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Abstract

The effectiveness of advertising in e-commerce largely de-
pends on the ability of merchants to bid on and win im-
pressions for their targeted users. The bidding procedure is
highly complex due to various factors such as market com-
petition, user behavior, and the diverse objectives of advertis-
ers. In this paper we consider the problem at the level of user
timelines instead of individual bid requests, manipulating full
policies (i.e. pre-defined bidding strategies) and not bid val-
ues. In order to optimally allocate policies to users, typical
multiple treatments allocation methods solve knapsack-like
problems which aim at maximizing an expected value under
constraints. In the industrial contexts such as online advertis-
ing, we argue that optimizing for the probability of success
is a more suited objective than expected value maximization,
and we introduce the SuccessProbaMax algorithm that
aims at finding the policy allocation which is the most likely
to outperform a fixed reference policy. Finally, we conduct
comprehensive experiments both on synthetic and real-world
data to evaluate its performance. The results demonstrate that
our proposed algorithm outperforms conventional expected-
value maximization algorithms in terms of success rate.

1 Introduction
Optimizing marketing effectiveness relies on using individ-
ualized bidding policies, exploiting the fact that each user
responds differently. A policy may include a set of rules or
actions over an extended period of time, e.g., cash bonuses,
promotion and display ad shown to consumers on online
platforms. Without loss of generality, we take the narrow
view of bidding for display advertising in order to ground
our research into a real life application. In this context, the
task at hand is to specify a full bidding strategy (the pol-
icy) on the future advertisement opportunities for each given
users during a given time period.

In practice, it is typical to have a fixed budget allocated
to a campaign. From an advertising perspective, a bidding
strategy must maximize the total expected revenue while en-
suring that the expected total cost does not exceed a specified
budget.

Usually, this problem is modeled as a multiple choice
knapsack problem (Demirović et al. 2019; Zhou et al. 2023)
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with the objective to select at most one item (bid policy)
from each user such that the sum of the weights (expected
cost) of selected items does not exceed the capacity (bud-
get) while the total reward (expected revenue) is maximized.
This problem is known to be NP-hard, although it can be
tackled with mixed integer linear programming or through
Lagrangian relaxation (Sinha and Zoltners 1979).

From a causal perspective, it is classical to consider ev-
ery individual ad as a treatment, and the optimization prob-
lem goal is to maximize the total causal effect of these treat-
ments by correctly assigning treatments to users. There exist
various approaches for individual treatment assignment that
differ by the objective function they optimize: learning mod-
els to predict either outcomes, causal effects or directly the
optimal treatment assignment. Fernández-Lorı́a et al. (2022)
compare these approaches analytically and show that the as-
signment learners optimize the bias-variance tradeoff with
respect to decision-making errors.

Optimization at the opportunity –or bid –level, which we
refer as bid by bid optimization, requires to attribute each
observed reward to the action that actually caused it, e.g.
each conversion must be attributed to a shown ad. This at-
tribution problem is very complex as there usually are sev-
eral ads displayed in the few hours preceding each con-
version (Bompaire, Gilotte, and Heymann 2021; Bompaire,
Désir, and Heymann 2021; Ji and Wang 2017; Dalessandro
et al. 2012). It causes fundamental problems in the estima-
tion of the causal effects and makes the bid by bid optimiza-
tion extremely difficult in practice.

Furthermore, display advertising campaigns, like many
other online systems, are operated under several business
and technical constraints. In particular, it is typical for an
advertising campaign to have a budget constraint. Several al-
gorithms allow adapting bid by bid optimization techniques
to such constraints (Castiglioni et al. 2022; Conitzer et al.
2022). While these algorithms have their merits and are
largely deployed in practice, they are, however, poorly suited
for causal bid by bid methods. This is because (a) typical
causal methods inherently suppose the absence of causal in-
teraction between the treatment units — such assumption is
in general violated when mixing causal method for bid by
bid optimization and budget pacing; (b) the overall method-
ology needs to trade off marginal value and marginal future
total cost (Bompaire, Gilotte, and Heymann 2021), which is
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arguably intractable at the bid level.
Our first idea is to reformulate the problem at the user

timeline level (i.e. considering all the bid requests and sub-
sequent events relative to a user along a given time period)
which implies to consider entire policies instead of indi-
vidual bids. With this new formulation, the optimal policy
allocation search is framed as a multiple treatment alloca-
tion problem, and the causal effects (cost and value) of poli-
cies are much easier to estimate than that of individual bids.
Our approach is not to be understood as in competition with
usual bid by bid design approaches (Moriwaki et al. 2021)
but rather complementary. Indeed, any bid by bid design ap-
proach could be included as one of the candidate policies we
wish to choose from when allocating policies to users with
our methodology. If a bid by bid design policy happens to be
globally optimal, our method will simply conclude that the
optimal policy allocation consists in assigning this policy to
every user.

However, we claim that searching for the policy allocation
function which maximizes an expected value under an ex-
pected cost constraint (which is typically done in treatment
allocation problems) is not always the best objective. In a
large organization, it is often necessary to have guidelines
that allow for consistent decision-making regarding product
design and improvements. Without such guidelines, individ-
uals cannot handle trade-offs between different quantities
(for example, quality and volume) consistently across the
whole organization. One may think about designing med-
ication (which should be efficient but also avoid negative
side-effects) or electrical batteries (which should have a big
enough capacity while not relying too much on rare materi-
als). This leads to the definition of a success across organi-
zations, e.g. in online advertising, it corresponds to increas-
ing generated value without increasing the cost with respect
to a reference outcome. Taking this as a premise, the (con-
strained) maximization of a single quantity –such as revenue
–is not anymore the right criterion as it does not account for
the uncertainty underlying the phenomenon at play, nor does
it account for what will be considered a success.

This motivates the focus on finding the policy allocation
resulting in the highest probability of success. While every
metric has its pros and cons, we believe a focus on success
probability, with a very flexible notion of success, is of par-
ticular operational interest, see Fig. 1 for an illustrative ex-
ample (we refer to Section 3 for a detailed description).

In summary, this work presents the following contribu-
tions:

• We formally propose the idea of framing the optimiza-
tion problem at the policy level instead of focusing on
bid by bid design, and mathematically formalize both the
expected value maximization and the success probability
maximization problems.

• We develop a novel customized solution to address the
specificities of the success probability optimization prob-
lem.

• Finally, we present a series of numerical experiments
which were conducted on both synthetic and real-world
data, showing that our approach outperforms traditional

value maximization methods in terms of success rate
guarantees.
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Figure 1: Distributions the (cost,value) outcome vector Y =
(Y c, Y v). In blue for the solution of (2) (maximization of
E[Y v] under the condition E[Y c] ≤ yc0) ; and in orange the
solution of (3) (maximization of the success probability).

2 Problem formulation
Preliminary considerations Throughout this section, we
will implicitly refer to a given time period τ of length ∆t,
i.e. τ = [t0, t0 + ∆t]. We consider a given advertiser Adv
who has a fixed budget C to spend over period τ .

Set of candidate policies We assume given a set ofK can-
didate policies Π = {π0, π1, . . . , πK−1} each encapsulating
bidding strategies that may be applied by Adv to each user
consistently throughout the period τ . The reference pol-
icy π0 is the default bidding strategy used by Adv (typically
corresponding to the strategy which is already rolled out in
production for this advertiser). This set of policies Π can be
thought of as a collection of potential treatments in a multi-
ple treatment allocation problem. Note that we do not con-
sider treatments at the level of bidding opportunities here,
but at the level of an extended time period, during which we
apply policies –or bidding strategies –which each have an
integrated way to decide on how to bid on each user for all
the opportunities that will arise during period τ .

Random variables and potential outcomes Considering
the above setup, and with respect to any given user u tar-
getable by Adv, we define the following random variables:

• X ∈ X ⊂ Rd contains a snapshot of the features of u
captured at time t0,

• Y = (Y v, Y c) ∈ Y ⊂ R2
+ contains respectively the

value generated by u in favor of Adv during period τ
and the cost Adv spent to advertize to u.

For any π ∈ Π, we denote Y(π) = (Y v(π), Y c(π)) the
potential outcomes (Rubin 1974) we would have observed
had π been applied to u during τ . In what follows, we con-
sider the tuple (X,Y(π0), . . . ,Y(πK−1)) has an underly-
ing probability distribution P, which we will overload by
simplicity to designate its marginals and conditionals. All
expectancy notations E will refer implicitly to P.



Factuals and counterfactuals Assuming that we apply
policy πu ∈ Π to a given user u during τ , we denote
yu = (yvu, y

c
u) the corresponding realization of the out-

come variable Y, and {yu(π)}π∈Π the corresponding real-
izations of the potential outcomes variables {Y(π)}π∈Π. In
that case, yu = yu(πu) is called the observed factual out-
come and the {yu(πu)}π∈Π\{πu} are the un-observed coun-
terfactual outcomes.

Population random variables Let U = {1, . . . , N} be
the set of users who are targetable by Adv during period τ .
We have access to a randomized controlled trial (RCT) –in
this case also called an online controlled experiment or A/B
test –on population U during this period, randomly assign-
ing to each of those N users the K potential policies in Π.

Formally, let {Ku}u∈U be N i.i.d. uniform categorical
variables with values in {0, . . . ,K − 1}. Each u ∈ U is as-
signed to the policy πKu

during τ , resulting in the definition
of the collection {(Xu,Yu)}u∈U , where the (Xu,Yu) =
(Xu,Yu(πKu)). We will denote P1 the probability distribu-
tion of {(Xu,Yu)}u∈U . Lastly we assume that, in expec-
tation, Adv exactly spends their advertising cost budget C
during τ had they assigned the default policy π0 to every
user, i.e. E

[∑
u∈U Y

c
u (π0)

]
= C.

2.1 Expected value maximization problem
At the user level In the setup we introduced, one aim may
be to find an optimal policy allocation, i.e. a mapping from
X to policies from Π so that expected total value generated
in favor of Adv is maximized, while respecting (in expecta-
tion) the total budget constraint.

Formally, we are looking for a solution ϕ∗ : X → Π to
the problem:

max
ϕ∈ΠX

E

[∑
u∈U

Y vu (ϕ(Xu))

]
s.t. E

[∑
u∈U

Y cu (ϕ(Xu))

]
≤ C.

(1)
In practice, ΠX is very large and hard to explore effi-

ciently, making (1) a difficult problem, especially since it
involves estimation of K potential outcomes in parallel. A
crucial observation is that the problem may be simplified by
reducing it to a partition of the space X , which leads to a
reparametrization of (1), as explained in the next subsection.

Assuming a given partitioning of the user space We
consider given a partition function γ : X → G where
G = {1, . . . ,M} contains the indexes of the partition com-
ponents (or buckets). Reasoning at a bucket-level instead of
the user-level is practical in causal estimation setups since
it enables to circumvent the fundamental problem of causal
inference (Betlei et al. 2021) and is more compliant with
privacy restrictions (Kleber 2019). A reasonable partition-
ing can be chosen by the domain knowledge or recursively
with causal trees through heterogeneous treatment effect es-
timation (Athey and Imbens 2016; Wager and Athey 2018;
Tu et al. 2021; Ai et al. 2022).

Given the partition function γ, we propose to simplify
problem (1): instead of searching through all ϕs in ΠX , we

1We drop the reference to U in P for simplicity.

restrict our search to the allocations of the form ψ ◦ γ where
ψ ∈ ΠG . In short, we look for allocation functions that as-
sign all users belonging to the same bucket g ∈ G to the
same policy π ∈ Π.

Formally, this leads to the reparametrized problem, where
we are looking for a solution ψ∗ : G → Π to the problem:

max
ψ∈ΠG

E

[∑
u∈U

Y vu (ψ(Gu))

]
s.t. E

[∑
u∈U

Y cu (ψ(Gu))

]
≤ C.

(2)
where Gu = γ(Xu) for all u ∈ U .

Solving the expected value maximization problem The
value expectation maximization problem formalized in (2)
may be solved using mixed integer linear programming or
Lagrangian relaxation approaches, which make the problem
tractable in practice despite being NP-Hard (Sinha and Zolt-
ners 1979). Nevertheless, the knapsack formulation remains
a proxy to the marketing problem and its solution does not
always align with the business goal.

Remark 1 –mix of A and B rollout If number of buckets
M = 1, we assign all users to the same policy. This cor-
responds to a typical rollout decision in an online advertis-
ing company: we are A/B testing multiples policies, then de-
pending on the results choosing which one should be rolled
out. Our setup allows for a rollout of a mix of tested policies,
given by function ψ.

Remark 2 –relaxing the allocation space We can relax
problems (1) (2) by allowing for soft allocations, i.e. map-
pings from X (resp. G) to ∆ = ∆(Π) where ∆ denotes all
categorical distributions with values in Π:

∆ :=

{
(p(k))k∈J1,K−1K ∈ [0, 1]K s.t.

∑
k

p(k) = 1

}
.

For ψ ∈ ∆G and g ∈ G and for convenience of notations, we
will refer to the kth component of ψ(g) –i.e. the probability
for ψ to assign a user in bucket g to policy πk –as ψ(g, k).

2.2 Success probability maximization problem
In this section, we will focus on the case where we are given
a partitioning of the user space and consider more general
soft allocation setup presented in Remark 2 at the end of the
previous section.

Instead of searching for the allocation that maximizes the
expected value under constraint as in (1) and (2), one can
also be interested in maximizing their success probability,
especially in cases where the variance of the variables at
play is high. For instance, a policy ψ∗ that satisfies (2) might
deliver very bad values occasionally. As explained in the in-
troduction, the risk-aversion of industrial players often mo-
tivates them to prefer reliable small-increments to uncertain
substantial ones.

Instead, we suppose there is an agreement beforehand on
the definition of the success of a given policy allocation
function ψ : G → ∆ through the characterization of a con-
vex region S ⊂ Y such that “ψ is successful on a the set of



users U” is equivalent to
∑
u∈U Yu(ψ) ∈ S , where for any

ψ ∈ ∆G we denote by simplicity Y(ψ) := Y(ψ(γ(X)).
The success probability maximizing policy ψ∗ is there-

fore a solution to

max
ψ∈∆G

P

(∑
u∈U

Yu(ψ) ∈ S

)
= max
ψ∈∆G

E

[
IS

(∑
u∈U

Yu(ψ)

)]
,

(3)

where IS is the indicator function of the success set S.

Example Our problem is defined with respect to any con-
vex success region S ⊂ Y . In practice, we will consider
success regions relative to a fixed y0 = (yv0 , y

c
0), of the form

Sy0
= {(yv, yc) ∈ Y s.t. yv > yv0 and yc ≤ yc0},

where y0 should be interpreted as a reference outcome, for
example the outcome we observe if we assign the reference
policy to every user

∑
u∈U Yu(π0). The success region Sy0

corresponds to all outcomes with an increased value and de-
creased cost with respect to the reference value and cost y0.

In Figure 1, Sy0 is displayed in green and its complemen-
tary S̄y0

in red. We represent the distributions of the out-
come Y for the respective allocations output by (i) the possi-
ble solution to (3) (maximization of the success probability)
in orange and (ii) the possible solution to 2 (maximization
of E[Y v] under the condition E[Y c] ≤ yc0) in blue. The or-
ange outcome has a very high probability to be in Sy0 , even
if it generates a bit less value on average than the blue one,
which presents a high risk of being outside of the success
region (for example by breaking the cost constraint).

3 The SuccessProbaMax algorithm
In this section, we present solutions for the problems (1)
and (2). We will focus on the bucket-level versions of these
problems, and therefore assume given a fixed partitioning
γ : X → G = {1, . . . ,M} of the feature space. This func-
tion could have been given by an expert or learned by ma-
chine learning algorithm, but it is not the focus of this work.

3.1 Gaussian parametrization of the problem
In this subsection, we introduce a novel method to solve the
success probability maximization problem. This optimiza-
tion problem, stated in (3), presents several non-trivial diffi-
culties: (a) the indicator function which expectancy we are
maximizing is not continuous on ∆G and (b) the criteria we
wish to maximize is non-concave. We use

Yg,k =
∑
u∈U

Yu(πk)I (γ(Xu) = g) ,

as a compact notation for the total expected outcome from
users in bucket g, had they been allocated to policy πk. As-
suming that the buckets in G are approximately balanced
in size (each containing ≈ N/M data points), we observe
around N/(MK) i.i.d. realizations to estimate each Yg,k.
Let µk,g and Σk,g be the mean and covariance matrix of the
potential outcomes which contain value and cost.

For any soft allocation ψ : G → ∆ –which maps all buck-
ets in G to a stochastic mix of policies in Π–the total ex-
pected outcome under allocation ψ

Y(ψ) =
∑
k

∑
g

ψ(g, k)Yg,k,
∑
k

ψ(g, k) = 1.

The distributions ψ(g, k)Yg,k are independent, therefore,
we can use the Lyapunov central limit theorem and approx-
imate the total expected outcome by a Gaussian distribution

Y(ψ) ∼ N (µ(ψ),Σ(ψ)) ,

where µ(ψ) =
∑
k

∑
g ψ(g, k)µg,k and Σ(ψ) =

Var
[∑

k

∑
g ψ(g, k)Yg,k

]
. Depending on assumptions,

Σ(ψ) can be a linear or quadratic function of ψ(g, k) due to
different sources of randomness which lead to different vari-
ances. We assume that Σ(ψ) =

∑
k

∑
g ψ(g, k)Σg,k (more

details in Supplementary).

3.2 Parameters estimation
When we do not have a direct access to parameters µg,k
and Σg,k, we need to estimate them. In practice, the param-
eters are estimated on a randomized control trial (RCT)
dataset D = {(xu,yu)}u∈U –realization of the collec-
tion {(Xu,Yu)}u∈U introduced in the last section. More
precisely, (xu,yu) = (xu,yu(πku)) are i.i.d. realizations
of (X,Y(πku)), where {ku}u∈U are i.i.d. realization of a
uniform categorical variable on {0, . . . ,K − 1}. For k ∈
J0,K − 1K and g ∈ G, we will refer to the restrictions of D
to points u ∈ U for which γ(xu) = g and ku = k as Dg,k.

To estimate parameters, we choose mean and vari-
ance estimation methods (e.g. bootstrapping Efron (1979))
which take as input a dataset Dg,k containing realizations of
Y for a given bucket g and policy k and return respectively
its mean {µ̂g,k} and variances {Σ̂g,k}.

3.3 Gradient computation
In the following, for ψ ∈ ∆G , we will denote for
clarity purposes C(ψ) = P

(∑
u∈U Yu(ψ) ∈ S

)
=

E
[
IS
(∑

u∈U Yu(ψ)
)]

the criterion we wish to optimize.
The indicator function is discontinuous on the border of
S. It prevents us from directly using a stochastic gradient
method (Shapiro, Dentcheva, and Ruszczynski 2021). The
next lemma 2 provides an explicit expression for the gradi-
ent of the criteria.

Lemma 1. The gradient of C at ψ satisfies

[∇C(ψ)]g,k = E
[
IS(Y)

(
(Y − µ(ψ))TΣ(ψ)−1 · µg,k

−1

2

(
Σ(ψ)−(Y−µ(ψ))(Y−µ(ψ))T

)
·Σ(ψ)−1Σg,kΣ(ψ)−1

)]
.

2The proof of Lemma 1 uses classical arguments from the pol-
icy learning literature (Williams 1992; Sutton and Barto 2018) and
further relies on the chain rule with a few relations for multivariate
Gaussian variables. We defer the proof to the Supplementary.



3.4 Optimization
Here, we present our optimization algorithm
SuccessProbaMax (Algorithm 1) to solve (3) which
takes as input

(a) success region S ⊂ Y to define a criteria C introduced
in (3). We typically consider success regions relative to a
reference outcome (yv0 , y

c
0): it might be defined as all out-

comes corresponding to increased value and decreased
cost with respect to the reference value and cost;

(b) estimated mean and variance values {µ̂g,k} and
{Σ̂g,k} for all pairwise couples of groups g and candi-
date policies k. There is a particular case when the exact
values of mean and variances are known and do not re-
quire estimation;

(c) some hyperparameters such as an initial policy alloca-
tion function ψ0 ∈ ∆G , number of steps nst and learning
rate η.

Input: S, {µ̂g,k}, {Σ̂g,k}, ψ0, nst > 0, η > 0
ψ ← ψ0

for t = 0 to nst do
µ̂←

∑
k,g ψ(g, k)µ̂g,k, Σ̂←

∑
k,g ψ(g, k)Σ̂g,k

∇ ← ∇̂C(ψ)
ψ ← ψ + η∇
Project ψ onto ∆M

end
Return ψ

Algorithm 1: SuccessProbaMax

The algorithm performs a gradient ascent ∇ ← ∇̂C(ψ)
which can be computed using the formula from Lemma 1
and a numerical integration method for computing the ex-
pectation Eψ , e.g. a Monte-Carlo approach. The updated
gradient is, then, projected onto the space of metapolicies
∆G to produce a solution candidate for (3) using a method
from (Duchi et al. 2008). We provide several possible im-
provements of Algorithm 1 in Supplementary.

Remark As the computation of the gradient through the
closed-form expression requires a matrix inversion, it is not
always the best option computationally.

This is the case for the success region proposed in subsec-
tion 2.2, for which we observe that the criterion rewrites

E

[
IS

(∑
u∈U

Yu(ψ)

)]
= cdfY c(yc0)− cdfY(y0),

where cdfYc(y
c
0) is a (univariate) c.d.f. of Yc in yc0 and

cdfY(y0) is a (bivariate) c.d.f. of Y in y0. (see appendix
for the definition of bivariate c.d.f.). To speed up the algo-
rithm, we rely on an approximation of the bivariate c.d.f.
based on the error function (Tsay, Ke et al. 2011) to estimate
cdfY(y0), and then implement it in JAX – this way we can
directly use the automatic differentiation in JAX to numeri-
cally approximate the gradient of cdfY c(yc0)− cdfY(y0).

4 Experimental Results
For all experiments below we use JAX framework (Bradbury
et al. 2018) for the numerical estimation of the criterion’s
gradient, utilizing automatic differentiation within JAX in-
stead of explicitly calculating the gradient and integrating
it over an outcome. Hyperparameters used for the methods
are provided in Supplementary material and source code3 is
published to reproduce all the empirical results.

4.1 Datasets
Besides the synthetic setups, which will be described below,
we test algorithm on two large-scale, real world datasets.

• CRITEO-UPLIFT v2 (Diemert et al. 2021) is provided
by the AdTech company Criteo. Data contains 13.9 mil-
lion samples which are collected from several incremen-
tal A/B tests. It includes 12 features, 1 binary treatment
and 2 binary outcome labels (”visit” and ”conversion”).
Following (Zhou et al. 2023), we use ”visit” label as
proxy of the cost and ”conversion” as the value. For the
buckets, we used quantile bins of the ”f0” feature. Fi-
nally, we randomly partitioned dataset into two equal
parts for train and test. Preprocessing details are in Sup-
plementary.

• Private dataset is constructed from a large-scale real-
time bidding RCT. One feature was chosen based on an
expert knowledge, buckets were created then as quantile-
based projections of the feature. Dataset is aggregated
over 70 days and consists of 9 buckets, 3 bidding poli-
cies (with reference) and 100 bootstraps of values and
associated costs for each pair (bucket, policy).
Remaining details along with aggregated datasets for
one- and two-dimensional outcome cases are available
in Supplementary material.

4.2 One-dimensional outcome
Here we assume an outcome Y ∈ R. Problem is parame-
terized by a difficulty level r so that S = {(r,+∞)}. We
present here results for synthetic data. Private data results
are in Supplementary.

Baselines SuccessProbaMax is compared to several
baselines searching for the optimal policy allocation:

• Bruteforce({µg,k}, {Σg,k},S) method that com-
pares all possible hard allocations and for a given dif-
ficulty level returns allocation that maximises criterion;

• Greedy1D({µg,k}) algorithm that returns the policy
with the maximum mean value per bucket.

Synthetic data generation We generate Gaussian distri-
butions for two cases: (i) ”large variance” and (ii) ”small
variance”, the same setup but the relative difference between
the variances is much smaller – we expect the latter problem
be harder than the former for the algorithms that take into ac-
count the variance. See Table 1 for precise parameters of dis-
tributions (data construction details and illustration of policy
distributions per bucket are provided in Supplementary).

3https://github.com/criteo-research/success-proba-max



Table 1: Gaussian distribution parameters for synthetic data
generation with three buckets (M = 3), three policies (K =
3) and one outcome (Y ∈ R).

Example [µg,k] [Σg,k]

Large variance

2 1.9 0
2 1 0
2 1 0

 9 1 9
9 1 9
1 1 1


Small variance

2 1.9 0
2 1 0
2 1 0

 9 1 9
9 1 9
1 1 1

 · 0.01

Results We firstly fix µg,k, Σg,k and use them directly in
the algorithm to avoid a source of randomness arising from
parameters estimation, we provide the results below. Then
we generate normal distributions with parameters µg,k, Σg,k
and use estimations µ̂g,k, Σ̂g,k in the algorithm – corre-
sponding results are presented in Supplementary.

On Fig. 2 (left) we show how our method performs for
easier problem with large variance with varying difficulty
level r. SuccessProbaMax starts from uniform alloca-
tion ψunif0 and performs same as Bruteforce. The key
reasons why our algorithm beats Greedy1D is that we i) di-
rectly optimize metric of interest and that we ii) effectively
incorporate variance into optimization, while Greedy1D
only operates with means.

Fig. 2 (right) shows results for the small variance case.
Firstly, note that the gain over Greedy1D (in the region
r ∈ [5, 5.5]) is drastically smaller than in the previous case.
Then, at difficulty level r > 6 the performance of our algo-
rithm drops down. This is because criterion value C(ψunif0 )
becomes 0 and the gradient is not updated. To overcome the
problem, we can either ”warm-start” from the baseline pol-
icy (e.g. from Greedy1D one) or to explore, by estimating
the criterion for several random initial allocations.

Figure 2: Results for different difficulty level r on syn-
thetic setup with one-dimensional outcome for large (left)
and small (right) variance cases.

4.3 Two-dimensional outcome
In this case we consider an outcome Y ∈ R2, so Y =
(Y v, Y c). Problem is parameterized by two-dimensional
difficulty levels r so that S = {(rv,+∞), (−∞, rc]}.
Baselines In addition to Bruteforce,
SuccessProbaMax is compared with two other baselines
that search for the optimal policy allocation:

• LinProg({µg,k}, rc) algorithm (linear programming)
that solves the fractional knapsack problem and returns
a policy (soft allocation) with the maximum mean value
per bucket;

• MixedInt({µg,k}, rc) algorithm (mixed-integer linear
programming) that solves the 0/1 knapsack problem and
returns a policy (hard allocation) with the maximum
mean value per bucket.

Synthetic data generation We generate bivariate Gaus-
sian distributions for cases (i) and (ii), see Table 2 for precise
parameters of distributions (an illustration of policy distribu-
tions is provided in Supplementary).

Table 2: Bivariate Gaussian distribution parameters for syn-
thetic data generation with one bucket (M = 1), two policies
(K = 2) and two-dimensional outcome (Y = (Y v, Y c) ∈
R2).

Example [µv
g,k] [Σv

g,k] [µc
g,k] [Σc

g,k] ρ
µc
2 and Σc

1 larger [2, 1] [9, 1] [1, 1.5] [4, 1] 0.5
µc
2 and Σc

1 smaller [2, 1] [9, 1] [1, 0.5] [1, 1] 0.5

We firstly fix µvg,k,Σ
v
g,k and µcg,k,Σ

c
g,k, and use them di-

rectly in the algorithm to avoid a source of randomness aris-
ing from parameters estimation (results for the case with pa-
rameters estimation are presented in Supplementary).

Two-dimensional outcome: results. For the experiment,
we fix rv = 0 and vary rc only. Fig. 3 shows that for both
cases, SuccessProbaMax started from uniform alloca-
tion ψunif0 reaches the same performance as Bruteforce.

Figure 3: Result for different rc with fixed rv = 0 on
synthetic setup with two-dimensional outcome for cases (i)
(left) and (ii) (right).

Private dataset In our first experiment, we fix rc = 0 and
vary rv only - so we check if we can increase total value
while having same total cost as for reference. We then repeat
computations, but now we fix rv = 0 and vary rc only - in
this case we wonder how often we can reach at least total
value of the reference policy while changing total cost (this
case is described in Supplementary).

Results Fig. 4 describes results on the private dataset with
two-dimensional outcome for the range of Gain rv while
rc = 0 for train (left) and test (right) splits. Our algorithm,
initialized with ψ0 from exploration, reach the Gain of 0.01



in value (1% over the reference) with probability 0.7 for train
and 0.4 for test, while for MixedInt respective probabili-
ties are 0.35 and 0.1. Note that Bruteforce might not be
the best here as some soft allocation may outperform hard
ones for particular (rv, rc).

Figure 4: Results for different Gain rv while rc = 0 on pri-
vate dataset with one-dimensional outcome for train (left)
and test (right) splits.

CRITEO-UPLIFT v2 Data contains 2 policies including
reference (”control”), so value can be increased only by in-
creasing the cost. Thus, now we vary both rv and rc from 0
to 0.2, and a trade-off between value and cost is expected.

Results Fig. 5 depicts differences in C(ψ) between our
algorithm and best baseline Bruteforce (absolute val-
ues are provided in Supplementary). Firstly, there is indeed
a trade-off - for increasing cost by x% value increases by
roughly 2x%. In addition, our algorithm reach higher C(ψ)
in several regions (e.g. where rc ∈ [0.03, 0.04] and rv ∈
[0.04, 0.08] or where rc ∈ [0.08, 0.1] and rv ∈ [0.1, 0.16]).

Figure 5: Results for different rv and rc on CRITEO-
UPLIFT v2 with two-dimensional outcome for train (left)
and test (right) splits.

The results correspond to the sketch provided in Fig. 1.
It represents the distributions of the outcome Y for the re-
spective allocations output by (i) SuccessProbaMax in
orange and (ii) Greedy in blue. SuccessProbaMax out-
puts a solution for which the outcome has a very high prob-
ability to be in Sy0

with y0 = (yv0 , y
c
0) = (rv, rc), even if

generates a bit less value on average than Greedy, which
presents a high risk of being outside of the success region
(for example by breaking the cost constraint).

5 Related work
Some recent papers address multiple treatment allocation
problem under budget constraints from different perspec-
tives. The standard two-stage method firstly estimates treat-
ment effects to predict value and cost for each user, then
solves a knapsack problem (Ai et al. 2022; Albert and Gold-
enberg 2022; Tu et al. 2021; Zhao et al. 2019). Nevertheless,
the goals of two-stage approaches and real-world scenarios
do not perfectly align. Yan et al. (2023) proposes a two-stage
method with an addition regularizer to the knapsack problem
loss to address a business goal. However, the regularizer re-
quires a mathematically well-defined function (such as ex-
pected outcome metric) and its gradients estimation.

Applying the decision-focused framework for market-
ing problems under budget constraints, Du, Lee, and Ghaf-
farizadeh (2019) propose a rank method by comparing
learned ratios between values and costs for the aggregated
targeted treatment effect to improve user retention problem.
However, Zhou et al. (2023) show that the suggested loss
function cannot converge to a stable extreme point in theory
and improve the framework. Authors limit the treatments to
different levels of one treatment, e.g. different levels of dis-
count of some products. Further, they develop an algorithm
equivalent to the Lagrange dual method (’greedy’ approach)
but based on learning to rank decision factors for multiple
choice knapsack problem solutions. In our current context,
our focus is solely on the top-ranked action, rather than the
complete ranking itself. Moreover, as we discussed earlier,
the knapsack formulation remains a proxy to our problem, so
finding efficiently the best decision factors is still not equiv-
alent to finding the best solution to the final business goal.

The closest to our work, Tu et al. (2021) suggest to re-
formulate the treatment allocation problem as a stochastic
optimization task assuming normally distributed outcomes
of bucket-level objective and constraints, however, the final
problem remains in the knapsack form.

6 Conclusion and future works
We suggested a new formulation of the policy allocation
problem that is better adapted to some downstream tasks
when the success region is clearly identified. Compared to
greedy approaches, our algorithm directly optimizes metric
of interest and effectively utilizes variance in the optimiza-
tion, while greedy ones only operate with means. Moreover,
the proposed method can be efficiently applied to improve
the given baseline policy.

Further works include a theoretical analysis of the algo-
rithm. In particular, how it behaves numerically when the
dimension of the outcome increases. Also, it is important
to understand the relationship between the means and vari-
ances of potential outcomes that makes the proposed method
outperform the greedy approaches. In addition to several
suggested improvements of Algorithm 1, promising direc-
tion should be to couple the choice of user partitioning and
the policy allocation problem into one master problem. Last,
given that outcomes on different user segments may corre-
late, adapting the framework for Bayesian learning seems a
pragmatic avenue for further research.
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A Discussion on different sources of variance
There are different sources of randomness:
• estimation variability: how close is the estimator Ŷg,k to

the true value Yg,k (when we do not have a direct access
to Yg,k);

• allocation variability: when ψ is a soft allocation, the al-
location of a user u ∈ g to policy ∈ K can be described
by the categorical random variable Pψ(g) ∈ K such that
P
(
Pψ(g) = k

)
= ψ(g, k). We call P the filtration con-

taining all the randomness from the variables Pψ(g) for
all g.

• system stochasticity: for a fixed g and k, the quantity
Yg,k is itself a random variable which contains the ran-
domness from the behaviour of users in g. We call Y the
filtration containing all randomness from the variables
Yg,k for all g, k.

In our work, we do not consider the problem of estimation
variability, but focus on the derivation of the variance of Y
under a given soft allocation ψ. This variance Var[Y(ψ)] can
be decomposed according to the variance with respect to the
two sources of stochasticity respectively contained in Y and
P .

Var[Y(ψ)] = EP [VarY [Y|P]] + VarP [EY [Y|P]] (4)
= EY [VarP [Y|Y]] + VarY [EP [Y|Y]] (5)

Depending on assumptions, we can have different approx-
imations of Var[Y(ψ)] as a linear or quadratic function of
ψ. For example, consider the decomposition of the variance
with respect to allocation randomness in (4):

EP [VarY [Y|P]] =
∑
k

∑
g

ψ(g, k)Σg,k,

VarP [EY [Y|P]] =
∑
g

ψ(g, k)
(
µg,k −

∑
k

ψ(g, k)µg,k
)2
.

If we assume that there is minimal allocation variability, then
VarP [EY [Y|P]] << EP [VarY [Y|P]] and the variance of
Y depends linearly on ψ since

Var[Y(ψ)] ≈ EP [VarY [Y|P]] =
∑
k

∑
g

ψ(g, k)Σg,k.

In practice, we assume that the allocation variability is small
enough so that this variance approximation holds, i.e. we

are capable of assigning a given ratio of the population to
a given policy. Indeed, we observe that for all g, k there are
enough users in g such that we have an (approximately) fixed
proportion ψ(g, k) of users from g which are allocated to
policy k.

B Gradient derivation (proof of Lemma 1)
1. We have∇C(ψ) = E (IS(Y)∇ψ (ln ℓ(ψ,Y))) .

Proof.

∇C(ψ) = ∇
∫
S
IS(y)ℓ(ψ, y)dy

=

∫
S
IS(y)∇ℓ(ψ, y)dy

=

∫
S
IS(y)

∇ψℓ(ψ, y)
ℓ(ψ, y)

ℓ(ψ, y)dy

=

∫
S
IS(y)∇ψ (ln ℓ(ψ, y)) ℓ(ψ, y)dy

= E (IS(y)∇ψ (ln ℓ(ψ, y)))

We need the derivatives of a Gaussian log-likelihood of
with respect to its parameters.

2. Let p[µ,Σ] be the probability density function of
N (µ,Σ), then

∇Σ−1 (ln p[µ,Σ]y)) =
1

2
Σ− 1

2
(y− µ)(y− µ)T ,

∇µ (ln p[µ,Σ](y)) = (y− µ)TΣ−1.

Proof. The proof is based on the rules of derivation by a
vector and inversed matrix.

3. If f : t → A(t) is an application from R to the set of
non singular matrix of dimension d, then the derivative
of g : t→ A−1(t) is −gf ′g.

4. Let ℓ(ψ, y) = p[µ(ψ),Σ(ψ)](y), then

(∇ψ (ln ℓ(ψ, y)))g,k = (y− µ(ψ))TΣ(ψ)−1 · µg,k

− 1

2

(
Σ(ψ)− (y− µ(ψ))(y− µ(ψ))T

)
·Σ(ψ)−1Σg,kΣ(ψ)−1.

Proof. Using the fact that µ(ψ) =
∑
g,k ψ(g, k)µg,k

and Σ(ψ) =
∑
g,k ψ(g, k)Σg,k, it is clear that

∂µ(ψ)

∂ψ(g, k)
= µg,k,

∂Σ(ψ)

∂ψ(g, k)
= Σg,k.



Let ℓ(ψ, y) = p[µ(ψ),Σ(ψ)](y) and index (g, k) ∈M×
K, then, the chain rule and the previous steps lead to

∂ (ln ℓ(ψ, y))
∂ψ(g, k)

=
∂ (ln p[µ(ψ),Σ(ψ)](y))

∂ψ(g, k)

=
∂ (ln p[µ(ψ),Σ(ψ)](y))

∂µ(ψ)

∂µ(ψ)

∂ψ(g, k)

+
∂ (ln p[µ(ψ),Σ(ψ)](y))

∂Σ(ψ)−1

∂Σ(ψ)−1

∂ψ(g, k)
,

where

∂ (ln p[µ(ψ),Σ(ψ)](y))
∂µ(ψ)

∂µ(ψ)

∂ψ(g, k)

= (y− µ(ψ))TΣ(ψ)−1µg,k,

∂ (ln p[µ(ψ),Σ(ψ)](y))
∂Σ(ψ)−1

∂Σ(ψ)−1

∂ψ(g, k)
=

=
1

2

(
Σ(ψ)− (y− µ(ψ))(y− µ(ψ))T

)
·
(
Σ(ψ)−1Σg,kΣ(ψ)−1

)
.

5. The gradient of index (g, k) ∈M ×K is the following

[∇C(ψ)]g,k = C(ψ) · Eψ
(
(y− µ(ψ))TΣ(ψ)−1 · µg,k

− 1

2

(
Σ(ψ)− (y− µ(ψ))(y− µ(ψ))T

)
·
(
Σ(ψ)−1Σg,kΣ(ψ)−1

)
|y ∈ S

)
Let M = 1 and d = 1, we get

∂kC(ψ)
C(ψ)

= Eψ

[
IS(y)

(
µk

(y − µ(ψ))
Σ(ψ)

− Σk
2

(
Σ(ψ)− (y − µ(ψ))2

)
Σ(ψ)2

)]
.

C Improvements of SuccessProbaMax
We identify several directions of how SuccessProbaMax
can be improved. Firstly, gradient step may be acceler-
ated, either by i) using second-order methods like Newton
method, ii) by applying line search to adapt step size. Sec-
ondly, we observe that algorithm may be stuck in the ”flat”
regions, e.g. if the criterion value of the initial policy alloca-
tion equals 0 – this problem often appears in policy gradient
methods in reinforcement learning (Schulman et al. 2015;
Levine et al. 2020). Currently, we explore several random al-
locations to begin optimization from (akin to epsilon-greedy
exploration in reinforcement learning) or ”warm-start” from
baseline policy, but there are more options to avoid this be-
haviour, e.g. forcing exploration by regularization.

D Example of alignment
Here, we provide an example of a problem when
SuccessProbaMax and Greedy give the same solution.

Consider two policies π0 and π1 and users from U with a
population of size N . Let potential outcome Yu(πk) of user
u follow Bernoulli distributions B(pk), where k ∈ {0, 1}.
Our goal is to maximize success P (

∑
u Yu(πku) = r), i.e.

the probability of getting exactly r successes in N indepen-
dent Bernoulli trials with parameters p0 or p1 depending on
which policy πku ∈ {π0, π1} is assigned to users u ∈ U .

If parameters p0 and p1 are not known, we need to esti-
mate them from the data. Let N0 users be assigned policy
π0 and N1 = N −N0 users be assigned policy π1. For each
policy, we observe y(πk) =

∑Nk

u=1 yu(πk), a realization of
Y (πk) ∼ Binom(Nk, pk), where yu(πk) are sampled from
B(pk). We estimate the Bernoulli probability for each pol-
icy as p̂k = 1

Nk
y(πk). If we assume that there is no variance

due to estimation variability, i.e. |p̂k − pk| ≈ 0, the total
variance of Y after observing y = y(π0) + y(π1) is due to
system stochasticity that consists of variance coming from
the binomial distribution:

Var[Y ] = Var[Y (π0)] + Var[Y (π1)]

= N0p̂0(1− p̂0) +N1p̂1(1− p̂1)

We notice that the variance of the total outcome Var[Y ] is
monotone with respect to N0 and N1.

In this example, SuccessProbaMax will search for
a trade-off between the policy with the minimum esti-
mated Bernoulli variance argkmin p̂k(1− p̂k) and the max-
imum Bernoulli mean argkmax p̂k. Since argkmin p̂k(1−
p̂k) = argkmax p̂k, we obtain that, in this exam-
ple, SuccessProbaMax returns the same solution as
Greedy.

E Datasets
Here we describe two real datasets used in the paper.

E.1 Private Dataset
Data was created from a large-scale real-time bidding ran-
domized control trial (RCT) over 70 days and consists
of 3 labels. The main label is the value - originally bi-
nary variable of some user action. For each value we col-
lected an associated cost. We used value and cost for two-
dimensional experiments. Along with this, we approximated
a revenue as a function of value and cost, which will be
used for one-dimensional experiments. Data consists of 3
randomly (respecting the RCT procedure) assigned policies,
{π0, π1, π2}, where π0 is a reference bidding policy used in
production, π1 and π2 are candidate bidding policies. In or-
der to separate the user-level feature space, one feature was
chosen based on an expert knowledge, 9 buckets were cre-
ated then as quantile-based projections of the feature.

We aggregated labels by summarising them across the
triplets (day, bucket, policy). Along with the sums, we com-
puted 100 bootstraps of the aggregated value, cost and rev-
enue, that will be used for the mean and (co-)variance esti-
mations.



In order to make a balanced yet realistic train/test split,
we summed labels for odd (train) and even (test) calendar
days, hence we got both train and test data aggregated over
35 days.

To maintain data confidentiality, we computed a relative
difference of labels with respect to the reference policy –
for each pair (bucket, policy) we subtracted a value of the
reference policy from the original one and divided it by a
total reference value (a sum over buckets), we did the same
for the cost and revenue. Finally, we used resulted bootstraps
to estimate µ̂g,k and Σ̂g,k.

E.2 CRITEO-UPLIFT v2
Dataset is provided by the AdTech company Criteo. Data
contains 13.9 million samples which are collected from sev-
eral incremental A/B tests. It includes 12 features, 1 binary
treatment and 2 binary outcome labels (”visit” and ”conver-
sion”). Following (Zhou et al. 2023), we use ”visit” label
as proxy of the cost and ”conversion” as the value. We ran-
domly partitioned the dataset into two equal parts for train
and test. For the buckets, we used quantile bins of the ”f0”
feature resulting in 8 buckets.

F One-Dimensional outcome
F.1 Criterion
Here we assume an outcome Y ∈ R. The problem is pa-
rameterized by a difficulty level r so that S = {(r,+∞)}.
Criterion then is defined as maximizing the following prob-
ability

P(Y (ψ) > r) = E

[
IS

(∑
u∈U

Yu(ψ)

)]
= 1− cdfY (ψ)(r),

where

Y (ψ) =
∑
k

∑
g

ψ(g, k)Yg,k ∼ N (µ(ψ),Σ(ψ)),

µ(ψ) =
∑
k

∑
g

ψ(g, k)µg,k,

Σ(ψ) =
∑
k

∑
g

ψ(g, k)Σg,k,

and cdfY (ψ)(r) is a cumulative distribution function (c.d.f.)
of Y (ψ) in r.

Instead of computing the gradient as an integration over
Y (ψ) to obtain the expected value (see Lemma 1), we use an
automatic differentiation in JAX to numerically approximate
the gradient of 1− cdfY (ψ)(r).

F.2 Baselines: Bruteforce
This method compares all possible hard allocations and for
a given difficulty level returns allocation that maximises cri-
terion, thus, resulting in the complexity O(KM ), where K
is a number of policies and M is a number of buckets – for
large K and M , Bruteforce is not an option because of its
non-polynomial complexity.

F.3 Synthetic setup
We simulate a toy yet sufficient setup in order to illustrate
typical situations in which our algorithm can make an ad-
vantage.

Specifically, we generate parameters of Gaussian distribu-
tions for the setting of M = 3 buckets and K = 3 policies.
We consider two cases: ”large variance” and ”small vari-
ance”. The difference is that for ”small variance”, we scale
variances by 0.01 factor. See Table 1 for precise parameters
of distributions and Fig. 7 and 8 for an illustration of policy
distributions per bucket. For better describing the intuition,
let us focus on the first bucket in both cases (first plots of the
Figure 7 and 8 respectively).

The ”large variance” case represents the situation when
µ1,0 = 2, µ1,1 = 1.9,Σ1,0 = 9,Σ1,1 = 1, so the difference
in means µ1,0−µ1,1 is much smaller than the difference be-
tween variances Σ1,0 − Σ1,1. If we assume now r = 0, it
becomes clear that policy π1 is one that maximizes the suc-
cess probability, however the ”greedy” approach will choose
π0 because of the highest mean.

In the ”small variance” case, the relative difference be-
tween the variances is now much smaller, meaning that an
effective range of r, where our algorithm can outperform
”greedy”, drastically decreases.

To illustrate this, we plot in Fig. 6 the difference of crite-
rion values

C(π1)− C(π0) = P(Y (π1) > r)− P(Y (π0) > r)

for a range of r. We define rmax as a point where
cdfπ0

(rmax) = cdfπ1
(rmax). We can see that

C(π1)− C(π0) ≥ 0, r ∈ [−∞; rmax].

The intuition is that while r grows, the left tail of the π0 dis-
tribution gets outside of the S, then, we reach a point rmax,
where two criterion values are equal. Finally,

C(π1)− C(π0) ≤ 0,∀r > rmax

due to a bigger variance of the π0 distribution.
Comparing between the ”large” and ”small” variance

cases, one can clearly see i) a gap in the potential ”winning
region” size and ii) a difference in the maximum value of
C(π1)− C(π0).

F.4 Synthetic setup results
We use µ0,k = [2, 1.9, 0],Σ0,k = [9, 1, 9], r = 0 to
show the convergence of our algorithm on Fig. 9. Note that
SuccessProbaMax found an optimal allocation [0, 1, 0],
which differs from the one of Greedy1D, [1, 0, 0].

To check the algorithm performance where a source of
randomness arising from the parameters estimation is pre-
sented, we generate normal distributions with parameters
µg,k, Σg,k of sizes N ∈ {1000, 10000} and use estimations
µ̂g,k, Σ̂g,k in the algorithm.

To test the noise coming from the parameters estimation,
for both ”large” and ”small” variance cases we randomly
split generated data into train/test parts, estimate µ̂g,k, Σ̂g,k
on train, and check resulted allocations on both train and



Figure 6: The difference of criterion values for π1 and π0.

test. We repeat the procedure 100 times to build proper con-
fidence intervals. The results for the ”large variance” case
are presented in Figures 10 (for N = 1000) and 11 (for
N = 10000).

The performance on train and test splits are very similar –
it is reasonable as splits contain data from the same distribu-
tion. As one can see, the precision of µ̂g,k, Σ̂g,k estimation is
higher for the N = 10000 case which is reflected in smaller
confidence intervals for each method.

The results for the ”small variance” case are provided in
Figures 12 (forN = 1000) and 13 (forN = 10000). Due to
the smaller original variance, confidence intervals are even
smaller than in the previous case.

F.5 Private dataset
For the real data cases, it is reasonable to have a direct in-
terpretation of difficulty level r for the RCT success proba-
bility. Thus, here we interpret r as a relative gain in the out-
come over the reference policy (or simply “Gain” hereafter)
that we want to reach.

F.6 Private dataset results
Fig. 14 describes results on the private dataset with one-
dimensional outcome for the range of gains r for train (left)
and test (right) splits. Notice that the only possible region
to improve C(ψ) in both cases is [0.02, 0.03]. For instance,
like Bruteforce, our algorithm initialized with ψ0 from
exploration reaches the Gain of 0.029 (2.9% over the refer-
ence) with the probability almost 1, while for Greedy1D it
is around 0.7.

G Two-Dimensional outcome
G.1 Criterion
In this case we consider an outcome Y ∈ R2, so
Y = (Y v, Y c). The problem is parameterized by a two-

Figure 7: Synthetic data distributions for large variance case,
with parameters described in Table 1.

dimensional difficulty level r = (rv, rc) so that S =
{(rv,+∞), (−∞, rc]}. The criterion, then, is defined as
maximizing the following probability

E

[
IS

(∑
u∈U

Yu(ψ)

)]
= cdfY c(rc)− cdfY(r),

where
Y(ψ) ∼ N (µ(ψ),Σ(ψ)) ,

µ(ψ) =
∑
k

∑
g

ψ(g, k)µg,k,

Σ(ψ) = Var

[∑
k

∑
g

ψ(g, k)Yg,k

]
cdfYc(rc) is the (univariate) c.d.f. of Yc at rc and cdfY(r)
is the (bivariate) c.d.f. of Y at r

cdfY(r) =

rv∫
−∞

rc∫
−∞

f(xv, xc) dxv dxc (6)

where f(xv, xc) is the p.d.f. of bivariate normal distribution.



Figure 8: Synthetic data distributions for small variance
case, with parameters described in Table 1.

G.2 Baselines: LinProg and MixedInt
The LinProg algorithm (linear programming) solves the
fractional knapsack problem (soft allocation) and returns a
policy with the maximum mean value per bucket under the
defined cost constraint. Along with the linear programming
approach, we also implement MixedInt (mixed-integer
linear programming) that solves the 0/1 knapsack problem
and returns a hard allocation.

The main drawback of both algorithms for the success
probability maximization problem is that only means of
value and cost are used for optimization, while lacking in-
formation about the variance.

For both methods, CVXPY Python library (Diamond and
Boyd 2016) was used for the implementation.

G.3 Synthetic setup
We generate parameters of bivariate Gaussian distributions
for the setting of M = 2 buckets and K = 3 policies. We
consider two specific examples, see Table 2 for precise pa-
rameters of distributions and Fig. 15 for an illustration of
policy distributions.

Figure 9: Convergence of SuccessProbaMax on the toy
example. We observe that the optimal decision is different
from the output of the greedy algorithm.

Figure 10: Synthetic setup with one-dimensional outcome,
N = 1000, ”large variance” case: results for a range of dif-
ficulty level r on 100 random train (left) and test (right) data
splits.

Figure 11: Synthetic setup with one-dimensional outcome,
N = 10000, ”large variance” case: results for a range of
difficulty level r on 100 random train (left) and test (right)
data splits.

In general, we keep the idea from the one-dimensional
setup and create two examples. In example (i), π1 has a big-
ger mean cost and a larger mean value, however, both vari-
ances are smaller than for π0. For r = (rv, rc) = (0, 3), an
optimal policy is π1, however, LinProg again will choose
π0 due to the larger µv1,0 at the cost constraint µc1,0.

In example (ii), there is a positive difference in means



Figure 12: Synthetic setup with one-dimensional outcome,
N = 1000, ”small variance” case: results for a range of
difficulty level r on 100 random train (left) and test (right)
data splits.

Figure 13: Synthetic setup with one-dimensional outcome,
N = 10000, ”small variance” case: results for a range of
difficulty level r on 100 random train (left) and test (right)
data splits.

Figure 14: Results for different Gain r on private data with
one-dimensional outcome for train (left) and test (right)
splits.

µv1,0−µv1,1 but it is much smaller than the difference between
variances Σv1,0−Σv1,1. At the same time, µc1,1 is smaller than
µc1,0 and Σc1,0 = Σc1,1. If we fix r = (rv, rc) = (0, 1), an
optimal policy is π1, however LinProg will choose π0 due
to the larger µv1,0 at the cost constraint µc1,0.

G.4 Synthetic setup results
To check the algorithm performance where estimation vari-
ability is present, we repeat the same procedure as for the
one-dimensional setup, generating bivariate normal distribu-

Figure 15: Confidence ellipses of the synthetic data distri-
butions for case (i) (left) and (ii) (right) with parameters de-
scribed in Table 2.

tions of size N = 1000 with defined parameters.
The results for cases (i) and (ii) are presented in Fig-

ures 16 and 17 respectively.

Figure 16: Synthetic setup with two-dimensional outcome,
N = 1000, case (i): results for a range of rc on 100 random
train (left) and test (right) data splits.

Figure 17: Synthetic setup with two-dimensional outcome,
N = 1000, case (ii): results for a range of rc on 100 random
train (left) and test (right) data splits.

G.5 Private data results
Fig. 18 describes results on the private dataset with two-
dimensional outcome for the a range of gains rc while
rv = 0 for train (left) and test (right) splits. For instance,



SuccessProbaMax reaches the Gain of -0.02 in cost (-
2% over the reference) with probability 0.97 for train and
1 for test, while for MixedInt respective probabilities are
0.86 and 0.89.

Figure 18: Results for different Gain rc while rv = 0 on the
private dataset with one-dimensional outcome for train (left)
and test (right) splits.

G.6 CRITEO-UPLIFT v2 results
Absolute criterion values for train and test data splits are
presented for Bruteforce, LinProg, MixedInt and
SuccessProbaMax on Figures 19, 20, 21 and 22 respec-
tively. As we can see, among the other methods our algo-
rithm is the most efficient and stable at the same time.

Figure 19: Absolute criterion values of Bruteforce
method on CRITEO-UPLIFT v2 data on train (left) and test
(right) data splits.

H Hyperparameters
There are no hyperparameters for the baselines.
SuccessProbaMax includes three hyperparameters
- initial allocation ψ0, learning rate η and number of steps
nst.

For ψ0, we define three options:

ψ0 ∈ {ψunif0 , ψbaseline0 , ψexpl0 },

where ψunif0 represents a uniform allocation, ψbaseline0 is
a baseline allocation (from Greedy1D in 1D case and
LinProg in 2D), and ψexpl0 is an allocation from explo-
ration, when we generate 50000 random allocations and pick
one with the maximum criterion value.

Figure 20: Absolute criterion values of LinProg method
on CRITEO-UPLIFT v2 data on train (left) and test (right)
data splits.

Figure 21: Absolute criterion values of MixedInt method
on CRITEO-UPLIFT v2 data on train (left) and test (right)
data splits.

Figure 22: Absolute criterion values of
SuccessProbaMax method on CRITEO-UPLIFT
v2 data on train (left) and test (right) data splits.

We consider the following possible sets of η and nst:

η ∈ {10−1, 10−2, 10−3, 10−4},

nst ∈ {104, 105, 106, 5 · 106}
For each experiment, we did a grid search over the hyper-

parameters set aiming to maximize C(ψ). The resulted hy-
perparameters for each experiment are presented in Table 3.

I Hardware
Experiments were performed on Linux machine with 8
CPUs (Intel(R) Xeon(R) Silver 4108 CPU @ 1.80GHz) and
16Gb of RAM.



Table 3: Hyperparameters of SuccessProbaMax.

Case ψ0 η nst
1D - synthetic - large var ψunif0 10−1 104

1D - synthetic - small var ψexpl0 10−1 104

1D - private ψexpl0 10−2 105

2D - synthetic - case (i) ψunif0 10−2 104

2D - synthetic - case (ii) ψunif0 10−2 104

2D - private ψexpl0 10−4 5 · 106
2D - Criteo ψexpl0 10−3 106
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