010 single- DaaS No multidimensional Data

cloud Indexing Storage

3. The Distributed SaaS Management System for A Cloud Federated
Environment

In this section, we provide the details of our work including (i) formal def-
initions (ii) an overview of our approach, (iii) the proposed cloud federation
architecture, (iv) the details of the proposed management system and (iiv) the
service publication algorithm.

3.1. Formal Definitions

In this section, we provide the formal definitions of all the important concepts
used in the frame of this work.

Definition 1. (WordNet domain ontology) The WordNet domain ontol-
ogy [28] is a formal classification of several concepts (domains and their sub-
domains) realizing a hierarchical structure where each concept is characterized
by its properties and its relations with other concepts. It is defined as O =
(D , SubD ,F , R, I) where:

• D = ({dj}|1 ≤ j ≤M): the WordNet domain ontology defines five M = 5
general categories dj ∈ D including d1 = Humanities, d2 = Free Time,
d3 = Applied Science, d4 = Pure Science and d5 = Social Science. Each
domain represents the root node of a tree structure.

• SubD = ({Subdj
}|1 ≤ j ≤ M): each domain dj ∈ D provides a set of

several sub-domains. For instance, the domain d5 = SocialScience pro-
vides some of the following sub domains {Tourism, F inance, Transport,
Industry} ⊂ Subd5

• F = ({fi}|i ≥ 1): functionalities are more abstracted concepts provided
by the sub-domains of the ontology, each functionality provides several
SaaS services. The functionality concepts represent the leaf nodes of the
tree structure. For example, the set {MoneyConversion} represents the
functionality concepts of the sub-domain Finance ∈ Subd5

.

8

• R: is the set of relations that describe the interactions between concepts and
organise them into sub-super-concept (domain, sub-domain, functionality)
tree structures.

• I: is the set of individuals or instances. Instances are the ”things” repre-
sented by a concept. For example, a cloud service S1 is an instance of the
concept Convert.

Definition 2. (Service Description) Each application (SaaS) service is de-
scribed as a tuple s = (sId, sd, sf , sIn, sOut, sB) where:

• sId: unique identifier of the service s.

• sd ∈ D ∪ SubD : domain of the service. The domain is chosen among the
existing domains in O.

• sf : functionality concept of s.

• sIn = ({ei}|i ≥ 1): represents a set of service inputs (concepts). An input
ei ∈ In is what a service s requires to produce expected outputs.

• sOut = ({oj}|j ≥ 1): represents a set of service outputs (concepts). An
output oj is the result obtained from a set of inputs.

• sB: represents the files constituting the body of the service.

Definition 3. (Cloud Provider) A Cloud provider C is defined by C = (Id,
S), where:

• Id: is the unique identifier of the Cloud provider;

• S = ({si}|i ≥ 1): is the set of cloud SaaS services provided by C.

For example, several cloud providers are illustrated in Fig. 5 such as Sl1.1,
Slj.2, Sl5.(K−1), L1, L5, CMF .

Definition 4. (Cloud Community) A cloud community represents a set of
K cloud providers. It is defined as com = (d, L, Sl) where:

• d ∈ D : represents the domain of interest of the community.

• L: represents the cloud leader of the community.

• Sl = ({slh}|1 ≤ h ≤ K − 1): represents a set of (K-1) cloud Slaves of the
community.

An example of cloud community com1 = (d1, L1, Sl1) is illustrated in Fig.5
where d = d1 = Humanities, L = L1, Sl = Sl1 = {sl1.1, sl1.2, ..., sl1.(K−1)}.

Definition 5. (Cloud Federation) A cloud federation CF is defined as CF =
(COMF , CMF) where:

9

• COMF = ({comj}|1 ≤ j ≤M): represents a set of M communities.

• CMF : is the cloud master and the administrator of the federation Fd.

An example of a cloud federation CF = (COMF , CMF)is depicted in Fig. 5
where COMF = {com1, com2, com3, com4, com5} and CMF = CM

Definition 6. Trusted registry A trusted registry is defined as TR = ({trj}|1 ≤
j ≤M) with trj = (dj , comj , Lj) where:

• dj ∈ D : represents the domain of interest of the community comj

• comj: represents the jth community.

• Lj: is the cloud leader of the jth community.

Definition 7. Community Index It is defined as a tuple comindex = (d,
Subd, F) ⊂ O where:

• d ∈ D : represents the root node of the index and the domain of interest of
the community.

• Subd ⊂ SubD : represents a set of d’s sub-domains.

For example, Fig.8 illustrates a community index Comindexj stored in the
cloud leader Lj .

Definition 8. Functionality Registry it is defined as FR = ({frw}|w ≥ 1)
with frw = (fw, Clw) where:

• fw ∈ F : represents a functionality (concept).

• Clw: represents the identifier of a service cluster which gathers function-
ally similar services.

For example, in the community illustrated by Fig.8, a functionality registries
for each of its cloud slaves is represented such as FRj.1, FRj.2 and FRj.(K−1)

Definition 9. Service Clusters A service cluster is define as Cl = (f, {SNetz}|z ≥
1) where:

• f ∈ F : represents a functionality (concept).

• SNetz : represents a set of functionally similar services organized into a
semantic network.

Definition 10. Semantic Service networks A service network is represented
by a directed network graph denoted by SNet = {S,E} where:

• S: a set of node representing the SaaS services.

• E = ({(si, sj)}|(si, sj) ∈ S2 ; and ; si 6= sj): represents a set of semantic
edges built using the input/output similarity.

10

3.2. Approach overview

The main objective of our work is to build an efficient cloud federation
environments and deploy a distributed management system in order to address
the exponential growth of services, effectively use the storage space and furnish
automated service publication and discovery methods.

 N Cloud Provider

WordNet Domain Ontology

(d1, ..., dj, ..., dM)

Cloud Master

Deployment + Trust policies

Input

Cloud Leader L1

Cloud Slave sl1

Cloud Slave sl(K-1)

Community

com1

.

.

.

Community

comM

..
.

Cloud Leader LM

Cloud Slave sl1

Cloud Slave sl(K-1)

..
.

Fig. 2: Cloud Federation Creation Process.

To do so, we start by building the cloud federation as it is illustrated in Fig.
2. A set of N heterogeneous cloud providers will be deployed into M commu-
nities (comj |1 ≤ j ≤ M) by using the domains (dj ∈ D |1 ≤ j ≤ M) offered
by the WordNet domain ontology (each main domain dj offers a set Subdj of
several sub-domains). Each community will store and host services that belong
to the same domain of interest. For example, the community com3 will offer
services that belong to the domain domain d3 = Applied Science and its sub-
domains Subd3

= { Computer Science, Medicine, Agriculture ,...}. Afterwards,
we propose to elect an administrator for each community whom we will appoint
as cloud leader. The remaining clouds in the community will be considered as
cloud slaves and they will be used for the storage of the cloud services. There-
after, we propose to elect a cloud master from among the cloud leaders as the
primary administrator of the federation. Then, trust policies will be established
within and between the cloud communities to overcome interoperability issues
between the heterogeneous cloud providers and form a federation with a single
access point. As a result, we obtain an architecture organised in a hierarchy
comprising a central administrator called the cloud master, several secondary
administrators (the cloud leaders) and several cloud slaves who will be in charge

11

of storing the cloud services. Thus, user requests will first be received by the
cloud master and then forwarded to the cloud leaders of the concerned commu-
nities, who will then broadcast the request to the relevant cloud slaves. The
cloud master being the administrator of the entire federation maintains a special
directory we named trusted registry (TR) which contains information about the
involved cloud communities, their domain of activity, the services they offer as
well as the id of the different cloud leaders. TR can be considered as a global
overview of the offerings of the entire federation.

Once the federation is established, built and operates as a single organi-
sation, we will proceed with the management of the existing services in each
community. This work concerns the application layer services (SaaS) which are
stored physically in the physical infrastructure (servers) of the federation and as
virtualisation is one of the key features of cloud computing, these services will
be managed virtually (build a virtual view) following the process illustrated in
Fig. 3.

Community comj

WordNet Domain Ontology

dj + Subdj

Input

Sub-domain

Grouping

Func!onality

Clustering

...

...
...

Service

Sub-group1

Cluster Cl1 Service

Network SNet1

Cluster Clf

Cluster Cl1

Cluster Cle

Service

Sub-groupr

Service

Network SNetf

Service

Network SNet1

Service

Network SNete

Fig. 3: Service Management Process.

Firstly, the services in each community will be classified into finer groups
according to their sub-domain. For example, in the community com3, services
that belong to the Medicine sub-domain will be grouped separately from other
services that belong to other sub-domains such as the Computer Science or
Agriculture. Afterwards, we propose to further improve and refine the sub-
domain grouping of services in each community by creating clusters of function-
ally similar services using the functionality attribute (concept) in the description
of services. This step has several advantages as it allows to avoid grouping ser-
vices into categories (sub-domains) only not to what they really offer, it also
facilitate service discovery by reducing considerably the search space. Next, we
made use of the relationships that services may have with each other and con-
structed a service network SNetz for each cluster using the input/output service
attributes. The post-creation of these networks is a considerable time saver in

12

the execution of the different algorithms. Also, this step enables handling com-
plex user requests that cannot be satisfied with single services by constructing
service compositions.

3.3. Cloud Federation Communities Architecture (CFedCom)

Fig. 4 depicts the proposed architecture in which we identify the major
actors, layers, their activities and functions in the cloud federation. The main
components of our architecture are the federation management layer, the ser-
vice management layer, the cloud services layer and the physical infrastructure
layer. While the main actors of this architecture are the end users, the service
providers, the broker slaves, the broker leaders and the broker master. Each ac-
tor is an entity that performs tasks and interacts with the different components
of the cloud federation. The components and layers are briefly explained in the
following:

• Federation management: this layer is responsible for providing all the
necessary methods for building and maintaining the cloud federation.

• Service Management: this layer includes all of the service-related methods
and algorithms that are necessary for storing and managing the services
of the cloud federation.

• Physical Infrastructure: this layer represents the physical resources of the
federation (servers and data centers).

• End User: this entity represents the cloud client (company or individuals)
that requests the use of cloud services.

• Service Providers: this entity is responsible for developing and submitting
services within the federation.

• Brokers: a broker is an entity associated to every cloud in the federation.
It is responsible for handling the interactions between the different cloud
providers.

13

Cloud services

Cloud Federation

Service

Management

Federation

Management

Brokers

Service

Providers

End

Users

SaaS

PaaS

IaaS

Physical Infrastructure

Fig. 4: Proposed Cloud Federation Architecture.

3.3.1. Cloud Federation Creation

The proposed cloud federation is built by using Algorithm 1. It takes as
input a set of cloud providers as well as the WordNet domain ontology O. It
provides as output the hierarchical architecture illustrated in Fig. 5 composed
of a cloud master and a set of cloud communities with a cloud leader and cloud
slaves for each. The steps of the algorithm are explained as follows:

• Step 1: Community Deployment
Algorithm 1 starts by grouping a set of (N) clouds (C = { C1, C2,..., CN

}) into (M) communities (Com = {com1, com2, ..., comM}) according to
the WordNet domain ontology [28]. The WordNet domain ontology O
enables the definition of a simple vocabulary in terms of concepts and the
relationships between them, including classes, sub-classes, etc. It provides
a hierarchical semantic classification of existing domains into five general
categories (d1 = Humanities, d2 = Free Time, d3 = Applied Science, d4

= Pure Science, and d5 = Social Science) where each domain dj includes
several sub-domains; and the advantage of a cloud community lies in the
ability to offer optimized cloud solutions to specific category of users, and
when cloud communities are used, user requirements can be better satisfied
[29]. As a result, we obtain five communities (M = 5) gathering K clouds
each and sharing heterogeneous domains of interest (each domain dj is
assigned to a community comj). The communities provision and the store
cloud services that are related to the domain dj and its sub-domains.

• Step2: Cloud Leader Election
This step consists in electing for each community comj a cloud leader
Lj among its K constituting clouds (Line 3 - Line 7) based on the hard-
ware criteria in order to facilitate its administration and avoid some chal-

14

Algorithm 1 Cloud federation creation

Inputs:
C = {C1, C2, ..., CN}//set of (N) clouds
O = {(d1, Subd1), (d2, Subd2), ..., (dM , SubdM

), } //WordNet domain ontology
with M principle domains and their sub-domains
Outputs:
CMF , COM //The cloud master and the set of cloud communities
BEGIN

1: Set Leaders = ∅; COM = ∅;
//Step 1

2: COM = Community Deployment (C, O);
//Step 2

3: for each comj in COM / j = 1 to M do
4: comj .Lj = Cloud Leaders Election (COMj);
5: Set Leaders = Set Leaders + comj .Lj

6: comj .sl = Slaves Designation (Lj , comj);
7: end for each

//Step 3
8: CMF = Cloud Master Election(Set Leaders);

//Step 4
9: Trust Establishment(CMF , COM);

END

lenges such as a mesh network communication between the different cloud
providers. As a result, we obtain for each community comj : (i) a central
administrator called cloud leader Lj whose hardware capabilities are the
highest in the community, (ii) K−1 remaining clouds considered as cloud
slaves; they are responsible for storing and hosting the cloud services, and
(iii) a broker for each cloud in comj . The broker of a cloud leader is named
broker leader, and it interacts with the brokers of the cloud slaves upon
receipt of a request for service publication or discovery.

• Step 3: Cloud Master Election
A cloud master CMF is elected among the M cloud Leaders as the main
administrator of the federation based on the hardware criteria (Line 8).
As a result, service publication and discovery requests are first received by
CMF then forwarded to the cloud leaders of the concerned communities by
interacting through their respective brokers. To enable the proper transfer
of requests, the cloud master uses and maintains a directory referred to
as the trusted registry TR where all the cloud leader identifiers and their
application domain are listed.

• Step 4: Trust Establishment
The concluding stage in the construction of the federation is the trust es-
tablishment between the clouds of the federation. In fact, interoperability

15

issues arises from the use of the heterogeneous N cloud providers in the
creation process of the federation. Therefore, the establishment of trust
policies inside and across the communities resolves this issue and enables
the use of the federation as a single organization.

As a result, we obtain the hierarchical federation architecture illustrated in
Fig. 5 composed of a central administrator called cloud master CMF , M cloud
communities, M cloud leaders and several cloud slaves.

End User

Service

Provider
Broker Leader

Broker Slave
Cloud Slave

Cloud Leader

Cloud Master

Cloud

Community

Br_L1

Br_L5Br_Lj

Br_M

End

User

Service

Provider

L1 Lj L5

C_M

Sl 1.1

Sl 1.2

Sl 1.(K-1)
Sl 5.1

Sl 5.2

Sl 5.(K-1)Sl j.1

Sl j.2

Sl j.(K-1)

Cloud Federa�on

Broker Master Intra-Community Communica!on

Inter-Community Communica!on

Publica!on/Discovery Requests

...

...

...

Fig. 5: Proposed Cloud Federation Framework.

3.4. Distributed SaaS Management System

SaaS services are software applications that can provide either one or more
functionalities to cloud users. They are described by their functional or non
functional attributes such as the domain, functionality, input and output; as well

16

their body which represents the several coded files which will be published and
deployed into the cloud physical infrastructure. In order to effectively manage
these software services, two primary aspects regarding the nature of the cloud
must be considered managing software services:

• Standardization
One of the main challenges of the cloud environment is the lack of stan-
dards notably, regarding the cloud Service Description Languages (SDLs).
Existing cloud SDLs differ from one cloud provider to another. As a re-
sult, several descriptions are found such as Blueprint [41], Unified Service
Description Language (USDL) [42], Web Service Description Language
(WSDL), Web Ontology Language (OWL), Semantic Open API Specifica-
tion (SOAS) [43], Cloud Service Description Model (CSDM) [44]. The fact
that cloud SDLs being not standardized makes the service management
process more challenging. In this paper, we propose a unified service de-
scription (Definition 2) which includes the necessary functional attributes
to successfully carry out the management and the publication of services
and ensure accurate discovery results.

• Storage Virtualization
With cloud storage, users access a virtual static storage instead of a physi-
cal storage space [29] and the actual physical storage location may change
as the cloud dynamically manages available storage space. In fact, unlike
traditional systems that provide only one physical storage layer, the cloud
computing provides a virtual layer created on top of the physical layer
by using virtualization technologies as virtualization being one of the key
characteristics in cloud computing systems [45].

In consequence, SaaS services are physically stored and virtually managed
using their description according to the process illustrated in Fig. 6 which we
explain in the following:

• Step 1: Sub-Domain Grouping and Community Index Building
The first step of the SaaS management process consists in improving the
domain grouping inside each community. In fact, SaaS services are already
grouped into M general categories according to their domain of interest dj
and affected to a community comj . For example, com3 involves services
that belong to the same domain of interest i.e. d3 = Applied Science and to
different sub-domains such as Medicine, Agriculture or Computer Science.
Thus, by using the WordNet domain ontology [28], services in each com-
munity are grouped into finer categories according to their sub-domain.
Next, we propose to build a community index from the WordNet ontology
in order to be able to associate each service group to its corresponding
sub-domain. A community index is defined by comindexj = {dj , Subdj , F}
where dj represents the root of the index and the domain of interest of
the community comj , Subdj

represents the set of dj ’s sub-domains. The
community index represents a local overview of all the services contained
in the community comj .

17

Dj

Community COMj

Service seman!c

network
Func!onally similar

service clusters

Virtual service

Sub-domain

service group

Dj

Dj

Virtual service

Sub-domain

service group

Dj

Dj

Virtual service

Community indexCommunity indexCommunity index

Sub-domain

service group

Dj

1
-

S
u

b
-d

o
m

a
in

 g
ro

u
p

in
g

a
n

d
 In

d
e

x
b

u
il

d
in

g

Primary virtual view

Step 1

Step 2 Step 3

DjDjDj

3
-

 N
e

tw
o

rk
 b

u
il

d
in

g

2- Functionality clustering

Dj

Community indexCommunity indexCommunity index

node

Fig. 6: Virtual Service Management Process.

18

• Step 2: Service Clustering
The second step in the management process consists in clustering the
services in each sub-domain into functionally similar service groups using
the functionality attribute in the service description (Fig. 6 step 2). By
using clustering methods, similar services can be searched and discovered
together to improve both the efficiency and accuracy of service discovery
[5] and enhance their visibility towards users [20]. As a result, we obtain for
each sub-domain several clusters described by a main functionality f and
several functionally similar SaaS services. To facilitate the management
of the clusters, we propose to list them in directories called registries of
functionalities (see Fig. 7) where each entry links a corresponding cluster.

• Step 3: Service Networks Construction
The third step in the management process consists of exploiting the in-
put/output similarities between services to create service networks (Fig.
6 step 3). Forming a network of services allows to process complex user
requests that require multiple functionalities which can’t be satisfied by an
atomic (single) service. Thus, enabling service composition. Each service
network is represented by a directed network graph SNet = {S,E} rep-
resenting the input/output relationships between the functionally similar
services, where each edge (si,sj) ∈ E indicates an input/output similarity
between the service (si) and the service (sj).

Therefore, applying the previous three steps on com3 for example produces
the result depicted in the Fig. 7. On top of the hierarchy, the community
index comindex3

built from the WordNet domain ontology. At the center, the
leaf nodes offer several functionalities listed in a directory. At the bottom of
the hierarchy, the service networks organized into clusters. This management
hierarchy represents the virtual view of the all the SaaS services contained in
the community. It is also maintained and updated in case any new submitted
services or any additional domains in the WordNet ontology. Thus, we apply a
last management step which allows to distribute the virtual view on the different
clouds of the community for maintenance efficiency and management facility.

19

Telecommunication

Applied Science

Computer
Science

Animal
Husbandry

Medicine

Dentistry

Pharmacy

Psychiatry
Radiology

Surgery

Agriculture

Veterinary

Functionality Cluster

F1 Cl1

 Cl2F2

Directory

Functionality Cluster

Directory

Functionality Cluster

Directory

Functionality Cluster

Directory

C
o

m
m

u
n

it
y

 In
d

e
x C

lo
u

d
 Le

a
d

e
r

C
lo

u
d

 S
la

v
e

s
R

e
g

is
tr

y
o

f

Fu
n

ct
io

n
a

lit
ie

s
C

lu
st

e
rs

 a
n

d

S
e

rv
ic

e
 N

e
tw

o
rk

s

F’1 Cl’1 F’’1 Cl’’1

F2 Cl’3

F’’’1 Cl’’’1

F’’’2 Cl’’’2F1 Cl’2

Fig. 7: Service Management Hierarchy.

20

• Step 4: Virtual View Distribution
In order to optimize the management and facilitate the maintenance, we
propose to distribute the virtual view of each community (comj) between
its clouds (leader and slaves) as illustrated in Fig. 8. The leader (Lj)
being the administrator of the community (comj) is charged with the
maintenance of the community index. Then, we distribute the directories
and the functionally similar clusters between the slaves. The links (index
nodes/directories) and (functionality/clusters) are preserved.

Telecommunication

Applied Science

Computer
Science

Animal
Husbandry

Medicine

Dentistry

Pharmacy

Psychiatry
Radiology

Surgery

Agriculture

Veterinary

Functionality Cluster

F1 Cl1

 Cl2F2

Directory

Functionality Cluster

Directory

F’’’1 Cl’’’1

F’’’2 Cl’’’2

Functionality Cluster

Directory

F’1 Cl’1

F2 Cl’3

F1 Cl’2

...

sl2

slk-1

sl1

Broker slave Cloud slave

Cloud leaderBroker leader

L3

Community com3

Fig. 8: Distributed Virtual View.

21

3.5. Service Publication

SaaS services are submitted by service providers then published and stored
within the cloud infrastructure. Before proceeding to the publication of any
cloud service, it is crucial to determine how services are described and what
information should be provided. The challenge that can occur lies in the fact
that there is no unified description for cloud services. In fact, the description
of cloud services differs from one cloud provider to another due to the lack of
standards. As a result, several descriptions are found in the literature such as
Blueprint [41], USDL (Unified Service Description Language) [42], WSDL (Web
Service Description Language), OWL, SOAS (Semantic Open API Specification)
[43], CSDM (Cloud Service Description Model) [44]. These descriptions do not
fulfill our need, this is why we propose in this paper a new service description
that involves several attributes (domain, functionality, inputs, outputs, body) as
explained in definition 2. In the following section we therefore present a detailed
publication process while respecting the proposed management solution and the
service description.

3.5.1. Service publication Process

The publication process of a service (si) within the cloud environment is
composed of two essential parts, the virtual storage (step 1, 2, 3) and the phys-
ical storage (step 4). The virtual storage consists in adding the new service to
the virtual view. Whereas the physical storage is about storing the body of the
service in the physical servers of the Cloud. This process is resumed through
Algorithm 2 that takes as input the service to submit and provides as output
an update in both the virtual and physical views.

• Step 1: Service provider (SPi) → Broker Master (M Br)

– The (SPi) submits its Publication Request PR = { Si Domain,
Si Functionality, Si Inputs, Si Outputs, Si Body } via the Cloud por-
tal (Line 1).

• Step 2: Broker Master (M Br) → Broker Leader (Br Lj)

– The Broker Master receives the Publication Request (PR) .

– Using the domain (Si Domain) of the service (Si), the Broker Master
(M Br) consults its Trust Registry (TR) to determine the Broker
Leader (Br Lj) of the community (COMj) concerned with a domain
similar to Si Domain (Line 5 and 6) .

– The Broker Master (M Br) forwards the Publication Request (PR)
to (Br Lj) (Line 7).

• Step 3: Broker Leader (Br Lj) → Broker Slave (Br Slj.h)

– The Broker Leader (Br Lj) searches its Community Index (COM Indexj)
to find the set of functionalities (Set F) offered by the domain (D),
where (D) is similar to the submitted domain (Si Domain) (Line 9).

22

– Using the set of functionalities (Set F), the Broker Leader (Br Lj)
determines the Cloud Slave (Br Slj.h) which stores the services that
are concerned with the functionality (F), where (F) is similar to
(Si Functionality) (Line 10 and 11).

∗ If no similar functionality (F) is found, the new functionality is
then added to (Set F), and the Broker Leader (Br Lj) determines
one of its slaves (Br Slj.h) that will store the new service (Line
13).

∗ A request is sent to the Cloud Slave (Slj.h) to add the new func-
tionality (Si Functionality) in its registry (Line 14).

– The Broker Leader (Br Lj) forwards the publication request to the
Broker of the concerned Cloud Dlave (Br Slj h) (Line 16).

• Step 4: Broker Slave (E.Sl.Br Sl)

– Using the functionality (Si Functionality) of the submitted service,
the Broker Slave (Br Slj.h) searches its registry of functionalities
(Reg Fj.h) in order to determine the cluster (CLj .h.q) indexed by
the functionality (F), where F is similar to (Si Functionality) (Line
18).

– (Br Slj.h) adds the new service (Si) to the semantic network con-
tained in the cluster (CLj .h.q) using the input/output similarity
(Line 19).

• Step 5: Broker Slave (Br Slj.h)

– (Br Slj.h) Stores the body (Si Body) of the submitted service in the
physical infrastructure (Line 20).

23

Algorithm 2 SaaS Publication Algorithm

Inputs:
PR = { Si Domain, Si Functionality, Si Inputs, Si Outputs, Si Body }
TR = {(COM1, D1, Br L1), ..., (COM5, D5, Br L5)}
O = {D1, D2, ..., D5} //the WordNet domain ontology where Dj =
{Dj Sub1, Dj Sub2, Dj Sub3, ...} jth domain and its sub domains.
Outputs:
E = (COM, Br L, F, Sl, Cl)

1: BEGIN
2: SPi: //Step 1
3: Send Publication Request(PR) −→ M Br;
4: M Br: //Step 2
5: E.COM=Find Corresponding Community(TR, PR.Si Domain, O)
6: E.Br L = Find Corresponding Leader(E.COM)
7: Forward PublicationRequest(PR) −→ E.Br L
8: E.Br L: //Step 3
9: Set F = Find Set of Functionalities(Si Domain, E.Br L.CommunityIndex)

10: E.F=Find Corresponding Functionality(Set F, PR.Si Functionality);
11: E.Sl=Find Corresponding Slave(E.F);
12: if (E.Sl == NULL) then
13: E.Sl = Determine CloudSlave(E.COM);
14: Cearte New Functionality(E.Sl.Reg F, PR.Si Functionality);
15: end if
16: Forward PublicationRequest(PR) −→ E.Sl;
17: E.Sl: //Step 4
18: E.Cl = Search Registry Functionalities Clusters(E.Sl.Reg F,

PR.Si Functionality);
19: Add NewService toNetwork(E.Cl.Network, PR);
20: Add NewService toPhysical Databases (Si Body);//Step 5
21: END

24

4. Experiments and Results

The proposed approach is implemented and a set of experiments are per-
formed in order to: (i) evaluate the performances of the proposed cloud federa-
tion architecture (CFedCom) against a non federated environment; (ii) compare
our approach in terms of response time to the work proposed in [46]; and (iii)
study the amount of the storage space that the proposed management solution
requires.

4.1. Experimental setup

The experiments were conducted on an Intel (R) core (TM) i5-8250U CPU
1.80 GHz equiped with 12 Go RAM, running on windows 10. The manage-
ment and the publication prototype was developed using the C# programming
language. Whereas the simulations were undertaken using Cloudsim1 3.0.3.

Regarding the services dataset, we have used the OWLSTC2 v4.0 open
source corpus. This dataset is designed for web services, but we chose to use it
because, on the one hand, there is no dedicated SaaS services dataset available
for the Cloud Computing, and on the other hand, according to H. Nacer et al.
[47] a SaaS service is a Web application offered as a service on demand by using
Cloud infrastructure. Hence the possibility of its use. We have also used the
domains of the WordNet ontology [28].

4.2. Experiment 1: CFedCom Vs Non Federated Environment

We aim through this first experiment to evaluate the performances of the
proposed solution i.e. the federation of several cloud communities (CFedCom)
compared a single cloud community gathering several cloud providers. Table 2
lists the simulation configuration used in this evaluation.

VM
N M Mips Size Ram BandW CPU

Single 4 1 1000 10000 512 1000 1
community
CFedCom 7 3 1000 10000 512 1000 1

Table 2: Virtual Machine Configuration.

We have varied the number of services (cloudlets in cloudsim) between 100
to 50 000. Table 3 lists the results of the obtained response time.

From the results listed in Table 3, the multiple cloud communities offer bet-
ter response comparing to single cloud communities. Moreover, the advantage
of multiple communities federation is in the storage space and the variety of the

1https://github.com/Cloudslab/cloudsim/releases/tag/cloudsim-3.0.3
2http://projects.semwebcentral.org/projects/owls-tc/

25

Number of Services 100 500 5000 50 000
single cloud provider (s) 40 200 2000 20000

Single cloud Community (s) 8 40 400 4 000
CFedCom 2. 67 13.34 133.34 1333.34

Table 3: Services Run Time for the Three Scenarios.

services offered by the federation is wider. There is no interoperability problem
for this architecture thanks to the trust relationship established between the
Clouds and the communities. The advantage of a Cloud community lies in the
ability to offer a larger variety of services. We can say that Cloud community
implementation offers a better run time than the single-Cloud implementation.
It also allows clients to use the best Cloud services from different Cloud providers
while minimizing resources. Moreover, a greater number of services can stored
using the Cloud community architecture. Yet, this architecture presents some
major issues. Firstly, the Clouds constituting the community present a signifi-
cant concern which is illustrated in the heterogeneity of the Cloud architecture
design. This issue creates an interoperability problem between the services of-
fered by the several Clouds. Secondly, the community can only satisfy a specific
group of clients because it is dedicated to a unique domain of offerings. There-
fore, in order to solve the aforementioned issues, we opt to implement the same
management mechanism for all the Clouds of the community and establish trust
between the (N) Clouds (intra-community). This will allow the (N) Clouds to
be managed as a single organization. Thus, solve the heterogeneity issue. Fur-
thermore, we opt to extend the single community architecture to multiple Cloud
communities in order to provide services to as many clients as possible, ensure
a better quality of service and further increase storage space.

The use of the federation (CFedCom) reduces the average response time by
more than 60% comparing to single-Cloud environments and more than 90%
comparing to a single Cloud community federation (see Table 4). As a result,
federated Cloud environment provide better performances, wider resources and
services.

Improvement : Single Cloud Provider Vs CFedCom 93%
Improvement : Non Federated Environment Vs CFedCom 66%

Table 4: Cloud Federation Improvement Percentage.

4.3. Experiment 2: CFedCom Vs [46]

In this section, we analyze the performance of the proposed cloud federation
in terms of response time against the cloud federation proposed in [46]. The
response time taken by the two approaches are illustrated in Fig. 9. In this
simulation, 500 requests are processed in the both cloud federation architectures.
Our approach presented better average response time compared to [46]. This is
due to the fact that in our solution, service providers are located directly thanks

26

to the proposed hierarchical management solution. Whereas in [46], they search
each time for the corresponding cloud providers by using ranking algorithms.
We note that these experiments are made using the cloudsim simulator which
enables the creation of almost a perfect environment, where lots of real world
challenges such as server failure or breakdown are not considered. Thus, different
performance results may be obtained with a real world evaluation.

Fig. 9: Average response time of the two approaches.

4.4. Experiment 3: Storage Requirement

In these experiments, we aim to determine which of cloud master, leaders or
slaves need the most storage space. Lets consider the scenario described in Table
5, a cloud federation that constituted of a cloud master and three communities
(com1, com2, com3) where each community gathers one cloud leader and two
cloud slaves (three clouds per community). Each community is associated to
a domain (the available domains of WordNet [28]). The community com1) is
associated with the domain (Social Science). The community com2 is associated
with the domain (Applied Science). The community com3 is associated with
the domain (Humanities).

Nb Clouds (N) Nb Communities (M) Nb Master Nb Leaders Nb Slaves
10 3 1 3 6

Table 5: Cloud Federation.

The cloud master (Br M) holds and maintains the trusted registry, It en-
ables discovery and publication requests to be forwarded to the corresponding
communities based on the domain of interest of the request.

The Cloud Leader (Lj) of a community (comj) holds and maintains a com-
munity index (COM Indexj) build from the WordNet domain ontology [28].

27

Each leaf node of the Community Index (COMIndexj) offers several functionali-
ties. Thus, (COM Indexj) is used by the cloud Leader (Lj) in order to determine
in which slave, the services are stored according to the required functionality

The services stored in each Cloud Slave (Slj.h) are grouped into functionally
similar clusters. Thus, each Broker Slave (Br Slj.h) holds and manages a registry
of functionalities (Reg Fj.h) that indicates in which cluster (Clj .h.q) services
belonging to a functionality (Fx) are stored.

4.4.1. Virtual Storage Requirement

First, the cloud master provides two types of resources: computing resources,
which are used to process publication/discovery requests, and storage resources,
which are allocated to the storage of the registry (TR, see Fig. ??). According
to our scenario, a high level of availability is achieved with only with 90 bytes
of storage capacity (30 bytes for each new entry = Community ID/ Domain/
Broker Leader IP Address, see Fig. ??). High availability is maintained even
with a larger number of communities. For example, even with 1000 communities
composing the federation, the storage space required is only 31 kB. The storage
space (S1) required by the Trusted Registry at any particular time is given by
the Equation 1, where (M) represents the number of communities composing
the federation; and (z) represents the required storage space for one entry in
(TR).

S1 = M ∗ z (1)

Second, each Cloud Leader provides virtual storage space for its Commu-
nity Index (see Fig. ??) as well as for the set of functionalities offered by the
index leaf nodes. According to the WordNet domain ontology [28], the largest
number of nodes an index can have is 35 nodes (this number may increase or
decrease for any eventual updates applied to WordNet). Thus, the minimum
storage capacity needed for an Community Index is 1,1 kB (30 bytes per node).
Now, regarding the set of functionalities indexed by each leaf node, we obtain
30 bytes for each entry (entry = Functionality/ID Cloud Slave, see Fig. ??).
Thus, according to our simulation, we obtain 90 bytes for the set of function-
alities indexed by the (Tourism) node. The storage space required for the set
of functionalities increases as more functionalities are added but it is still man-
ageable. For example, with 2000 additional functionalities, the required storage
space is only 60 kB. Thus, the storage space that a Cloud Leader requires is
given by the formula 2, where (Nb Index Nodes): represents the number of
nodes of the Index Community; (s): denotes the required storage space for one
index node; (si): represents the required storage space for the ith set of func-
tionalities indexed by the ith leaf index node; and (q): represents the number
of leaf nodes in the index.

S2 = Nb Index Nodes ∗ s +

q∑
i=1

si (2)

Finally, each Cloud Slave of the federation provides virtual storage for its
registry of functionalities and its service graph networks. The required stor-

28

age space per Cloud Slave is given by the formula 3, where (F): represents the
number of functionalities offered by the registry of functionalities; (r): repre-
sents the required storage space for one entry in the registry of functionalities;
(Nb Networks Nodes) denotes the number of nodes of all the networks saved
within the Cloud Slave; (y): represents the required storage space for a single
network node.

S3 = F ∗ r + Nb Networks Nodes ∗ y (3)

Fig. 10 illustrates the required storage capacity in the federation using the
formulas above. Fixing the number of communities to 3, we notice that it’s the
Cloud Slaves that require the most virtual storage space.

0

200

400

600

800

1000

1200

1400

1600

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0 3 5 0 0 4 0 0 0 4 5 0 0 5 0 0 0

VARIABLE VALUES

R
E
Q

U
IR

E
D

 S
T
O

R
A

G
E
 S

P
A

C
E
 (
kB

)

Cloud Master Cloud Leader Cloud Slave

Fig. 10: Storage Space Requirement.

4.4.2. Physical Storage Requirement

The files constituting the submitted services are stored in the Cloud Slaves.
We can deduce that slaves are the Clouds that require the highest level of storage
resources.

29

4.5. A Guided Publication Process

Table 6 lists a sample of 10 SaaS services from the (Travel) domain which
corresponds to the (Tourism) domain in WordNet [28]. We suppose that these
services belong to the same functionality. Consequently, they belong to the
same cluster.

Id Inputs Outputs Description

1 Town Activity
returns the provided ac-
tivities of a given town.

2 Activity City
returns names of cities
which provide a given ac-
tivity.

3 City Accommodation
returns information about
accommodations in a
given city.

4 City Hotel
returns information of
available hotels of a given
city.

5 City + Country Hotel

returns names of available
hotels in a city. The city
must be located in the
given country.

6 Surfing + Hiking + City Beach

returns the name of the
beaches where both hiking
and surfing can be found
for a giving city.

7 Beach Sport
returns the available
sports for a given beach

8 Sport Beach
returns the available
beaches for a given sport

9 Hotel Activities
returns the activities of-
fered by a given hotel

10 Village Hotel
This service is used to
know about list of hotels
situated in a given village.

Table 6: OWLS-TC v4.0 Service Dataset

Each service is submitted via a cloud portal. For each new service, a Publica-
tion Request (PR) is created then received by the broker master then forwarded
by this latter to the concerned community using the domain of interest of PR.

The ten submitted services belong to the same cluster since they have the
same functionality. Consequently, the semantic network illustrated in Fig. 11 is
built. For example, the output of the service identified by (Id = 2) is equivalent
to the input of the service identified by (Id = 3), so an edge connecting the two
services is created. Nevertheless, the service identified by (Id = 10) is added

30

independently to the network because no matching results were found for its
output. All submitted SaaS services were added and stored successfully.

1 2

3

6 7

85

9

4

10

To
w

n

City Beach

B
ea

ch

Sp
o

rt

Su
rfi

n
g

Hiking

Country

Village Hotel

H
o

te
lH

otel

City

City

Activity

A
ctiv

ity

C
it

y

Accommodation

Fig. 11: Semantic Network Graph.

Organizing the services into a connected semantic network (directed graph)
facilitates the discovery and the composition of services, specially when a user
request is complex. In fact, according to H. Nacer et al. [48] the matching
between the service discovery request and the available services gives eight cases,
where 3/5 cases are satisfied by composition.

4.5.1. Algorithm Complexity

The Trusted registry, the Community indexes as well as the service networks
are built, maintained and stored virtually. This reduces considerably the run
time of the algorithm. Otherwise, if we confider for example the semantics
networks, if they are built each time a publication request is submitted, the
function will run in O(V+E)+O(V2), such that O(V2) is the time consumed for
the construction of the semantic networks, and O(V+E) is the time complexity
of its traversal in order to add the new service. It depends on the data structure
used to represent the graph. If it is an adjacency matrix, it will be O(V2),
and if it is an adjacency list, it will be O(V+E). In our case we have used
the adjacency list. Thus, we can say that the preliminary construction of the
semantic networks offers a real opportunity to reduce time response by a factor
of O(V2).

31

5. Conclusion

The amount and variety of the services offered by the Cloud Computing
are evolving every day, which poses a major challenge for their management.
In fact, providing automated management solutions is crucial in order to meet
some businesses needs such as providing enough storage space, effectively an-
swer users requests, grantee quality of service. Therefore, we have proposed
at first, a detailed Cloud federation architecture which involves several Cloud
communities. It is built using the trust concept which overcomes the existing
heterogeneity between the Clouds, while also using and semantic Web concepts
such as the WordNet domain ontology in order to designate the domain of inter-
est of each community. Second, we have proposed a management system that
groups services into functionally similar clusters then build a semantic network
for each cluster in order to address complex discovery requests and enable service
composition. Finally, we have proposed a detailed publication algorithm accord-
ing to the proposed architecture and management system. Several simulations
and a service publication prototype has been developed as a proof of concept.
We noticed that federated environments offer better results than single-Cloud
environments or non federated environments. Moreover, the preliminary built
of the virtual views reduces the processing time. However, it is essential to
ensure that enough resources are available to maintain these virtual views. In
our future work, we will focus on developing a detailed discovery and compo-
sition algorithm to complete the proposed solution according to the proposed
federated environment.

References

[1] S. Dhuria, A. Gupta, R. Singla, Pricing mechanisms for fair bills and prof-
itable revenue share in cloud federation, in: Advances in Communication
and Computational Technology, Springer, 2021, pp. 133–148.

[2] W. Pan, C. Chai, Structure-aware mashup service clustering for cloud-
based internet of things using genetic algorithm based clustering algorithm,
Future Generation Computer Systems 87 (2018) 267–277.

[3] L. Ouchaou, H. Nacer, H. Slimani, S. Boukria, Semantic networks based
approach for saas management in cloud computing, in: Proceedings of the
International Conference on Smart Communications in Network Technolo-
gies (SaCoNeT), IEEE, 2018, pp. 255–260.

[4] K. B. Bey, H. Nacer, M. E. Y. Boudaren, F. Benhammadi, A novel
clustering-based approach for saas services discovery in cloud environment.,
in: Proceedings of the 19th International Conference on Enterprise Infor-
mation Systems (ICEIS), Springer, 2017, pp. 546–553.

[5] B. Cao, X. Liu, B. Li, J. Liu, M. Tang, T. Zhang, M. Shi, Mashup ser-
vice clustering based on an integration of service content and network via

32

exploiting a two-level topic model, in: Proceedings of the International
Conference on Web Services (ICWS), IEEE, 2016, pp. 212–219.

[6] L. Wang, Y. Ma, J. Yan, V. Chang, A. Y. Zomaya, pipscloud: High per-
formance cloud computing for remote sensing big data management and
processing, Future Generation Computer Systems 78 (2018) 353–368.

[7] A. Alfazi, Q. Z. Sheng, Y. Qin, T. H. Noor, Ontology-based automatic cloud
service categorization for enhancing cloud service discovery, in: Proceed-
ings of the 19th International Enterprise Distributed Object Computing
Conference (EDOC), IEEE, 2015, pp. 151–158.

[8] Y. M. Afify, I. F. Moawad, N. L. Badr, M. F. Tolba, Concept recom-
mendation system for cloud services advertisement, in: Proceedings of the
International Conference on Advanced Machine Learning Technologies and
Applications (AMLTA), Springer, 2014, pp. 57–66.

[9] A. Gupta, S. Mittal, K. P. Joshi, C. Pearce, A. Joshi, Streamlining man-
agement of multiple cloud services, in: Proceedings of the 9th International
Conference on Cloud Computing (CLOUD), IEEE, 2016, pp. 481–488.

[10] G. Sousa, W. Rudametkin, L. Duchien, Automated setup of multi-cloud
environments for microservices applications, in: Proceedings of the 9th
International Conference on Cloud Computing (CLOUD), IEEE, 2016, pp.
327–334.

[11] J. He, Y. Wu, Y. Dong, Y. Zhang, W. Zhou, Dynamic multidimensional
index for large-scale cloud data, Journal of Cloud Computing 5 (1) (2016)
10.

[12] A. Papadopoulos, D. Katsaros, A-tree: Distributed indexing of multidi-
mensional data for cloud computing environments, in: Proceedings of the
3rd International Conference on Cloud Computing Technology and Science
(CloudCom), IEEE, 2011, pp. 407–414.

[13] L. Ding, B. Qiao, G. Wang, C. Chen, An efficient quad-tree based index
structure for cloud data management, in: Proceedings of the International
Conference on Web-Age Information Management (WAIM), Springer, 2011,
pp. 238–250.

[14] J. Wang, S. Wu, H. Gao, J. Li, B. C. Ooi, Indexing multi-dimensional
data in a cloud system, in: Proceedings of the International Conference on
Management of data (MOD), ACM, 2010, pp. 591–602.

[15] C.-L. Cheng, C.-J. Sun, X.-L. Xu, D.-Y. Zhang, A multi-dimensional index
structure based on improved va-file and can in the cloud, International
Journal of Automation and Computing 11 (1) (2014) 109–117.

33

[16] R. Buyya, R. Ranjan, R. N. Calheiros, Intercloud: Utility-oriented feder-
ation of cloud computing environments for scaling of application services,
in: Proceedings of the International Conference on Algorithms and Archi-
tectures for Parallel Processing (ICA3PP), Springer, 2010, pp. 13–31.

[17] F. Paraiso, N. Haderer, P. Merle, R. Rouvoy, L. Seinturier, A federated
multi-cloud paas infrastructure, in: 2012 IEEE Fifth International Confer-
ence on Cloud Computing, IEEE, 2012, pp. 392–399.

[18] J. B. Abdo, J. Demerjian, H. Chaouchi, K. Barbar, G. Pujolle, Broker-
based cross-cloud federation manager, in: Proceedings of the 8th Interna-
tional Conference for Internet Technology and Secured Transactions (IC-
ITST), IEEE, 2013, pp. 244–251.

[19] G. Andronico, M. Fargetta, S. Monforte, M. Paone, M. Villari, A model for
accomplishing and managing dynamic cloud federations, in: Proceedings of
the 7th International Conference on Utility and Cloud Computing (UCC),
IEEE/ACM, 2014, pp. 744–749.

[20] O. A. Wahab, J. Bentahar, H. Otrok, A. Mourad, Towards trustworthy
multi-cloud services communities: A trust-based hedonic coalitional game,
IEEE Transactions on Services Computing 11 (1) (2016) 184–201.

[21] A. Dhole, M. V. Thomas, K. Chandrasekaran, An efficient trust-based
game-theoretic approach for cloud federation formation, in: Proceedings
of the 3rd International Conference on Advanced Computing and Commu-
nication Systems (ICACCS), Vol. 1, IEEE, 2016, pp. 1–6.

[22] A. Margheri, M. S. Ferdous, M. Yang, V. Sassone, A distributed infras-
tructure for democratic cloud federations, in: Proceedings of the 10th In-
ternational Conference on Cloud Computing (CLOUD), IEEE, 2017, pp.
688–691.

[23] J. Shu, C. Liang, B. Wang, J. Xu, Building the federation of cloud service
for big data, in: Proceedings of the 3rd International Conference on Big
Data Analysis (ICBDA), IEEE, 2018, pp. 166–169.

[24] K. Papadakis-Vlachopapadopoulos, R. S. González, I. Dimolitsas, D. De-
chouniotis, A. J. Ferrer, S. Papavassiliou, Collaborative sla and reputation-
based trust management in cloud federations, Future Generation Computer
Systems 100 (2019) 498–512.

[25] S. Udhayakumar, T. Latha, Trustworthy cloud federation through coop-
erative game using qos assessment, in: Proceedings of the International
Conference on Pattern Recognition and Machine Intelligence (PReMI),
Springer, 2019, pp. 30–37.

[26] A. Hammoud, A. Mourad, H. Otrok, O. A. Wahab, H. Harmanani, Cloud
federation formation using genetic and evolutionary game theoretical mod-
els, Future Generation Computer Systems 104 (2020) 92–104.

34

[27] Y. Jadeja, K. Modi, Cloud computing-concepts, architecture and chal-
lenges, in: Proceedings of the International Conference on Computing,
Electronics and Electrical Technologies (ICCEET), IEEE, 2012, pp. 877–
880.

[28] Wordnet domains, http://wndomains.fbk.eu/download.html, accessed:
2020-05-17.

[29] S. Murugesan, I. Bojanova, Encyclopedia of cloud computing, John Wiley
& Sons, 2016.

[30] J. Hong, T. Dreibholz, J. A. Schenkel, J. A. Hu, An overview of multi-
cloud computing, in: Workshops of the International Conference on Ad-
vanced Information Networking and Applications (AINA), Springer, 2019,
pp. 1055–1068.

[31] C. Cachin, R. Haas, M. Vukolic, Dependable storage in the intercloud, IBM
research 3783 (2010) 1–6.

[32] U. Ahmed, I. Raza, S. A. Hussain, Trust evaluation in cross-cloud federa-
tion: Survey and requirement analysis, ACM Computing Surveys (CSUR)
52 (1) (2019) 1–37.

[33] M. Vukolić, The byzantine empire in the intercloud, ACM Sigact News
41 (3) (2010) 105–111.

[34] A. Bessani, M. Correia, B. Quaresma, F. André, P. Sousa, Depsky: depend-
able and secure storage in a cloud-of-clouds, Acm transactions on storage
(tos) 9 (4) (2013) 1–33.

[35] Á. L. Garćıa, E. F. del Castillo, P. O. Fernández, Standards for enabling
heterogeneous iaas cloud federations, Computer Standards & Interfaces 47
(2016) 19–23.

[36] C. A. Lee, R. B. Bohn, M. Michel, The nist cloud federation reference
architecture 5, NIST Special Publication 500 (2020) 332.

[37] P. Mell, T. Grance, et al., The nist definition of cloud computing.

[38] S. Wu, D. Jiang, B. C. Ooi, K.-L. Wu, Efficient b-tree based indexing for
cloud data processing, Proceedings of the VLDB Endowment 3 (1-2) (2010)
1207–1218.

[39] L. Zhu, Y. Wu, K. Gai, K.-K. R. Choo, Controllable and trustworthy
blockchain-based cloud data management, Future Generation Computer
Systems 91 (2019) 527–535.

[40] Y. Deng, M. R. Head, A. Kochut, J. Munson, A. Sailer, H. Shaikh, Intro-
ducing semantics to cloud services catalogs, in: Proceedings of the Interna-
tional Conference on Services Computing (SCC), IEEE, 2011, pp. 24–31.

35

http://wndomains.fbk.eu/download.html

[41] D. K. Nguyen, F. Lelli, Y. Taher, M. Parkin, M. P. Papazoglou, W.-J.
van den Heuvel, Blueprint template support for engineering cloud-based
services, in: Proceedings of the European Conference on a Service-Based
Internet (ServiceWave), Springer, 2011, pp. 26–37.

[42] J. Cardoso, A. Barros, N. May, U. Kylau, Towards a unified service de-
scription language for the internet of services: Requirements and first de-
velopments, in: Proceedings of the International Conference on Services
Computing (SCC), IEEE, 2010, pp. 602–609.

[43] N. Mainas, E. G. Petrakis, S. Sotiriadis, Semantically enriched open api
service descriptions in the cloud, in: Proceedings of the 8th International
Conference on Software Engineering and Service Science (ICSESS), IEEE,
2017, pp. 66–69.

[44] L. Sun, J. Ma, H. Wang, Y. Zhang, J. Yong, Cloud service description
model: an extension of usdl for cloud services, IEEE Transactions on Ser-
vices Computing 11 (2) (2015) 354–368.

[45] S. Azizi, M. Zandsalimi, D. Li, An energy-efficient algorithm for virtual
machine placement optimization in cloud data centers, Cluster Computing.

[46] M. Saravanan, M. Aramudhan, S. S. Pandiyan, T. Avudaiappan, Prior-
ity based prediction mechanism for ranking providers in federated cloud
architecture, Cluster Computing 22 (4) (2019) 9815–9823.

[47] H. Nacer, K. B. Bey, N. Djebari, Migration from web services to cloud
services, in: Proceedings of the International Symposium on Ubiquitous
Networking (UNet), Springer, 2017, pp. 179–192.

[48] H. Nacer, D. Aissani, Semantic web services: Standards, applications, chal-
lenges and solutions, Journal of Network and Computer Applications 44
(2014) 134–151.

36

	Introduction
	Related Works
	From Single Clouds to Community Cloud Federation
	Cloud Service Management
	Comparative Study

	The Distributed SaaS Management System for A Cloud Federated Environment
	Formal Definitions
	Approach overview
	Cloud Federation Communities Architecture (CFedCom)
	Cloud Federation Creation

	Distributed SaaS Management System
	Service Publication
	Service publication Process

	Experiments and Results
	Experimental setup
	Experiment 1: CFedCom Vs Non Federated Environment
	Experiment 2: CFedCom Vs refcmp
	Experiment 3: Storage Requirement
	Virtual Storage Requirement
	Physical Storage Requirement

	A Guided Publication Process
	Algorithm Complexity

	Conclusion

