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Revisiting the transition from pragmatic to conceptual proofs 

Thibaut Trouvé 

Univ. Grenoble Alpes, CNRS, IF, 38000 Grenoble, France; thibaut.trouve@univ-grenoble-alpes.fr 

In this paper, we briefly summarize the different meanings of genericity and the related questions that 

have been investigated in the last fifty years. Two distinct activities involving genericity surface from 

this overview. On the one hand, one can write a proof on a generic instance, and on the other hand, 

one can identify the generic character of a proof. Considering their interaction in the proving process 

leads to an innovative view of the transition from pragmatic to conceptual proofs. We illustrate this 

interaction and raise inspiring questions for future work about its implementation in classrooms. 
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Introduction 

The notion of genericity has been examined from many different points of view since it was 

introduced in didactics of mathematics by Tall in 1979. It emerged from Steiner’s philosophical essay 

on proof in the perspective of mathematical explanation (1978). Since, many important studies (both 

epistemological and empirical) have been conducted to explore the questions it has raised regarding 

teaching and learning proof and proving, particularly at the secondary-tertiary transition. Indeed, 

these works have reinforced the feeling that reasoning on an example 

[...] reduces the level of abstraction and suspends or even eliminates the need to deal with 

formalism and symbolism, and by this may facilitate the transition from inductive informal to more 

deductive formal reasoning. (Zaslavsky, 2018, p. 290) 

In the first part of the paper, we present an overview of the notion of genericity in didactics of 

mathematics, from the founding works and up to the most recent issues. Two different mathematical 

activities arise from this overview. In the second part of the article, we characterize both processes 

and relate them to existing frameworks of genericity (Balacheff, 1988; Battie, 2022). The last part 

aims at illustrating their interaction in the proving process. This constitutes a new way for examining 

the transition from pragmatic to conceptual proofs. We end up by summarizing our theoretical 

viewpoint and we expose some reflexions and interesting questions for future work.  

A brief overview of genericity in didactics of mathematics 

In 1978, Steiner wrote a philosophical essay in which he rejected the criterion of generality for 

explanatory proofs. Instead, he advocated the criterion of generalizability. According to him, a proof 

relying on the prime factorization of the integers – what he calls “characterizing property” (1978, p. 

143) – better explains the irrationality of √2 than Pythagoras’ proof (by contradiction: if 2𝑞2 = 𝑝2 

with 𝑝 and 𝑞 coprime, then 2 is a common factor of 𝑝 and 𝑞) as it is generalizable. From a cognitive 

point of view, Tall confirmed that the generic proof of the irrationality of √2 “in the sense that it 

contains within it a complete spectrum of proofs for all square roots of non-squares” (1979, p. 5) is 

preferred by students. Parallelly, Mason and Pimm discussed the difficulties inherent to genericity, 

specificity, and generality in mathematics. They introduced the notion of proof on a generic example 

as a “proof, although given in terms of a particular number, nowhere relies on any specific properties 



 

 

of that number” (1984, p. 284). Shortly after, in his taxonomy of proofs, Balacheff defined the generic 

example at the transition from empirical validation to mathematical validation of proofs, what he also 

called transition from pragmatic to conceptual proofs, as follows: 

The generic example involves making explicit the reasons for the truth of an assertion by means 

of operations or transformations on an object that is not there in its own right, but as a characteristic 

representative of its class. The account involves the characteristic properties and structures of a 

class, while doing so in terms of the names and illustration of one of its representatives. (Balacheff, 

1988, p. 219) 

By questioning the potential status of proofs by generic example as pragmatic ones, Rowland (2001) 

accelerated the research and, for the first time, proposed a list of criteria to produce these proofs in 

number theory. From that point, three main questions have been (and are still) discussed1. Firstly, 

Leron and Zaslavsky (2013), Yopp et al. (2015) and Reid and Vellejo Vargas (2018) tried to clarify 

the status of proofs on a generic example by refining the criteria, particularly for classroom settings. 

Moreover, authors like Kempen (2018) and Lew et al. (2020) conducted experiments to study their 

contribution for reading and understanding, and for producing and writing proofs, in comparison with 

formal proofs. Unfortunately, their results were not significant – even though promising – because of 

the limited time of the experiments and the marginal use of these proofs at school. Finally, as Leron 

and Zaslavsky question, “Not all proofs are equally amenable to a genuine generic version. Can we 

characterize the proofs (or parts thereof) that are so amenable?” (2013, p. 29). One answer, in the 

field of arithmetic, is given by Battie who analyses the interaction between the organizing dimension 

and the operative dimension of the reasoning (2007) to identify the generic power (2022) of a proof 

as the distance to what Steiner calls the “characterizing property” (1978, p. 143). 

In this multiplicity of works dealing with genericity, we contend that there exists a difference in the 

mathematical activities involved. On the one hand, one can identify the class of objects a proof applies 

to, and on the other hand, one can base the proof of a universally quantified proposition on an example 

without using any of its specific features. Even if both activities are interacting in the proving process, 

their distinction regarding genericity is never made in the literature. Sometimes, it is not even clear 

what the authors speak about when talking about genericity and proof. Particularly, the 

undifferentiated use of the terms generic proof, generic example and proof on a generic example can 

lead to this confusion. In the next section, we try to give a framework to distinguish them decisively. 

Two definitions of genericity 

As the previous overview highlights, we propose to distinguish two activities involving genericity. 

Before giving our definitions, we recall what we mean by proving a universal proposition on a generic 

element. In (post-)secondary school, students are often asked to prove universally quantified 

propositions of the form: ∀ 𝑥 ∈ 𝐸,  𝑃(𝑥). We will say that proving such a proposition on a generic 

element consists in reasoning on an element in a way that does not exploit any specific feature linked 

to its choice and respects the rigor of the logical chain. We denote these two criteria respectively by 

universality and necessity. Durand-Guerrier and Arsac denoted the first criterion by “generality” 

                                                 

1 See (Zaslavsky, 2018) to get a more detailed overview. 



 

 

(2003, p. 301) but we prefer to keep this word to characterize and compare propositions. These criteria 

will be exemplified below. In this proving process, the element (a number, a vector, a set, a matrix or 

a function for example) is represented by a literal symbol and a proof usually starts by: let 𝑥 ∈ 𝐸. 

Proof on a generic instance 

The relevance of requiring the universality and the necessity criteria to be fulfilled for proving on a 

generic element is assessed by the work of Durand-Guerrier and Arsac (2003). In a previous work, 

we surveyed first-year students’ understanding of a formal proof through the production of an 

example-based proof. The proofs we collected – which will illustrate the content of this subsection – 

intimated us to transpose these two criteria to the context of genericity. Therefore, we will say that 

proving a universal proposition on a generic instance consists in reasoning on a representation 

(numerical, geometrical or graphical for example) of an instance standing for a generic element.  

We prefer to speak about instance instead of example. First because the notion of example is almost 

always associated to the verification of a proposition – contrary to what genericity conveys here – 

and in reference to computer science where “An instance of a problem is obtained by specifying 

particular values for all the problem parameters” (Garey & Johnson, 1979, p. 4). Our definition is 

more restrictive than what Balacheff calls generic example which includes the following student’s 

reasoning to prove the irrationality of the square-root of any non-square integer: 

We take 231 and suppose there exists an integer 𝑎 and a positive integer 𝑏 such that √231 =
𝑎

𝑏
, 

that is 231𝑏2 = 𝑎2. We have 231 = 77 ∙ 31, so 𝑣3(231) = 1 (because 3 is not a factor of 77) is 

odd. But 231𝑏2 = 𝑎2 gives 2𝑣3(𝑏) + 𝑣3(231) = 2𝑣3(𝑎). Therefore, 2(𝑣3(𝑏) − 𝑣3(𝑎)) = 1. 

This is impossible, hence √231 is irrational. (Our translation) 

In this proof, the student has neither mentioned nor justified the link between the non-square 

hypothesis and the existence of an odd power in the prime factorization of 231. However, this 

reasoning can neither be considered as a crucial experiment2 or as naive empiricism3 – the two main 

types of pragmatic proofs – nor be accepted as a proof on a generic instance. Yet, we support that it 

conveys a kind of global certainty about the validity of the proposition and not only the verification 

that √231 is indeed irrational. Thus, we propose to theoretically refine the transition from pragmatic 

to conceptual proofs with three levels of genericity in the process of validation based on an instance: 

Level 1. Using a representation of an instance to ensure the validity of the proposition (wordless 

proofs for example). 

Level 2. Making explicit the relationships between the instantiated objects to guarantee the 

universality of the reasoning. 

Level 3. Logically justifying the relationships between the instantiated objects to make sure of the 

necessity of the reasoning. 

The proof we just presented is at the first level of this taxonomy. Reaching the second level requires 

to detach the reasoning from its specificity by lifting every implicit feature of the instance to a feature 

                                                 

2 “Naive empiricism consists of asserting the truth of a result after verifying several cases.” (Balacheff, 1988, p. 218) 
3 The crucial experiment is the process of “verifying a proposition on an instance which ‘doesn’t come for free’, asserting 

that ‘if it works here, it will always work’.” (Balacheff, 1988, p. 219) 



 

 

shared by all the instances the proof applies to. In our example, it consists in explaining why it is 

always possible to choose a power in the prime factorization through which reading the equality             

∙ × 𝑏2 = 𝑎2 leads to a contradiction. The link between the hypothesis of not being a square and the 

existence of such a power must be clearly mentioned to guarantee the universality of the reasoning 

on an instance. For example, to point this link out, a student said: 

[...] for example 𝑛 = 675, so suppose by contradiction that its square-root is rational hence there 

exists two integers 𝑎 and a positive integer 𝑏 such that √675 =
𝑎

𝑏
, then we have the prime 

factorization 675 = 5 ∙ 5 ∙ 3 ∙ 3 ∙ 3 where there does exist a prime number 𝑝 with an odd power 

because 675 is not the square of an integer, here 𝑣3(675) = 3 [...] 

Contrary to 675, the instance 231 (with only odd powers of prime numbers) does not strengthen the 

need to mention the existence of an odd power in the prime factorization. Leron and Zaslavsky call 

675 a “complex enough” instance because it ensures that “all the main ideas of the target proof will 

naturally surface” (2013, p. 25). This second level can be linked to what Balacheff calls thought 

experiment as a conceptual proof, with the difference of not totally distancing from the instance: 

The thought experiment invokes action by internalising it and detaching itself from a particular 

representation. It is still coloured by an anecdotal temporal development, but the operations and 

foundational relations of the proof are indicated in some other way than by the result of their use 

[...] (Balacheff, 1988, p. 219) 

Reaching the third level of genericity exactly means having proved the proposition on a generic 

instance. It requires to verify, by means of deduction steps, the relationships exhibited in the transition 

from the first to the second level of genericity. Then, from the logical viewpoint, the reasoning carried 

by the instance is necessary. In our example, it consists in logically justifying that the existence of an 

odd power in the prime factorization is indeed the consequence of the non-square hypothesis. This 

can be done by contradiction, still on the same instance: 

Suppose 675 only has even powers in its prime factorization. Then, for all prime 𝑝, 
𝑣𝑝(675)

2
 is a 

positive integer and 

675 = ∏ 𝑝𝑣𝑝(675)

𝑝 

= ∏ 𝑝2 
𝑣𝑝(675)

2

𝑝

= (∏ 𝑝
𝑣𝑝(675)

2

𝑝 

)

2

 

This is a contradiction as 675 is not the square of an integer. 

Else, it can be done by contraposition, on the instance 32 ∙ 56 for example. Like for the second level, 

it is possible to draw the parallel with what Balacheff calls calculation on statements (a more 

advanced type of conceptual proofs compared to the thought experiment), still with the difference of 

not totally distancing from the instance: 

They are intellectual constructions based on more-or-less formalised, more-or-less explicit 

theories of the ideas in question in the solution of the problem. These proofs appear as the result 

of an inferential calculation on statements. They rely on definitions or explicit characteristic 

properties. (Balacheff, 1988, pp. 226–227) 



 

 

In this mathematical activity of proving a proposition on a generic instance, the genericity does not 

lie in the instance but rather in the way to convey the universality and necessity through it. For more 

complex proofs, the distinction between the levels of genericity should be made for each subproof.  

Generic character of a proof 

We propose to say that a proof is generic if we can substitute some numerical values by others without 

making the reasoning become false. The proposition it proves is then generalizable. For example, 

Pythagoras’ proof of the irrationality of √2 is generic because it also proves that √6 and √10 are 

irrational numbers. The question to define a notion of comparison between proofs of a same 

proposition can be answered by the following definition. Identifying the generic character of a proof 

consists in determining the specific features used in the reasoning to define a validity set of it. The 

bigger the set (in the sense of the inclusion) the more generic the proof and then the more 

generalizable the proposition. The identification of a validity set of a proof is then independent from 

other proofs of the same proposition and the generalizable character of the proposition is restrictive 

in so far it is proof-dependant. Coming back to the Pythagorean proof of the irrationality of √2, a 

validity set is the set of positive integers with a power of 2 equal to 1 in their prime factorization. We 

propose a second proof of the irrationality of √2, relying on Euclid’s first theorem4: 

Suppose that √2 is rational. Then, there exists two coprime integers 𝑝 and 𝑞 such that 2𝑞2 = 𝑝2. 

The equality implies that 2 divides 𝑝2. By Euclid’s first theorem, as 2 is a prime number, 2 divides 

𝑝. Then, there exists an integer 𝑘 such that 𝑝 = 2𝑘 and the equality becomes 2𝑞2 = 22𝑘2. 

Cancelling by 2 each side, we obtain 𝑞2 = 2𝑘2. Then, 2 divides 𝑞2 and, by the same reasoning, 2 

divides 𝑞. Hence, 2 is a common factor of 𝑝 and 𝑞. This is a contradiction. 

A validity set of this proof is the set of prime numbers. Particularly, we cannot compare the generic 

character of these two proofs because no inclusion exists between the set of prime numbers and the 

set of positive integers with a power of 2 equal to 1 in their prime factorization. We give a third proof 

of the irrationality of √2, more generic, relying on the fundamental theorem of arithmetic:  

Suppose that √2 is rational. Then, there exists two positive integers 𝑎 and 𝑏 such that 2𝑏2 = 𝑎2. 

The fundamental theorem of arithmetic gives 1 + 2𝑣2(𝑏) = 2𝑣2(𝑎). Modulo 2, we obtain 1 ≡ 0. 

This is a contradiction. 

Replacing 2 (the square-rooted integer) by 675 and 2 (the power) by 3 in the equality 2𝑏2 = 𝑎2 leads 

to the more general proposition: for all positive integer 𝑛, if 𝑛 is not the 𝑚–th power of an integer, 

then √𝑛
𝑚

 is irrational. This proof is the most generic among the proofs of the irrationality of √2 we 

gave. We present a fourth proof, as generic as the previous one, relying on Gauss’ lemma:  

Suppose that √2 is rational. Then, there exists two coprime integers 𝑝 and 𝑞 such that 2𝑞2 = 𝑝2, 

which implies 𝑞2 = 𝑝2 − 𝑞2. Then, 𝑞 divides (𝑝 − 𝑞)(𝑝 + 𝑞). But 𝑞 and 𝑝 − 𝑞 are coprime. 

Indeed, if 𝑑 is a common factor, it divides their sum 𝑝. Then 𝑑 divides both 𝑝 and 𝑞. Necessarily, 

                                                 

4 Theorem. (Euclid’s first theorem) For all prime number 𝑝 and for all integers 𝑎 and 𝑏, if 𝑝 divides 𝑎𝑏 then 𝑝 divides 𝑎 

or 𝑝 divides 𝑏. 



 

 

𝑑 = 1. So, we have 𝑞 dividing (𝑝 − 𝑞)(𝑝 + 𝑞) and 𝑞 and 𝑝 − 𝑞 coprime. By Gauss’ lemma, 𝑞 

divides 𝑝 + 𝑞. Then, 𝑞 divides 𝑝 and necessarily 𝑞 = 1. Finally, 2 = 𝑝2 which is a contradiction. 

The notion of generic character of a proof echoes to the recent work of Battie. Her epistemological 

analysis of arithmetical proofs, based on the interaction between the organizing dimension and the 

operative dimension5 of the reasoning (2007), ascribes the same generic power (2022) to the last three 

proofs because of the strong links between Euclid’s first theorem, the fundamental theorem of 

arithmetic and Gauss’ lemma. Moreover, this generic power is fixed by the comparison between 

proofs of a same proposition whereas the generic character of a proof depends on the mathematical 

knowledge of each individual. In this perspective, the two most generic proofs of the irrationality of 

√2 could be compared by considering the question of the irrationality of the integers as a particular 

case of solving Diophantine equations. An interesting idea would be studying to what extent these 

two approaches can be complementary. 

Genericity at the transition from pragmatic to conceptual proofs 

Actually, the two mathematical activities we previously defined dialectically interact in the proving 

process. To illustrate, suppose we are to prove that the square-root of any non-square integer is 

irrational using instances. Because 2 satisfies the hypothesis, we try to prove that √2 is irrational. In 

a first attempt, we arrive to the Pythagorean proof. Then, we wonder if this sketch of proof also proves 

the general proposition. To answer this question, we identify the generic character of our proof. We 

observe that it works for and only for the integers 𝑛 such that 𝑣2(𝑛) = 1, which is not enough. Hence, 

we select a new non-square instance 𝑛0 such that 𝑣2(𝑛0) ≠ 1. For example, 675. After a second 

attempt, we obtain the proof relying on the fundamental theorem of arithmetic. By identifying its 

generic character, we link the non-square hypothesis to the existence of an odd power through which 

reading the equality 675𝑏2 = 𝑎2 leads to a contradiction. At this stage, for the proof to reach the 

second level of genericity, clearly mentioning the link is needed. To ensure that the proposition is 

necessary, we must logically justify the link which seems to make the proof work universally. Once 

it is done, we obtain a proof on the generic instance 675 of the proposition. 

Through this little example, one notices that a proof for which a validity set contains (or is exactly) 

the set of hypothesises of the proposition to be proved is not sufficient to speak about proof on a 

generic instance. In other words, a highly generic proof is not necessarily a proof on a generic 

instance. Considering the interaction between the two activities in the proving process helps grasping 

the transition from an empirical use of the instance to a deductive use mentioned by Balacheff: 

[...] for the generic example and the thought experiment, it is no longer a matter of ‘showing’ the 

result is true because ‘it works’; rather, it concerns establishing the necessary nature of its truth by 

giving reasons. It involves a radical shift in the pupils’ reasoning underlying these proofs. 

(Balacheff, 1988, p. 218) 

                                                 

5 “We distinguish two complementary dimensions of arithmetic reasoning called, respectively, the organizing dimension 

and the operative dimension. The first concerns the mathematician’s “aim” (i.e., his or her “program,” explicit or not), 

and the second relates to those treatments developed for implementing the different steps of the aim.” (Battie, 2007, p. 9) 



 

 

Addressing the interaction between the two processes is crucial to fully exploit the potential of 

instances without reinforcing the students’ feeling that checking (not explaining) the validity of a 

universal proposition is enough to prove it. A natural question is the possibility to analyse the generic 

character of a proof in terms of the three levels of genericity. Besides, studying further the interaction 

between these two activities is legitimized by the fact that some mathematicians regularly use them, 

both in the process and in the product of proving in their research work. Still, the use of instances in 

classrooms is almost never seen as compatible with learning and teaching proof. This difference of 

expectations between research and school mathematics is questionable. Particularly, with our 

requirement to fulfil both the universality and necessity criteria, would it still be relevant to ask 

students for proofs on a generic element if they can produce proofs on a generic instance?  

Conclusion and upcoming work 

Working on instances is a way to address the rise in abstraction of the concepts, the formalism of 

proofs and the importance of quantification which become decisive at the secondary-tertiary 

transition. However, we advocate that more precautions must be taken when dealing with genericity, 

example and proving. To do so, we proposed to examine the transition from pragmatic to conceptual 

proofs in light of the interaction between:  

- proving a universal proposition on a generic instance: reasoning on a representation (numerical, 

geometrical or graphical for example) of an instance standing for a generic element, and 

- identifying the generic character of a proof: determining the specific features used in the 

reasoning to define a validity set of it. 

This distinction raises important questions that we will try to address in our upcoming work. First, 

tackling deeper the interactions between proving on a generic instance and identifying the generic 

character of a proof, so that they can be implemented in classrooms without falling into the pitfall of 

naive empiricism. Particularly, a goal of our work is to build a didactic engineering to detect and 

make students evolve from the first level of genericity (using a representation of an instance to ensure 

the validity of a proposition) to the third level (logically justifying the relationships between the 

instantiated objects to make sure of the necessity of the reasoning). Then, studying to what extent the 

definitions we gave could enhance the students’ understanding of what a mathematical proof is, 

especially with respect to universal quantification. Finally, wondering if it is still legitimate to only 

target and accept proof on a generic element in school mathematics instead of proof on a generic 

instance. To answer all these questions, we plan to interview mathematicians about their use of 

instances for reasoning in their research, but also teachers to know how they apprehend them 

regarding the French curriculum and to look for evidence in the history of mathematics. 
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