
HAL Id: hal-04413370
https://hal.science/hal-04413370

Submitted on 23 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

When and How to Update Online Analytical Models
for Predicting Students Performance?

Chahrazed Labba, Anne Boyer

To cite this version:
Chahrazed Labba, Anne Boyer. When and How to Update Online Analytical Models for Predicting
Students Performance?. EUROPEAN CONFERENCE ON TECHNOLOGY ENHANCED LEARN-
ING, Sep 2022, Toulouse, France. pp.173-186, �10.1007/978-3-031-16290-9_13�. �hal-04413370�

https://hal.science/hal-04413370
https://hal.archives-ouvertes.fr

When and How to Update Online Analytical
Models For Predicting Students Performance?

Chahrazed Labba and Anne Boyer

University of Lorraine, CNRS, LORIA, Nancy, France
{chahrazed.labba,anne.boyer}@loria.fr

Abstract. One of the main concerns in online learning environments is
the identification of students with learning difficulties. Conventionally,
analytical models trained offline on pre-prepared datasets are used to
predict student performance. However, as learning data become progres-
sively available over time, this learning method is no longer sufficient in
real-world applications. Nowadays, incremental learning strategies are in-
creasingly applied to update online analytical models by re-training them
on newly received data. Various online incremental learning approaches
have been proposed to overcome different issues such as catastrophic for-
getting and concept drift. However, no approach addresses the question
of when to update the model and how to determine whether the new
data provide important information that the model should learn. In this
paper, we propose a method for determining when an online classifier
that predicts student performance and receives a real-time data stream,
should be updated. In addition, we use a typical approach that main-
tains balanced old and new data examples to re-train the model when
necessary. As a proof of concept, we applied our method on real data of
k-12 learners enrolled in an online physics-chemistry module.

Keywords: Incremental Learning · Distance learning · K-12 learners ·
Machine Learning · classification

1 Introduction

Learning from anywhere, at any time and at one’s own pace has become a reality
through the use of e-learning platforms. One of the main concerns in such a con-
text is the high failure rate among the learners. Multiple research works focused
on elaborating analytical models to predict students performance. Convention-
ally, most of these models operate in batch mode by reading and processing the
entire training set, with the strong assumption that the data is static and always
available in advance. Indeed, the learning data become progressively available
over time. It is impossible to collect all relevant training examples at once, and
the models must therefore be updated to incorporate the unlearned knowledge
encoded in the new data received over time. Thus, the traditional methods of
training and evaluating models are no more sufficient in real-world applications.

To address this challenge, incremental learning is increasingly used to ensure
continuous adaptation of online analytical models based on newly received data.

2 Labba et al

The use of online incremental learning has revealed many challenges, includ-
ing concept drift and catastrophic forgetting. Both of these problems have been
widely addressed and many approaches have been proposed [1,8,12] to overcome
their impact on the model efficiency. However, none of the incremental learning
approaches addresses the question of when to update the model, which in turn
raises the question of how to determine whether the newly received data provides
relevant information that the model should learn. Addressing the frequency of
updating an online model is of high importance. In the distance education, each
student has his own pace to learn, which results in variations in the students
engagement, regularity and reactivity. There are periods during the school year
when most students are active, while the rest of the time only a few of them
use the e-learning platform continuously. This variation in the learning behavior
has an impact on the quantity and the quality of the generated data over time.
According to the existing definitions [4,5,13], incremental learning is a dynamic
strategy that consists in processing the stream data as soon as it becomes avail-
able due to limited memory resources. This method can lead to frequent and
unnecessary updates of the models.

In this paper, we propose an incremental learning process for determining
when an online classifier that predicts student performance and receives a real-
time data stream, should be updated. Our process invokes the retraining process:
i) when new classes are detected in the newly received data ; ii) when the for-
getting value in each detected class is below a certain threshold and iii) when a
class label is seen but never predicted. The forgetting value within a class is the
difference between the two accuracy values over two successive time intervals. To
overcome the problems related to concept drift and catastrophic forgetting, our
process uses a typical approach that consists in maintaining a balanced training
set of old and new data to train the model when necessary. An algorithm is pro-
posed to update the exemplar set continuously as long as the data is generated
to re-train the model when necessary. As a proof of concept, we used a real-world
scenario of k-12 learners adopting 100% online education. Our process is applied
with an Artificial Neural Network (ANN) to predict students at risk of failure.

The rest of the paper is organized as follows: Section 2 presents the related
work. Section 3 introduces the proposed incremental learning process. In Sec-
tion 4 and Section 5, we present respectively the case study description and
the experimental results. The Section 6 presents the conclusions and the future
works.

2 Related Work

Online incremental learning is an Artificial intelligence (AI) technique that refers
to the circumstance of a permanent online adaptation of the analytical model
according to the constantly received data flow over time [4,5,13]. This technique
has been used to fulfill adequately various learning analytics objectives among
which predicting students performance [1, 6, 7], image classification [10, 14] and
text classification [11]. Most of the existing works focus either on solving the

Title Suppressed Due to Excessive Length 3

problem of catastrophic forgetting and concept drift, or on comparing incremen-
tal online algorithms. When it comes to predicting student performance incre-
mentally, most of the research is oriented towards the comparison of incremental
algorithms. In [7],the authors compared four classifiers that can run incremen-
tally. The aim is to recommend the suitable algorithm to use in assessing students
performance within an incremental learning context. In [1], the authors com-
pared three approaches of incremental learning to determine the suitable way
to handle students stream data. The used approaches include instance-based,
batch-based and ensembling of instance-based incremental learning. In [6], the
authors proposed an incremental learning technique that combines an incremen-
tal version of Naive Bayes, the 1-NN and the WINNOW algorithms. The aim is
to predict the student’s performance within a distance education environment
by using incremental ensemble based on a voting methodology.

The use of incremental learning is more developed, especially for image classi-
fication. In [5], the authors proposed an incremental learning framework to over-
come the problem of catastrophic forgetting when learning new classes and the
problem of data distribution over time referred as concept drift. The framework
was tested to classify images using the CIFAR-100 and ImageNet-1000 datasets.
In [12] the authors presented a novel framework that can incrementally learn to
identify various chest abnormalities by using few training data. the framework
is based on an incremental learning loss function that infers Bayesian theory
to recognize structural and semantic inter-dependencies between incrementally
learned knowledge representations. In [8], the authors compared eight popular in-
cremental methods representing different algorithm classes using stationary and
non-stationary datasets. A set of metrics including the accuracy, the robustness
and the error classification rate are used to assess the algorithms.

Existing incremental learning methods address a variety of issues, such as
catastrophic forgetting, but none address the issue of when to update a model.
In this paper, we propose a new incremental learning method that considers the
optimal time to update a model by reducing the number of unnecessary updates
while maintaining good performance stability.

3 Proposed Approach for incremental Learning

This section starts with a formal introduction to the problem of when and how
to update an online analytical model using stream data (Section 3.1). Then it
presents an overview of the proposed incremental learning process (Section 3.2).

3.1 Problem Formalization

Online incremental learning [8] is a subset of incremental learning, which is
further constrained by runtime and the ability to provide lifelong learning with
limited data when compared to offline learning. In general, these constraints are
related to real-world applications in which new data is generated sequentially
over time, thereby contradicting the strong assumption of total data availability.

4 Labba et al

Assume M1, M2,.., Mk a sequence of models that is computed on stream
data (D1, Y1), (D2, Y2),.., (Dk, Yk) as shown in the Figure 1.

Fig. 1. An Incremental Online Scenario

Each Di represents a block of new data (xi|i ∈ {1,m}), which it has at least
one element and no more than m elements. Usually, the size of the block is
limited due to memory constraints [5]. Each Yi represents the set of true labels.
Dtraini = (Di, Yi) represents the data used to update the model Mi to create
the model Mi+1 that will be used to predict Di+1.

As shown in Fig.1, the principle of incremental learning is that each time new
data is available, the model update is invoked. This, however, may necessitate
frequent updates of the online model, which is both time and resource intensive.
Defining when to invoke the re-train is of high importance. If the model Mi

can accurately predict Di, there is no need to update it; it can still be used to
process the data Di+1. In other words, if the model maintains a certain level
of performance stability, it means that the new data does not contain any new
knowledge that the model is unable to handle.

Further, one of the difficult challenges in incremental learning is catastrophic
forgetting. Suppose the model Mi is trained on j classes and we invoke its train
on Dtraini = (Di, Yi) that contains p new classes. In theory, the model can
predict all classes well (j+p), but in practice, the model’s stability on the old
j classes decreases significantly due to a lack of representation of these classes
when training on new ones.

In this work, we propose a new online incremental learning process that aims
to reduce the frequency of updating a model while maintaining a certain per-
formance stability over time. To address the problems related to catastrophic
forgetting, our method uses a typical approach [3, 5, 9] that consists in main-
taining a balanced training set of old and new data to train the model when
necessary.

3.2 Learning from a Train Exemplar

To address the common issues of incremental learning (e.g catastrophic forget-
ting), we adopt a common approach [3, 5, 9] that has been widely applied: we
use a small exemplar of both old and new data. In our work, the exemplar set

Title Suppressed Due to Excessive Length 5

Fig. 2. Exemplar Set

is updated each time new data are received. The new data may contain both
new data classes and new observations of old classes. As shown in Fig.2, we no
longer use only newly received data to train the model; instead, we use an exem-
plar set created previously and updated it with new samples from the received
stream data. Exemplar samples are selected at random, but with each update,
we seek to preserve an equal representation of all learned data classes. Algorithm
1 depicts the entire process of updating the exemplar set.

The Algorithm 1 takes as input the exemplar to update E , the received data
(D,Y), the number of samples m to store in E and the ratio of the classes R.
This ratio defines the representation of the classes within the exemplar (e.g if
we have 3 class labels, R is equal to 1/3). The Algorithm provides as output an
updated version of the exemplar E .

It all starts with cleaning up the old exemplar E (Line 1 - Line 8). The
algorithm checks the number of samples in E for each old class (Line 3). If
this number is strictly greater than the new representation ratio, the algorithm
removes the extra samples at random in order to meet the class representation
condition (Line 4). Otherwise, there is no need to delete the old observations
(Line 6).

The next step is to update the exemplar with the new data. We distinguish
between two types of updates: i) the exemplar is updated with the new detected
class labels (if any) (Line 9 - Line 16), and ii) the exemplar is updated with
the new observations for the old class labels (Line 17 - Line 25). For the first
kind of update, the algorithm first determines whether the number of samples
in the new data exceeds the allowed representation ratio (Line 10 - Line 11).
If this is the case, the algorithm selects samples at random to store in E . The
number of selected samples must meet the representation condition. Else, all
samples are kept in E (Line 14). For the second type of update the algorithm
checks, for each class, whether the number of samples for old observations meets
the representation ratio condition (Line 18 - Line 19). If this is the case, all of
the old data that have new observations are updated (Line 20). Otherwise, the
algorithm updates the old data with new observations (Line 22). Then, it selects
samples at random from the new observations of old classes to store in E while
satisfying the representation condition (Line 23).

6 Labba et al

Algorithm 1 Build the exemplar set

Require: E , (D,Y),m,R
Ensure: E
1: (Dold, Yold)← get old class(E)
2: for (c ∈ Yold) do
3: if (|Doldc | > (m ∗R)) then
4: E ← remove extra observations(E , (Doldc , c))
5: else
6: No need to remove
7: end if
8: end for
9: (Dnew, Ynew)← get new data((D,Y))
10: for (c ∈ Ynew) do
11: if (|Dnewc | > (m ∗R)) then
12: E ← put(E , select random((Dnew, Ynew), R,m))
13: else
14: E ← put(E , (Dnewi , c))
15: end if
16: end for
17: (Dnewobs , Yoldobs)← get new observations for old class((D,Y))
18: for (c ∈ Yoldobs) do
19: if (|Dnewobsc

| == (m ∗R)) then
20: E ← update(E , Doldc , Dnewobsc

)
21: else
22: E ← update(E , Doldc , Dnewobsc

)
23: E ← put(E , select random(Dnewobsc

, Yoldobs))
24: end if
25: end for

In the next section, we present how the use of the exemplar fits into the
overall incremental learning process.

3.3 Incremental Learning Process to Update an Online Model

Our incremental learning process (Algorithm 2) takes as input: i) the stream
data D = (D1, .., Dn) as it arrives over time; ii) the true label Y = (Y1, .., Yn)
associated to the stream data 1; iii) the ML model (M) , iv) the allowed for-
getting value (F) and v) m the number of samples to store in the exemplar
trainset.

The Algorithm 2 starts by iterating over the prediction times (Line 1). If
the prediction time corresponds to the beginning of the time interval (Line 2),
we train the model on the received data during that time (Line 3). This first
moment corresponds to the beginning of the school year, when all students are
given a class label. Indeed, to overcome the cold start problem, students can be

1 e.g Y1 represents the set of true labels for the stream data D1

Title Suppressed Due to Excessive Length 7

considered all successful, all at risk of failure, or their historical information can
be used to assign them to a specific class among the predefined ones.

Algorithm 2 Incremental Learning Process

Require: D = ((D1, Y1), .., (Dn, Yn)),M,F ,m
1: for i in (1..n) do
2: if (i == 1) then
3: M← fit(M, (Di, Yi))
4: C ← get-seen-class(Yi)
5: Ei ← build-trainset((Di, Yi),m, 1/|C|)
6: Alast ← ∅
7: else
8: c← |C|
9: List preds← predict (M, Di)
10: Ai ← Score-Accuracy(List preds, Yi)
11: Ci ← get current detected class(Yi)
12: C ← unique class (C ∪ Ci)
13: Ei ← update Exemplar set(Ei−1, (Di, Yi),m, 1/|C|)
14: if (|C| > c) then
15: M← fit(M, Ei)
16: else
17: OK ← true , j ← 0
18: while (OK and j < |C|) do
19: if (Aij == 0) then
20: M← fit(M, Ei)
21: OK ← false
22: else if (Alastj > Aij) then
23: aj ← compute forget (Alastj , Aij)
24: if (aj > F) then
25: M← fit(M, Ei)
26: OK ← false
27: end if
28: end if
29: j ← j + 1
30: Alast ← Ai

31: end while
32: end if
33: end if
34: end for

Then (line 4), we recuperate the learned classes during the first training time.
Later, we build the first trainset (Line 5). The build-trainset function takes as
parameters the received data (D1), the true labels (Y1) , the number of samples
to store (m) and the ratio of each learned class (1/|C|). The samples are selected
randomly, but the learned classes are equally represented in order to address the
issue of under-represented classes. The algorithm uses the list Alast to save the
accuracy values of the model for the most recent prediction time (Line 6). For

8 Labba et al

the following intervals, the algorithm starts by saving the number of the classes
already seen (Line 8). Then, the last calculated model is used to predict the
classification of the received stream data (Di) (Line 9). Then it calculates the
current accuracy scores for the seen class labels (Line 10). Ci that corresponds
to the list of class labels detected in Yi is identified (Line 11) and the set of seen
classes C is updated (Line 12). Later, the exemplar train-set is updated using the
Algorithm 1 (Line 13). The train-set is updated each time new data is received,
regardless of whether or not a model is updated. The aim is to maintain an
up-to-date train-set that will serve to train the model when necessary. There are
three cases to start model training: If new classes are detected in the labeled new
received data (Line 14), the model’s train is invoked using the recently updated
exemplar set (Ei). If no new classes are found, the model’s accuracy per class is
checked: if the current accuracy score equals zero than the training is invoked
(Line 19 - line 21). Else, the accuracy is compared to that computed during the
last prediction time to see if it has improved or decreased(Line 22). If the second
case, the algorithm verifies if the the forgetting value within the learned classes
does not exceed a given threshold (F) (Line 23 - Line 24). If it is so, the model’s
train is invoked (Line 25). It is sufficient to detect a drop in accuracy in one
class to start the training phase.

4 Case Study

The Cned2 offers a diverse range of courses entirely online to k-12 students lo-
cated all over the world (173 countries). These students come from a variety of
demographic backgrounds and are unable to attend regular schools for a variety
of reasons. The Cned offers the courses through a Learning Management System
(LMS) and provides with it a set of applications such as an education manage-
ment system that allows administrative tracking of the students. Our case study
in this work consists of K-12 students enrolled in the physics-chemistry course
during the 2017-2018 school year. There are 46 weeks in the school year and 671
enrolled students.

To predict students performances on weekly-basis, the problem is formalized
as a n-classification problem. The classification consists of three classes: high risk
(<= 8), medium risk (< 8 and <= 12) and success (> 12). On each week wi, a
student is defined by a tuple X = (f1, .., fm, y) where f1, .., fm are the features
and y is the class label. The student class may vary from one week to another
based on his/her performance. The selected features are extracted from the two
data sources including the LMS (moodle) and the education management system
(GAEL).

We distinguish the following indicators [2] calculated based on the used fea-
tures:

– Demographic data: it represents information such as the gender, the age, has
or not a scholarship, and repeating or not the year. These data are provided
by the education management system.

2 Centre national d’enseignement à distance: https://www.cned.fr

Title Suppressed Due to Excessive Length 9

– Performance: this indicator denotes the submitted exams and the grades.
– Engagement: it described the learner activity on the LMS. The only way to

track learners engagement is through their interaction with the LMS content.
– Regularity: it denotes the progress made by the learner in terms of achieved

LMS activities and the number of submitted exams through GAEL.
– Reactivity: It is denoted by the time taken to submit an exam as well as the

time between successive connections to the LMS.

The aim is to predict students at risk of failure as early as possible while
taking into account the progressive availability of data over time. To address
the issue of a cold start, all students are classified as having a high risk of
failing during the first week. This classification will evolve over time based on
the students performance.

5 Experiments

As a proof of concept, the incremental learning process was tested with the
ANN model. Prior to the assessment, a set of experiments were performed to
determine the suitable parameters for our model, including defining the optimizer
(SGD) and the learning rate (0.01). Several configurations were used to evaluate
the effect of process parameters on the number of model updates as well as
its accuracy. Furthermore, to demonstrate our process’s efficiency in reducing
the number of model updates while maintaining good performance stability, we
compared it to an incremental process that has full access to all previous data
and is trained each week. The second process is ideal for an incremental model
because all data is available and training is performed on a weekly basis.

5.1 Impact of the Forgetting Value and Exemplar set Size

Our incremental learning process is based on two key parameters including the
exemplar set size and the forgetting value (see Section 3). The first specifies the
number of the samples to be used when re-training the model. While the second
shows the rate of forgetting we can tolerate per class label.

Various configurations were used to test the proposed incremental learning
process (see Table 1). Each configuration differs in the size of the exemplar set
and the forgetting value. Overall, three exemplar sizes (80, 100 and 150) were
used, each with ten forgetting values (from 1% till 10%).

Table 1. Configurations

Exemplar set size Forgetting Value

80
1%, 2%, 3%,4%, 5%, 6%, 7%, 8%, 9%, 10%100

150

10 Labba et al

Fig. 3. Number of updates and Average accuracy Per exemplar Size and Forgetting
Value

The Fig 3 depicts the variation in the number of model updates as well as
the average of accuracy as a function of exemplar size and forgetting value. The
weekly accuracy values are used to calculate the average accuracy (over a period
of 46 weeks).

Regardless the exemplar size, we notice, in overall, that the number of up-
dates decreases while the forgetting value increases. This is to be expected, as
increasing forgetting values give the model a lot more space to forget what it
has learned. While a minor forgetting value may result in frequent updates. As
shown in Fig 3, for allowed values of 1%, we find the highest number of updates
(28, 28, and 19 updates respectively for exemplar sizes 80, 100 and 150). While
for a value of 10%, we notice the smallest number of updates (6, 5 and 6 updates
respectively for exemplar sizes 80, 100 and 150).

The average accuracy associated with the lowest forgetting values and thus
frequent updates is, indeed, the highest. However, for fewer updates, the aver-
age accuracy remains high (≥ 90%), even though it gradually decreases as the
forgetting value increases.

Despite the decrease in the number of updates as the forgetting value in-
creases, the model has maintained good stability, which can be attributed to the
use of an updated exemplar set. As explained in Section 3, the exemplar set is
used to store observations for old and new classes over time. Furthermore, when
creating this exemplar, we consider an equal representation of all classes to allow
the model to learn the knowledge gained over time more effectively. Equal class
representation is considered, since the received data over time already present
imbalances with respect to the ”medium risk failure” class. Consequently, with
a non-equal representation this class is not well detected, especially when the
samples are selected randomly when building the exemplar set. The number of
samples in the exemplar influences both the number of updates and the average
accuracy. Increasing this number does not always ensure the smallest number

Title Suppressed Due to Excessive Length 11

Fig. 4. Accuracy over weeks

of updates and the highest average accuracy. For example, using an exemplar
set of size 100, for half of the time resulted in an equal or higher number of
updates than using an exemplar set of size 80. Furthermore, it demonstrated
a high variation in average accuracy when compared to the rest, even though
this variation was not significant. While, in overall, the use of the exemplar set
with a size 150 samples resulted in less number of updates and better average
accuracy. Furthermore, for each exemplar set size, we observe that the number
of updates is stable or only slightly varies on an interval of forgetting values for
each exemplar set size. For example, for the exemplar set with a size 80, on the
interval [6%, 10%], the average accuracy is stable, and the number of updates
is equal to six. This can be explained by the fact that most of the detected for-
getting values were less than 6%, requiring no model update. Thus, in this case,
the number of updates is mostly identified when a new class is detected or when
the accuracy of a given class equals zero.

In summary, the forgetting value and the size of the exemplar set are relevant
parameters for reducing the number of updates and increasing the stability of
the model performance in the context of incremental learning. The goal of this
article is not to identify and fix these parameters, but rather to demonstrate
how they can be incorporated into a full incremental learning process to reduce
unnecessary updates while maintaining good stability.

5.2 Assess our Proposal to an Incremental Process with Full Data
Access

In this experiment, we compared the efficiency of our proposal to an incremental
learning process that has full access to old data and trains the model weekly. The

12 Labba et al

Fig. 5. confusion matrix

second procedure does not take into account the use of the forgetting value and
the exemplar set for training. The model update is invoked 46 times (over the
46 weeks). For the rest of the paper, this second process is denoted as the naive
process. For this experiment, we consider the results of the model trained with
a forgetting value of 5% for each of the exemplar set sizes (80, 100, 150). The
Fig 4 presents the evolution of the accuracy of the four ANN models over the
weeks. The model with the highest accuracy values over time is the one that was
trained weekly using a process that has full access to all of the data. However,
the rest of the models, which were only trained 7 times over the 46 weeks using
our incremental learning process, were able to maintain high accuracy values of
90% or higher.

The overall accuracy does not reflect the actual performance of a classifier.
Thus, in the Fig 5, we present the confusion matrix of the four models over all
weeks. The model trained using the naive incremental process is represented by
the first confusion matrix. It has the highest accuracy values across all classes,
and we used it as a reference to evaluate the efficacy of our incremental learning
process when training the rest of the models with different exemplar set sizes.

Indeed, with our incremental process, we find that increasing the sample size
does not always improve the model’s accuracy across all classes. When detecting

Title Suppressed Due to Excessive Length 13

the medium risk class, training the model with 80 samples outperforms training
it with larger numbers of samples (100, 150). Indeed, this could be a result of the
sample selection strategy used when creating the exemplar set. When it comes
to class representation, the data distribution is not homogeneous during the first
few weeks. As a result, the total number of samples determined by the fixed rate
cannot always be guaranteed (e.g. 30 % of the number of samples should be in
the medium-risk category or only 10% are available). However, with a smaller
number of samples we can reach the full proportions of the different classes more
quickly than by using a larger number of samples. The rapidity is addressed
in terms of the number of the week at which we begin to have a complete
representation of all classes of students in the selected samples with respect to
the predefined rate for each class. We believe it is important to determine the
appropriate threshold that should be used as the size of the exemplar set. Since
the goal of our experiments is to detect students in difficulty (high and medium
risk), we can say that for a fixed forgetting value (5%), the appropriate size of
the example set is 80. Indeed, high-risk students have the lowest accuracy value
when compared to the rest (100, 150), but students who are not well detected
are classified as medium risk. As a result, they will be notified in both cases.
Furthermore, with 80 as the exemplar size, the proportion of students who are
actually at medium risk and were classified as successful is low (only 8.7%),
compared to the rest (100: 17%, 150: 20.8%).

6 Conclusion

In this paper, we addressed the question of when to update online analytical
models and how to determine whether the new data provide important informa-
tion that the model should learn. We proposed an incremental learning process
that determines when an online classifier that predicts student performance and
receives a real-time data stream, should be updated. Our method invokes the
retraining process: i) when new classes are detected in the newly received data ;
ii) when the forgetting value in each detected class is below a certain threshold
and iii) when a class label is seen but never predicted. In addition, we use a
typical approach that maintains balanced old and new data examples to re-train
the model when necessary. As a proof of concept, we applied our method on
real data of k-12 learners enrolled in an online physics-chemistry module. The
experimental results show that the forgetting value and the size of the exemplar
set are relevant parameters for reducing the number of updates and maintaining
the stability of the model performance in the context of incremental learning.
Further, we found that increasing the exemplar set size does not always improve
the classifier’s accuracy across all the classes. Both parameters can be set based
on the requirements and the desired outcome.

The current work presents some limitations that we tried to mitigate when
possible: i) currently, the proposed incremental process has been evaluated using
only the ANN, as the method, rather than the model, makes the most significant
contribution and ii) we defined fixed rates for the samples representing each of

14 Labba et al

the class labels when creating the exemplar set for training. This representation,
however, cannot always be insured because the number of samples available may
be less than what is required.

In the future, we plan to compare the use of our incremental learning process
with other classifiers, such as the random forest. Furthermore, we are interested
in improving the process of building the exemplar set, particularly as it’s cur-
rently based on a random selection of samples.

References

1. Ade, R., Deshmukh, P.: Instance-based vs batch-based incremental learning ap-
proach for students classification. International Journal of Computer Applications
106(3) (2014)

2. Ben Soussia, A., Roussanaly, A., Boyer, A.: An in-depth methodology to predict
at-risk learners. In: European Conference on Technology Enhanced Learning. pp.
193–206. Springer (2021)

3. Castro, F.M., Maŕın-Jiménez, M.J., Guil, N., Schmid, C., Alahari, K.: End-to-end
incremental learning. In: Proceedings of the European conference on computer
vision (ECCV). pp. 233–248 (2018)

4. Gepperth, A., Hammer, B.: Incremental learning algorithms and applications. In:
European symposium on artificial neural networks (ESANN) (2016)

5. He, J., Mao, R., Shao, Z., Zhu, F.: Incremental learning in online scenario. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion. pp. 13926–13935 (2020)

6. Kotsiantis, S., Patriarcheas, K., Xenos, M.: A combinational incremental ensem-
ble of classifiers as a technique for predicting students’ performance in distance
education. Knowledge-Based Systems 23(6), 529–535 (2010)

7. Kulkarni, P., Ade, R.: Prediction of student’s performance based on incremental
learning. International Journal of Computer Applications 99(14), 10–16 (2014)

8. Losing, V., Hammer, B., Wersing, H.: Incremental on-line learning: A review and
comparison of state of the art algorithms. Neurocomputing 275, 1261–1274 (2018)

9. Masana, M., Liu, X., Twardowski, B., Menta, M., Bagdanov, A.D., van de Wei-
jer, J.: Class-incremental learning: survey and performance evaluation on image
classification. arXiv preprint arXiv:2010.15277 (2020)

10. Ristin, M., Guillaumin, M., Gall, J., Van Gool, L.: Incremental learn-
ing of random forests for large-scale image classification. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 38(3), 490–503 (2016).
https://doi.org/10.1109/TPAMI.2015.2459678

11. Shan, G., Xu, S., Yang, L., Jia, S., Xiang, Y.: Learn#: A novel incremental learn-
ing method for text classification. Expert Systems with Applications 147, 113198
(2020)

12. Sirshar, M., Hassan, T., Akram, M.U., Khan, S.A.: An incremental learning ap-
proach to automatically recognize pulmonary diseases from the multi-vendor chest
radiographs. Computers in Biology and Medicine 134, 104435 (2021)

13. Yang, Q., Gu, Y., Wu, D.: Survey of incremental learning. In: 2019 chinese control
and decision conference (ccdc). pp. 399–404. IEEE (2019)

14. Zhao, H., Wang, H., Fu, Y., Wu, F., Li, X.: Memory efficient class-incremental
learning for image classification. IEEE Transactions on Neural Networks and
Learning Systems (2021)

